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1. The fundamental fields reveal themselves

• From p, n⇒
p n N(1440) N(1520) N(1535) N(1650) N(1675) N(1680) N(1700) N(1710) N(1720) N(1900) N(1990) N(2000) N(2080) N(2090) N(2100)

N(2190) N(2200) N(2220) N(2250) N(2600) N(2700) N(3000 Region) ∆(1232) ∆(1600) ∆(1620) ∆(1700) ∆(1750) ∆(1900) ∆(1905)

∆(1910) ∆(1920) ∆(1930) ∆(1940) ∆(1950) ∆(2000) ∆(2150) ∆(2200) ∆(2300) ∆(2350) ∆(2390) ∆(2400) ∆(2420) ∆(2750)

∆(2950) ∆(3000 Region)

• Composite yet irreducible? bootstrap → strings

θ

• Composites of indivisibles? quark model

θ

***

***

**
*

*
*

*

• Yet are the ??’s “real”? Confinement
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• In the light of QED . . .

ge − 2

2
= 1159.6521869± 0.0000041× 10−6

• Nature makes its choice:

– current algebra: ??’s provide currents Yang & Mills:

currents → vector fields → forces

“This is a very profound idea, perhaps the most profound idea in theoretical physics
since the invention of Dirac theory.”
– J.J. Sakurai, Ann. Phys. 11, 1 (1960)

– dipole-like form factors:
?? small & strongly coupled
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• Lightning strikes: scaling in deep inelastic scattering

ep inelastic scattering. The electron sees ??’s as spin-1/2 point particles

->

θ

** **

**

Doesn't matter much.

Same as:

θ
->

• The “strong” force seems weak, almost irrelevant to the electron that scatters

• The “quark-parton” model of Feynman, Bjorken-Paschos

– Ignore ?? interactions, x = Q2/2p · q.

– σproton(P,Q, x) = σEM(xP,Q) × (probability of parton mtm. xP in the proton)
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QFT analysis was ready with Correlations

• pre-1970 inclusive DIS analysis in field theory

– EM Current (J) correlators

– For any field theory with coupling αs(µ)

• Deep-inelastic ep scattering, energy transfer E = x(Q2/2mp), momentum transfer Q:∫
dx xN−1σep(x,Q) ∼

∫
dx xN−1 〈p|J(Q) J(−Q)|p〉

= CN(Q/µ, αs(µ)) 〈p|ON(0)|p〉µ

– ON(0): local operators

– µ: scale of the coupling

– Wilson, Brandt-Preparata, Frishman, Christ-Hasslacher-Mueller

• But the scale of the coupling is our choice, nature doesn’t care:

µ
d

dµ
σep(x,Q) = 0 .

Separation of variables implies an equation for µ and therefore Q; evolution

µ
d

dµ
lnCN(Q/µ, αs(µ)) = γ(1)αs(µ) + . . .

• Quantified the paradox: scaling → αs(Q) small,
⇒ the strong interactions are “weak” in DIS
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QUANTUM CHROMODYNAMICS

L =
∑
q
q̄ (i/∂ − g/A+mq ) q −

1

4
F 2
µν[A]

• The Y-M theory of quarks (q) and gluons (A)

• Just the right sets of currents

• Just the right kind of forces:

• Compute the T (time) -dependence of:

g(h/T) = +

++

cT

αs(Q) = 4π/b0 ln(Q2/Λ2
QCD)

• Asymptotic freedom → scaling Gross-Wilczek, Politzer (1972)

• Near a ? (quark), force is weak → scaling?

• Far from a ?, force is strong → Infrared strong coupling → quark confinement?

• By the time a struck ? gets far enough to feel a strong force, the electron is long gone.
Then, the quark ?’s reassemble into hadrons
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• 1977: A physical picture for evolution

T
0

R

R

t

• Dokshitzer, Gribov-Lipatov, Altarelli-Parisi

• Asymptotic freedom is a big deal:

Asymptotic Freedom

QCD
=

Elliptical Orbits

Newtonian Gravity

• A beginning, not an end. For Newtonian gravity, the three-body problem. For QCD . . .
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HOW TO OBSERVE CONFINED DEGRESS OF FREEDOM?

• The goal
Nuclear Physics

QCD
=

Chemistry

QED

• But can we study the particles that

– Give the currents (quarks)?

– Give the forces (gluons)?

– Expand in number of gluons?
Perturbation Theory

• In QCD they’re confined: observed hadrons are bound states

• Bound-state scattering: Complexity & strong forces

• Does this make sense at all?

