QCD Beyond Diagrams

Michael Creutz

BNL Emeritus

Photo: Anti Niemi

QCD

$$L = \frac{1}{2} \operatorname{Tr}(F_{\mu\nu} F_{\mu\nu}) + \overline{\psi}(\cancel{D} + M)\psi$$

- renormalizable quantum field theory
- describes protons, neutrons, pions, etc.
- ullet only parameters m_q/Λ_{qcd}
 - α_s not a parameter, adjust to get m_p right

QCD: peculiarities invisible to Feynman Diagrams

- confinement: free quarks don't exist
- mass generation: $m_p \propto \Lambda_{qcd}$
- chiral symmetry breaking: $m_{\pi} << m_{\rho}$
- Theta: different theories identical perturbatively

BNL Michael Creutz

3/41

Crucial Tool: Path Integrals

Feynman: Rev. Mod. Phys., 20, 367, 1948

$$\int_0^\beta (dx(t)) e^{-S(x(t))} \propto \operatorname{Tr} e^{-\beta H}$$

- $S = \int dt \ \dot{x}^2/2 + V(x)$
- $H = \hat{p}^2/2 + V(\hat{x})$ $[\hat{p}, \hat{x}] = i$

D dimensional QM $\equiv D+1$ dimensional stat mech

- the heart of lattice gauge Monte Carlo
- in field theory "paths" become "configurations"

Path integral defined as a limit $a \rightarrow 0$

Typical paths are not differentiable

•
$$\langle \dot{x}^2 \rangle = \left\langle \left(\frac{x_{i+1} - x_i}{a} \right)^2 \right\rangle \propto \frac{1}{a} \to \infty$$

Michael Creutz BNL

Perturbation Theory: expand $S = S_0 + gS_I$

- S_0 describes free particle propagation
- S_I couples the fields together

Feynman Diagrams: expand path integral in g

Path integral more general!

Michael Creutz **BNL**

6/41

Electroweak $\alpha = 1/137 << 1$

perturbation theory works for all practical purposes

Dyson: Phys. Rev, 85, 631 (1952)

- perturbation theory cannot converge
- $e \rightarrow ie$ makes like charges attract

vacuum unstable

QCD: Quark Confining Dynamics

- g = 0 free quarks and gluons
- $g \neq 0$ protons and pions

Spectrum qualitatively different

must go beyond perturbation theory

Divergences and renormalization

Quantum field theory has infinities

- requires introducing a cutoff
- remove cutoff by a limiting procedure
- adjust couplings holding physical quantities fixed

9/41

Most regulators based on perturbation theory

Pauli-Villars, dimensional, ...

find a divergent diagram, cut it off

QCD requires a non-perturbative regulator

- lattice gauge theory
- use lattice spacing *a* for a cutoff

Use the proton mass as a physical observable

• $m_p(g(a), a)$

•
$$a\frac{d}{da}m_p = 0 = \left(\frac{\partial}{\partial g}m_p\right)\left(a\frac{dg}{da}\right) + a\frac{\partial}{\partial a}m_p$$

• dimensions imply $a \frac{\partial}{\partial a} m_p = -m_p$

$$a\frac{dg}{da} \equiv \beta(g) = \frac{m_p}{\frac{\partial}{\partial g} m_p}$$

How g varies with a for physical limit

$\beta(g)$ has a perturbative expansion!

•
$$\beta(g) = \beta_0 g^3 + \beta_1 g^5 + O(g^7)$$

•
$$\beta_0 = \frac{1}{16\pi^2} (11 - 2N_f/3)$$

 N_f fermion flavors

• Gross, Wilczek, Politzer (1973)

•
$$\beta_1 = \left(\frac{1}{16\pi^2}\right)^2 (102 - 22N_f/3)$$

• Caswell, Jones (1974)

 β_0 and β_1 are universal

- independent of cutoff scheme
- applies to the lattice as well

Solving the differential equation $a\frac{dg}{da} = \beta(g)$

•
$$a = \frac{1}{\Lambda} g^{-\beta_1/\beta_0^2} \exp\left(\frac{-1}{2\beta_0 g^2}\right) (1 + O(g^2))$$

- Λ is an integration constant
- $a \to 0 \Leftrightarrow g \to 0$ "asymptotic freedom"

Particle masses proportional to Λ

$$m_p \propto \Lambda \propto \frac{1}{a} g^{-\beta_1/\beta_0^2} \exp\left(\frac{-1}{2\beta_0 g^2}\right)$$

Non-perturbative behavior!!

