

SUPERNODE

SUPERNOODE

SUPERNODE[™]

CERN

KT SEMINAR

1. INTRODUCTION: JOHN FITZGERALD / SUPERNODE

- 2. PROBLEM STATEMENT
- 3. PROPOSED SOLUTION
- 4. HOW CERN HELP OVERCOME CHALLENGES
- 5. WHAT WILL SUCCESS MEAN

OUR VISION AND MISSION

OUR VISION

PEOPLE SHOULD HAVE ACCESS TO SECURE AFFORDABLE AND RENEWABLE ENERGY

TO DEVELOP AND MARKET INNOVATIVE TRANSMISSION TECHNOLOGY BASED ON SUPERCONDUCTORS

OUR MISSION

WHO ARE WE?

4

CURRENT STATUS

ELECTRICITY GRIDS

- 50Hz/60Hz AC synchronous systems developed over the past 100yrs.
- Highly reliable meshed transmission systems with N-1 contingency planning for the loss of any circuit /infeed.
- Limited interconnection between countries and very limited connectivity between synchronous systems.
- Fossils fuels move globally and there is very limited international trade in electricity.

CURRENT GRID / ENERGY SYSTEM CANNOT OPERATE WITHOUT CARBON

- There are little or no offshore grids.
- Fossil fuel supply lines (ships & pipelines) need to stop.
- DC transmission is better for long distance than AC.

ELECTRIFICATION POWERED BY RENEWABLES IS THE MOST EFFICIENT WAY TO DECARBONISE

EUROPE'S GEOGRAPHY

Wind speed

Solar Irradiance

Population density

WIND AND SOLAR GENERATION IN EUROPE

Source: International Energy Agency

O'Connor (2023) Supergrid - Supersolution

A BIGGER OR PAN EUROPEAN GRID IS NEEDED

NORTH SEAS MESHED DC GRID – MOMENTUM BUILDING

450GW Meshed offshore Grid in 2050, National Grid ESO Presentation

11

OSTEND NORTH SEAS ENERGY SUMMIT

- April 24th 9 countries signed the Ostend Declaration: Belgium, Denmark, Germany, The Netherlands, Ireland, France, Luxembourg, Norway and the UK.
- Offshore renewable targets set:
 - 150GW by 2030
 - 300GW by 2050
 - Only 15GW offshore wind today
- Declaration of energy ministers calls for development and realisation of an 'Offshore Meshed Grid'.

OSTEND DECLARATION

ON

THE NORTH SEAS AS EUROPE'S GREEN POWER PLANT

DELIVERING CROSS-BORDER PROJECTS AND ANCHORING THE RENEWABLE OFFSHORE INDUSTRY IN EUROPE

WE HAVE RENEWABLE TECH TO DO THE JOB

WIND TURBINE ADVANCEMENTS

SOLAR PANEL ADVANCEMENTS

- Current efficiencies of ~20%.
- New materials such as **Perovskite** have shown efficiencies in excess of **25%**.
- **Bifacial PV** system paired with solar trackers predicted to yield **27% more** than a conventional solar system.

EXISTING COPPER-BASED TRANSMISSION IS NOT ENOUGH

- Current copper-based transmission technology is not designed or sized for a decarbonised Europe based on weather-dependent renewables.
- Copper-based underground cables can only carry 1
 GW per cable, suffer from electrical losses, and require large amounts of material and space.
- Copper miners now use ore grades of 0.5% copper, a quarter the concentration of a century ago.
- "There is going to be a very significant shortage in copper. It's going to be very difficult to meet the aspirations that have been set," Richard Adkerson, CEO of US mining group Freeport-McMoRan in FT 31/10 2022.

WHAT IS HAPPENING ELSEWHERE

- China has constructed Ultra-HVDC overhead power lines.
- The largest line has a capacity of 12GW and is 3,324km.
- Europe faces different geographic and political constraints.
- New underground and offshore grid technologies will be needed.

KEY ENABLERS

- 1. Grids
- 2. Storage
- 3. Consumer behaviour

WHAT PROBLEM DO WE SOLVE?