• More analogies: atoms before observation of radioactivity & molecules before the expla-
nation of Brownian motion
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3. JETS FROM QCD: FOLLOWING QUARKS AND GLUONS
INTO THE FINAL STATE

• Learning to calculate with the the then-new theory:
Correlation functions vs. the S-matrix

• Correlation functions at short distances: PT-friendly

〈0|J(x) J(0)|0〉 = C (xµ, αs(µ))

= C (1, αs(1/x))

– e+e− annihilation cross section (Appelquist & Georgi, Phys. Rev. (1973))

• The S-matrix, even at high energy: pretty hopeless in PT

〈B out|A in〉 = f (Q/µ,m/µ, αs(µ))

= f (1,m/Q,αs(Q))

= f (Q/m, 1, αs(m))

– m – mass scales: mπ, mp, mq, mG(= 0) . . .

– Still, it’s only the ratio m/Q that causes the problem
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• Were we doomed to compute only correlations of currents?

• Were we forbidden to look inside the final state?

• Or, could it be possible to “see” quarks and gluons?

The structure of final states: From cosmic rays to quark pairs

• Particle jets in cosmic rays . . .

– “The average transverse momentum resulting from our measurements is pT=0.5
BeV/c for pions . . . Table 1 gives a summary of jet events observed to date . . . ”
– B. Edwards et al, Phil. Mag. 3, 237 (1957)

– Limited transverse momentum in secondaries of hadron collisions

– What about quarks produced in e+e− annihilation?
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θ

?
θ

• Extension of the parton model: q/e scattering to e+e− → qq̄. Conjecture pT -cutoff.

– A prediction for the angular distribution: 1 + cos2 θ

– “Because of our cutoff kmax � |q| . . . The distribution of secondaries in the colliding
ring frame will look like two jets . . . ” S.D. Drell, D.J. Levy and T.-M. Yan, Phys.
Rev. D1

– Here was a question to ask of QCD. Would the final state look like this?

– It did: – G. Hanson et al, Phys. Rev. Lett. 35, 1609 (1975)
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JETS FROM QCD

• How I came to study e+e− final states

– Thesis (UMD) in the echos of the old and stirrings of the new:

– complex analysis of scattering amplitudes (advisor: Alex Dragt)

– perturbative form factors in a Yukawa model (Joseph Sucher and Ching Hung Woo)

• Discussions at Urbana with Shau-Jin Chang and Jeremiah Sullivan, from CEA data to
J/Ψ . . .Rhadron in Litke, G. Hanson et al. 1973 . . . Davier et al. 2019

VOLUME 30, NUMBER 23 PHYSICAL REVIEW LETTERS 4 JuNE 1973

TABLE I. Average detection efficiency.

Number
of

plongs
p

Number of
observed
events
Np

7r+7r 7ro

7r 7r 27r

Assumed final states
27r 27r 87r 87r
27r 27r 71 37r 7l 71

27r 27r 27r 87r+37r 27r

q =4 q=6
47r+47r

q=8

Bla
29
20
8
0

0.116
0
0
0
0

0.198
0.178
0.049
0
0

0.146
0,258
0.163
0.049
0.007

0.094
0.217
0.244
0.141
0.056

'16yI, &~ & 160'.

N~= I. Q e(p, q)o„
q= 2q4y6, 8

p = 2, 3, 4, 5,

where L is the time-integrated luminosity. These
equations have been solved, with the restriction
that a, ~ 0, using the method of least squares.
The partial cross sections were not well deter-
mined, but e. r-—(88+8)/p, Io„,„=234+52 (where
o „,„=v, + o, + o, + o,), and the average charged

I I I I

6 — ~ ACO
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R x l
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FIG. 2. R =0 (e+e multibody hadrons)/a(e+e—p+p ) versus the square of the center-of-mass ener-
gy s in GeV . The dotted lines give the asymptotic pre-
dictions of parton models assuming ordinary and col-
ored quarks.