"Dimensional transmutation"

Coleman and Weinberg

- ullet renormalization eliminates dimensionless g
- turns it into an overall scale Λ

Michael Creutz BNL 15/41

Quark masses also require renormalization

hold more things fixed

•
$$m = M g^{\gamma_0/\beta_0} (1 + O(g^2))$$
 $\gamma_0 = \frac{8}{(4\pi)^2}$

M another integration constant: "renormalized mass"

- one M_i for each quark species i
- "bare" mass $m \to 0$ for continuum limit

Continuum limit takes both g and m to zero together

Dimensional "integration constants" M_i and Λ

• can mix, scheme dependent

Electroweak also fits on the lattice, but

• U(1) not asymptotically free?

• unification? SO(10)?

Higgs not asymptotically free?

composite Higgs?

interplay with top and gravity?

Classical gauge theories also non-perturbative

Tied to topology

• winding
$$\frac{g^2}{16\pi^2} \int d^4x {\rm Tr} F \tilde{F} = \nu$$

 \bullet ν is an integer for smooth fields

Topology and zero modes

When $\nu \neq 0$, zero modes of the Dirac equation

•
$$D\psi(x) = \gamma_{\mu}(\partial_{\mu} + igA_{\mu})\psi(x) = 0$$

• ψ is chiral $\gamma_5 \psi(x) = \pm \psi(x)$

Index theorem

- $\nu = n_{+} n_{-}$
- other eigenvalues of D in chiral pairs

Fujikawa:

- configurations with $n_+ \neq n_-$ exist
- on these Tr $\gamma_5 \equiv \sum_i \langle \psi_i \gamma_5 \psi_i \rangle = \nu \neq 0$
 - other modes paired or "above the cutoff"

$$\psi \to e^{i\gamma_5\theta}\psi$$
 not a symmetry!

- changes fermion measure in path integral
 - $d\psi \to |e^{i\gamma_5\Theta}| \ d\psi = e^{i\nu\Theta} \ d\psi$

Topology inserts $e^{i\nu\Theta}$ into the path integral

- a new theory
- explains why η' not a pseudo-Goldstone boson

QCD has a hidden non-perturbative parameter Θ

For each value of Θ

the perturbative expansion is identical!

Michael Creutz BNL 22/41

 $\Theta = \pi$ takes $m \to -m$

- three flavor QCD with negative masses
 - different theory, $\Theta = \pi$

Perturbatively: sign of a fermion mass is a convention

Strong CP puzzle: $\Theta \neq 0$ violates CP

experimentally ⊖ small, why?

Michael Creutz BNL 23/41

Confinement and masses

Quarks are confined: what does their mass mean?

Physical particles propagate over long distances

•
$$E = mc^2 + \frac{1}{2}mv^2 + O(mv^4/c^2)$$

Quarks don't propagate alone

Neutral pseudoscalars in the three flavor theory:

$$\pi_0 = \frac{1}{2} (\overline{u}_L u_R - \overline{u}_R u_L - \overline{d}_L d_R + \overline{d}_R d_L)$$

$$\eta = \frac{1}{2\sqrt{3}} (2\overline{s}_L s_R - 2\overline{s}_R s_L - \overline{u}_L u_R + \overline{u}_R u_L - \overline{d}_L d_R + \overline{d}_R d_L)$$

$$\eta' = \frac{1}{\sqrt{6}} (\overline{s}_L s_R - \overline{s}_R s_L + \overline{u}_L u_R - \overline{u}_R u_L + \overline{d}_L d_R - \overline{d}_R d_l)$$

$\overline{u}_L u_R$ or $\overline{d}_L d_R$ can create any of these mesons

- does not vanish for massless quarks
- spin flip process via chiral anomaly
 - "'t Hooft vertex"

Now turn on a small d quark mass

• closing d loop induces u_L u_R mixing

Non-zero d quark mass shifts u quark mass

ullet all quark masses and Λ become entangled

Michael Creutz BNL

Effect automatically included in lattice simulations

Old point

- 't Hooft, 1976
- Georgi, McArthur, 1981 (unpublished)
- Choi, Kim, Sze, 1988 (PRL)
- Banks, Nir, Seiberg, 1994 (conference proceedings)
- MC, 2004 (PRL)

BNL Michael Creutz 28/41

Chiral symmetry

- degenerate light quarks
- $M_\pi^2 \propto m_q \Lambda$

Massless quarks imply massless pions

• for degenerate quarks $m_q = 0$ is well defined

What if we make isospin breaking large?