- Overhead Lines cannot be delivered.
- Conventional underground cables are current limited to c. 2kA per cable (1GW at 525KV).
- Long term copper supply is an issue and order books are full for marine cables in the near term.
- Transmission products that will be the key enabling technology for the renewable energy transition.

WHAT WE NEED

TRANSMISSION TECHNOLOGY THAT IS:

- Unobstrusive
- High-power
- Scalable
- Long distance
- Marine-enabled

Cable technology based on superconductivity offers a solution

WHAT IS SUPERCONDUCTIVITY?

Superconductivity is a phenomenon that occurs in some materials that, when cooled below a certain temperature, display unique characteristics:

- Zero electrical resistance
- High power density

How to achieve superconductivity:

- A material must be cooled to below its '*critical temperature*'.
- High temperature superconductors (HTS) are superconductive around -180°c.

SUPERCONDUCTOR CABLE SYSTEMS IN PRACTICE

Shingal Project, Seoul, S. Korea

Recent Superconductor Projects			
2013		Ampacity, Essen	1km, 40MVA, 10kV, AC
2018	Best Paths	EU Horizon's 'Best Paths' Project	30m, 3.2GW, 320kV, DC
2019		Shingal, Seoul	1km, 50MVA, 23kV, AC
2021	amsc	REG, Chicago	62MVA, 12kV, AC
2023	We connect a greener world	Superlink, Munich	12km, 500MVA, 110kV, AC

THE FOCUS OF OUR SUPERCONDUCTING TECHNOLOGY

- 2GW+ transmission
- Marine and terrestrial deployment
- **O** Materials and Thermal Management
- Efficiency, reliability & robustness

Oil & Gas + Electricity = New Transmission Technology

SUPERNODE'S COMPETITIVE ADVANTAGE

PURPOSE DESIGNED CRYOSTAT WILL INCREASE TRANSFER DISTANCE USING:

- Optimal thermal management
- Novel cryostat materials

SUPERNODE CABLE ADVANTAGES:

- Lower Price
- Significantly less raw materials
- Smaller footprint
- Less local disruption
- Quicker for asset developers
- Supply chain and regulatory regime diversification
- Cheaper, cleaner electricity for the customer

SUPERNODE'S APPLICATIONS

MARINE MVDC, 2GW+, LONG DISTANCE TRANSMISSION

- Reduced size offshore infrastructure
- E.g Connecting offshore wind farms

TERRESTRIAL MVDC, 2GW+, LONG DISTANCE TRANSMISSION

- Compact high-capacity transmission corridor
- E.g. Interconnections between national grids

Cable Joints

SUPERNODE OFFSHORE GRID APPLICATIONS

Capacity Voltage Volume Weight Cost	2 GW 80-250 kV DC ~74,000 m ³ ~4,600 tons €272m
Volume Weight	~74,000 m³ ~4,600 tons
Weight	~4,600 tons
Cost	€272m

 Increasing voltage with conventional cables leads to increasing platform size

• Superconductors can operate at much lower voltages, needing smaller and more cost effective platforms

SUPERNODE CRYOGENIC CENTRE FOR SUPERCONDUCTORS

- State of the art facility which encompasses 15k square feet.
- Contains cutting edge equipment to facilitate SuperNode's R&D programme.
- Has the capabilities to assemble our first demo project.

OUR PARTNERS

AKER HORIZONS

UNIQUE CERN COMPETENCIES AND CAPABILITIES

TECHNOLOGY DEVELOPMENT TIMELINE

TECHNOLOGY DEPLOYMENT TO MARKET

ONSHORE SUPERCONDUCTING CABLE SYSTEM

OFFSHORE SUPERCONDUCTING CONNECTION SYSTEM

SUCCESSFUL ENERGY TRANSITION IN EUROPE

An interconnected **pan-European** grid enabled by superconducting cables can provide people with access to energy that is:

O Secure

O Affordable

O Renewable

THANK YOU