used. ) The program took account of the structure
of BOLD and the event selection criteria. Nu-
clear absorption, ' ' the production of secondaries,
and ionization losses were also included.
The observed number of events with prong

count P, N~, gives rise to four linear equations
in the four unknown partial cross sections a(e 'e-q w' + neutrals) =o, :

multiplicity n is n = 4.2+0.6. The quoted errors
were calculated on the basis of statistical (pois-
son) fluctuations in the N ~ .
11 two-prong events with ipl& 160' were iden-

tified as multibody hadron events by the presence
of extra y rays, scatterings, or by additional
short-range tracks. If we include these 11 events
in the sample, and redo the efficiency calcula-
tion, we find Lv„„=218+38 which is consistent
with the above.
The measured cross section includes processes

where the initial electron or positron has radi-
ated. This leads to a contribution to the multi-
body cross section from e 'e annihilation at a
lower effective center-of-mass energy. A calcu-
lation" based on smoothed interpolation of mea-
sured cI pss sectjpns" ' and an estimate pf de-
tection efficiency shows that less than 5% of the
events include a photon of energy more than 1
GeV radiated from the initial state. No correc-
tion was applied for this effect.
From the values of L, Lv „„and the scanning

efficiency, we calculate the production cross sec-
tion for electron-positron annihilation into three
or more hadrons to be 26 + 6 nb. The ratio A of
this cross section to the theoretical total cross
section for e'e -p. 'p, at 4 GeV center-of-mass
energy is 4.7 +1.1. This is compared with recent
-data jn Fig. 2. Partpn mpdels suggest that,
in the asymptotic region, this value should be
Q,. (-, + 2s,.)q,.', where q,. are the charges of the
basic constituents of the hadrons with spin s,.=0
or s,. = &. The elementary quark model gives A

Quarks with "color" give R= 2.
We are indebted to the staff of the Cambridge
Electron Accelerator for their long, sustained
efforts in providing the beams, and to them and
the Harvard University Cyclotron Laboratory
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Fig. 8. The total hadronic e+e≠ annihilation rate R as a function of centre-of-mass energy. Inclusive measurements from
BES [49] and KEDR [50, 51] are shown as data points, while the sum of exclusive channels from this analysis is given by
the narrow blue bands. Also shown for the purpose of illustration is the prediction from massless perturbative QCD (solid
red line).

where the uncertainties account for lowest and higher
order hadronic, and other contributions, respectively.
The result (7) deviates from the experimental value,
aexp
µ = 11 659 209.1 ± 5.4 ± 3.3 [55, 59], by 26.0 ± 7.9

(3.3‡).
A compilation of recent SM predictions for aµ com-

pared with the experimental result is given in Fig. 9.

Running electromagnetic coupling at m2
Z

The sum of all quark-flavour terms from Table 2 gives
for the hadronic contribution to the running of –(m2

Z)

∆–had(m2
Z) = (275.3 ± 1.0) · 10≠4 , (8)

the uncertainty of which is dominated by data sys-
tematic e�ects (0.7 · 10≠4) and the uncertainty in the
QCD prediction (0.6 ·10≠4). The use of the same inputs
with di�erent integration kernels in the calculations in-
duces a correlation of +44% between the ahad,LO

µ and
∆–had(m2

Z) uncertainties. The result without the new
BABAR/KLOE systematic uncertainty is 275.2 ± 0.9.

Adding to (8) the four-loop leptonic contribution,
∆–lep(m2

Z) = (314.979 ± 0.002) · 10≠4 [61], one finds

–≠1(m2
Z) = 128.947 ± 0.013 . (9)

The current uncertainty on –(m2
Z) is sub-dominant in

the SM prediction of the W -boson mass (the dominant

uncertainties are due to the top mass and of theoret-
ical origin), but dominates the prediction of sin2 ◊¸

e� ,
which, however, is about twice more accurate than the
combination of all present measurements [47].

5 Conclusions and perspectives

Using newest available e+e≠ æ hadrons cross-section
data we have reevaluated the lowest-order hadronic vac-
uum polarisation contribution to the Standard Model
prediction of the anomalous magnetic moment of the
muon, and the hadronic contribution to the running
electromagnetic coupling strength at the Z-boson mass.
For the former quantity we find ahad,LO

µ = (694.0±4.0)·
10≠10. In spite of new data and the use of a more precise
fit to evaluate the threshold region up to 0.6 GeV, the
uncertainty on this contribution has increased to 0.6%
since our last evaluation [1], due to the addition of a new
systematic uncertainty to account for a global discrep-
ancy between fi+fi≠ data from BABAR and KLOE.
Resolving this discrepancy would allow to reduce the
ahad,LO
µ uncertainty by 20%.15

The discrepancy between measurement and com-
plete Standard Model prediction remains at a non-
conclusive 3.3‡ level. The new Fermilab g ≠ 2 exper-
iment currently in operation [62] aims at up to four
15 The contribution of the fi+fi≠ channel to the total
ahad,LO
µ uncertainty-squared is 71%.

