STXS Beyond Stage 1.2.

Frank Tackmann

Deutsches Elektronen-Synchrotron

HWG Workshop, CERN November 13-15, 2023

European Research Council Established by the European Commission

Separating Measurement from Interpretation.

Goals

- Maximize sensitivity (combining decay channels)
- While at the same time minimizing theory dependence in measurements
 - Dependence on (SM) theory uncertainties
 - Dependence on (BSM) model specifics
- Measurements stay long-term useful
- Allow for "easy" (re)interpretation with different theory inputs/assumptions
 - Improved theory predictions/uncertainties
 - Different BSM scenarios, treatments (specific models, EFT, ...)

• Stage 1.0

Past Evolution.

- Stage 1.0
- Stage 1.1
 - Reorganize VBF selection cuts in VBF and ggF
 - Introduce dashed bin boundaries for theory uncertainties and optional further splits

Past Evolution.

- Stage 1.0
- Stage 1.1
 - Reorganize VBF selection cuts in VBF and ggF
 - Introduce dashed bin boundaries for theory uncertainties and optional further splits
- Stage 1.2
 - Add high-p_T^H bins in ggF
 - Add ttH binning

Organizing Different Theory Dependences.

SM: Resolution variables

- Examples: $p_T^H \ll m_H, p_T^{Hjj}, p_T^{Hj}/p_T^H$
- Sensitivity to additional QCD emissions
 - Typically dominant SM theory uncertainties
 - Please also measure "vertical" splits (in particular undashed ones)

BSM sensitivity: Kinematics of underlying Born-process

- Examples: $p_T^H \gtrsim m_H, \, m_{jj}, \, p_T^V$
- Sensitivity to BSM effects

Boundary Conditions.

Experimentally

- Should be close to experimental selection/sensitivity
 - Allow for some acceptance corrections, but avoid large extrapolations
 - Example: p_T^V instead of m_{VH} in VH production
- Needs to be viable for all (possibly) contributing decay channels
 - Use proxy-variable as a compromise
 - Example: p_T^{Hjj} as resolution variable for 3rd emission/jet

Theoretically

- Should be well-controlled theoretically
 - Resolution variables that are (in principle) resummable to higher orders (beyond parton showers)
- Should sufficiently correlate with BSM sensitivity
 - Choice of binning tends to be more important than precise choice of variable

To Bin or Not to Bin.

"Split-if-you-can": Important to have sufficiently many bins

- Residual in-bin uncertainties should be subdominant
- Enough bins to resolve/distinguish BSM effects
- At highest p_T , limits are also very useful

• "Merge-if-you-can": Important to keep number of bins manageable

- Too many unconstrained/almost empty bins pose problems for fits
- A priori, for maximum consistency all bins have to be implemented internally by all analyses even if individual analyses typically only target a small subset
- Phase-space edges can also pose problems for theory predictions
- ⇒ Binning choice is always compromise between both constraints
 - What is the smallest number of bins to capture dominant theory effect?
 - What is the largest number of bins that can realistically be constrained in full combination?

- STXS are defined at truth-level for an undecayed Higgs
 - $\blacktriangleright H
 ightarrow bar{b}$ are not counted as jets
- Binning evolution should be backward compatible
 - Certainly over the course of a run
 - Perhaps not a strict requirement with new E_{cm}
- Like to make informed binning decisions
 - Ideally based on concrete studies
- ⇒ In the past, we have leaned toward more than less bins (my personal feeling)
 - Merging is easier than splitting but only to a point
 - Premature bins are also bad, since we cannot (easily) change/move a bin boundary later

Discussion.

Where To Go Next?

Thinking about possible targets

- LHC Run 3
 - Stage 1.3: (Smaller) evolution/update from stage 1.2
 - Should happen immediately
- HL-LHC
 - Stage 2.0: 1000/fb
 - Stage 2.1: ...
 - A bit more time for studies, but starting now
- ⇒ Specify and keep in mind target of different ideas
 - Assignments in the following are my initial feeling

Ideas for Binning.

gg ightarrow H

- More low-p^H_T bins (1.3)
- More high-p^H_T bins (2?)
- Generalize/clarify to mean hadronic production $gg + q\bar{q} \rightarrow H$
- Split in $\Delta \phi_{jj}$ (2?)

$\mathsf{EW} \, qqH$

- Boosted VBF: More p_T^H bins (1.3)
 - Keep m_{jj} splits only in lower p_T^H
- $V(\rightarrow q\bar{q})H$: Split into p_T^H bins (1.3)
 - Check where it ends up
- Add ∆φ_{jj} bins for CP: Where?
- Add VBF+ γ ?
 - Split into 0γ and $\geq 1\gamma$ bins

Ideas for Binning.

VH

- More *p*^{*V*}_{*T*} bins (1.3)
- Additional 2nd variable? (2?)
 - lacksquare $\Delta\phi_{\ell\ell}$
 - $m_{T,\mathrm{tot}}$
- *p*^H_T instead of *p*^V_T? (not unless strong motivation)

$t\bar{t}H$

- Generalize to include *tH* (1.3)
- More p_T^H bins?
- Useful second variable? (2?)

Decays (\rightarrow see Michael's slides)

How to multiply with production bins

Backup Slides.

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Grant agreement No. 101002090 COLORFREE)

European Research Council

Established by the European Commission