•
$$M_\pi^2 \propto \frac{m_u + m_d}{2} \Lambda$$

• mass gap persists at $m_u = 0$ if $m_d > 0$

Sensible physics for small negative m_u !

perturbation theory: sign of mass is a convention

30/41

Michael Creutz BNL

Negative quark mass equivalent to $\Theta = \pi$

With degenerate quarks

- $\Theta = \pi$ must have spontaneous parity breaking
- many demonstrations of this
 - MC, Annals of Physics 324 (2009), 1573

As the up quark mass varies from $+m_d$ to $-m_d$

something interesting must happen!

Michael Creutz BNL 31/41

The Dashen phenomenon

Isospin breaking reduces π_0 mass

• $M_{\pi_0}^2$ vanishes before $m_u = -m_d$

At $M_{\pi_0}^2 < 0$ a pion condensate will form

- $\langle \pi_0 \rangle \neq 0$
- CP broken

Formally at $\Theta = \pi$

$$\prod_q m_q < 0$$

Dashen 1971: allowed by current algebra

Before qcd!

Explicit in sigma models from (π_0, η) mixing

$$m_{\pi_0}^2 \propto \frac{2}{3} \left(m_u + m_d + m_s \right)$$

 $-\sqrt{m_u^2 + m_d^2 + m_s^2 - m_u m_d - m_u m_s - m_d m_s}$

$$m_{\eta}^2 \propto \frac{2}{3} \left(m_u + m_d + m_s \right)$$

 $m_{\eta}^{2} \propto \frac{2}{3} \left(m_{u} + m_{d} + m_{s} + \sqrt{m_{u}^{2} + m_{d}^{2} + m_{s}^{2} - m_{u}m_{d} - m_{u}m_{s} - m_{d}m_{s}} \right)$

 π_0 becomes massless at $m_u = \frac{-m_d m_s}{m_d + m_s} > -m_d$

Ising-like transition at $m_u < 0$

- order parameter $\langle \pi_0 \rangle \neq 0$
- breaks CP spontaneously

Also seen in 2 flavor Schwinger model

- Funke, Jansen, Kühn (2023)
- Coleman: "half asymptotic" phase

Symmetries of the (m_u, m_d) phase diagram

- $m_u \leftrightarrow m_d$

Isospin

• $(m_u, m_d) \to (-m_u, -m_d)$ Flavored chiral symmetry • $\psi \to e^{i\pi\tau_3\gamma_5}\psi$

NO symmetry under $(m_u, m_d) \rightarrow (-m_u, m_d)$

- a strictly non-perturbative effect
- a non-degenerate massless quark
 - not protected from renormalization

Symmetries imply multiplicative mass renormalization

- quark mass difference $m_d m_u$
- quark mass average $m_d + m_u$

Renormalization factors are not in general equal!!

- m_u can acquire an additive shift ('t Hooft, 1976)
 - depends on scheme

Michael Creutz BNL 38/41

Wilson fermions

- additive renormalization of Kappa critical
- depends on coefficient of Wilson therm

Overlap fermions

- depend on kernel
- Wilson parameter and Kappa

Staggered fermions

• inherent taste degeneracy cancels effect

Michael Creutz **BNL** 39/41 Should we care if quark masses fuzzy?

- not directly measured in scattering
- related to fuzziness in gauge field topology
 - non-differentiable gauge fields

Only particle masses and scatterings are physical

BNL Michael Creutz 40/41

Summary

Non-perturbative physics is crucial for QCD

Asymptotic freedom and the lattice define the theory

unlike QED, Higgs field

Different theories with identical perturbative expansions

 $\bullet \quad \Theta \neq 0$

Nondegenerate quark masses scheme dependent

• $m_u = 0$ ill defined if $m_d \neq 0$