• Could σtot
e+e− increase with Q? (No). We were seeing the cross section respond to the

charm threshold.

• Out of which came . . .
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An abstract question; an abstract answer

• QED: exclusive cross sections typically
infrared divergent

σ
(1)
AB (Q,me,mγ → 0, αEM) ∼ αEM βAB(Q/me) ln

mγ

Q

• Energy resolution εQ (Bloch-Nordsieck)
→ IR finiteness (sum over Eγ ≤ εQ)

σ
(1)
AB (Q,me, εQ, αEM) ∼ αEM βAB(Q/me) ln

1

ε

• Impossibility of resolving arbitrarily soft photons
(Yennie, Frautschi, Suura, Ann. Phys. 13 (1961)):
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• Could something like this happen:

– For QED with me = 0?

– For QCD with mq = 0?

– Kinoshita, Lee-Nauenberg

• See: a prescient footnote from S. Weinberg “Soft gravitons and photons” PR 140 (1965)

P EI YSICAL REVIEW VOLUME 140, i&UM BER 2B 25 OCTOBER i965

Infrared Photons and Gravitons*

STEVEN %EINSERGt
Deparbnent of Physics, University of California, Berkeley, California

(Received 1 June 1965)

It is shown that the infrared divergences arising in the quantum theory of gravitation can be removed by
the fami1iar methods used in quantum electrodynamics. An additional divergence appears when infrared
photons or gravitons are emitted from noninfrared external lines of zero mass, but it is proved that for
infrared gravitons this divergence cancels in the sum of all such diagrams. (The cancellation does not occur
in massless electrodynamics. ) The formula derived for graviton bremsstrahlung is then used to estimate the
gravitational radiation emitted during thermal collisions in the sun, and we Gnd this to be a stronger source
of gravitational radiation (though still very weak) than classical sources such as planetary motion. %e
also verify the conjecture of Dalitz that divergences in the Coulomb-scattering Born series may be
summed to an innocuous phase factor, and we show how this result may be extended to processes in-
volving arbitrary numbers of relativistic or nonrelativistic particles with arbitrary spin.

I. INTRODUCTION
'HE chief purpose of this article is to show that
the infrared divergences in the quantum theory

of gravitation can be treated in the same manner as in
quantum electrodynamics. However, this treatment
apparently does not work in other non-Abelian gauge
theories, like that of Yang and Mills. The divergent
phases encountered in Coulomb scattering mill inci-
dentally be explained and generalized.
It would be dif5cult to pretend that the gravitational

infrared divergence problem is very urgent. My reasons
for now attacking this question are:

(i) Because I can. There still does not exist any
satisfactory quantum theory of gravitation, and in
lieu of such a theory it would seem well to gain what
experience we can by solving any problems that can
be solved with the limited formal apparatus already at
our disposal. The infrared divergences are an ideal case
of this sort, because we already know all about the
coupling of a very soft graviton to any other particle, '
and about the external graviton line wave functions'
and internal graviton line propagators. '
(2) Because something might go wrong, and that

would be interesting. Unfortunately, nothing does go

~ Research supported in part by the Air Force OfEce of Scientific
Research, Grant No. AF-AFOSR-232-65.
f Alfred P. Sloan Foundation Fellow.' S. steinberg, Phys. Rev. 1%,31049 (1965).
'See, e.g., S. %einberg, Phys. Rev. 13S, 8988 (1965). The

graviton propagator given in Eq. {2.20) of the present article is
not just the vacuum expectation value of a time-ordered product,
but includes the effects of instantaneous "Newton" interactions
that must be added to the interaction to maintain Lorentz in-
variance, and further, it does not include certain non-Lorentz-
invariant gradient terms which disappear because the gravitational
6eld is coupled to a conserved source. This disappearance has so
far only been proved for graviton lines linkinq particles on their
mass shells, and in fact this is the one impechment which keeps
us from claiming that we possess a completely satisfactory
quantum theory of gravitation. In using (2.20} we are to some
extent relying on an act of faith, but this faith seems particularly
weQ-founded in our present context because we use {2.20) here to&» particle lines with momenta only in6nitesimally far from their
mass shells. See also S. steinberg, in Brandeis 1064 Suesmer
Lectures on Theoretica/ Physics (Prentice-Hall, Inc., New York,
1965}.

B

wrong. In Ser. II we see that the dependence on the
infrared cutoQ's of real and virtual gravitons cancels
just as in electrodynamics.
However, there is a more subtle difhculty that might

have been expected. Ordinary quantum electrodynamics
would contain unremovable logarithmic divergences if
the electron mass were zero, due to diagrams in which
a soft photon is emitted from an external electron line
with momentum parallel to the electron's. ' There are
no charged massless particles in the real world, but
hard neutrinos, photons, and gravitons do carry a
gravitational "charge, " in that they can emit soft
gravitons. In Sec. III we show that diagrams in which
a soft graviton is emitted from some other hard mass-
less particle line do contain divergences like the inn,
terms in massless electrodynaInics, but that these
divergences cancel when we sum all such diagrams. '
However, this cancellation is de6nitely due to the
details of gravitational coupling, and does not save
theories (like Yang and Mills's) in which massless
particles can emit soft massless particles of spin one.
(3) Because in solving the infrared divergence prob-

lem we obtain a formula for the emission rate and
spectrum of soft gravitons in arbitrary collision proc-
esses, which may (if our experience in electrodynamics
is a guide) be numerically the most important gravi-
tational radiative correction. In Sec. IV this formula
is used to calculate the soft gravitational inner brems-
strahlung in an arbitrary nonrelativistic collision, and
the result is then used to estimate the thermal gravi-
tational radiation from the sun. The answer is several

'The extra divergences in massless quantum electrodynamics
have long been known to many theorists. Recently, it has been
noted by T. D. Lee and M. Nauenberg, Phys. Rev. 133, 31549
(1964), that these divergences cancel if transition rates are com-
&uted only between suitable ensembles of 6nal amE initial states.
See also T. Kinoshita, J. Math. Phys. 3, 650 (1962)j.However,
these ensembles include not only inde6nite numbers of very soft
quanta but also hard massless particles with indelnite energies,
and I remain unconvinced that transition rates between such
ensembles are the only ones that can be measured and need be
6nite.

4 I understand that this cancellation has also been found byR. P. Feynman.
516
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• After some thought, it turned out that:

– ε not enough . . . but with an extra angular resolution δ, it works.

– Impossibility of resolving collinear massless particles.

– Changing focus from dimensional pT to dimensionless δ natural for renormalizable
theory with conformal limit.

b

¡Q

• No large ratios Q/m: Infrared Safety.

• Trade high-energy for zero-mass limit.
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• New class of observables: Jet Cross sections

σ (Q/µ, αs(µ), ε, δ) = σ (1, δ, ε, αs(Q))

• “We define two states [to be] “jet-related” if they differ by the emission or absorption of
a number of zero energy particles, or by the transformation of one set of parallel moving
particles into another . . . ” GS ILL-(Th)-75-32 (preprint)

2 

We define two states as being "jet-related" if they differ by the 

emission or absorption of a number of zero energy particles, _or by the 

transformation of one set of parallel moving particles into another. 

Our ensembles will thus be specified in terms of sets of jet-related 

states. To make this idea more quantitative we define for any state 

"angular energy current'' in the e+ e- CM frame: 

na 
Z 11;_6(0- wi) 
i = 1 

(1) 

where the sum is over the n massless particles in with energies a 

and momentum directions [w.} (w. stands for angles 8. and m.). Jet-
1 1 1 1 

related states have the same j(O). Each group of particles with co-

linear momenta may be described as a jet, and any set of jet-related 

states is characterized by the number of jets, as well as their energies 

and directions. 

Just as it is not possible to exactly measure the total energy car-

ried by soft massless particles, it is also not possible to determine 

whether two particles have exactly parallel momenta. Thus the "energy 

resolution" of QED generalizes to a whole set of resolutions which 

describe possible experimental acceptances. Each jet is defined not only 

by its direction and total energy E, but also by an energy resolution OE 

and a fixed angular region 60. Any massless particle directed into 60 

is counted as part of the jet. An additional energy resolution OE is 
0 

associated with the emission of soft particles into the region 0
0

, out-

side of all the jet regions 60i. 

"'''" """"' "' "''"'""' ,., ...... ,,. .......... ............ , .......... , .................. --..... -........... -... "''" '' "" "''"" "''""" .,,,,,., .......... '"''"''" "'"'"'' '" , ... ""'"'"'"' """''"'"'"""''"''""""' .,,, .. ," '" """' 

• Energy flow becomes the focus of computability.

• Not, alas, accepted for publication. But in some ways my good fortune, given how it
worked out (and, ln2 δ should have been ln δ ln ε!)
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• In the tradition of Poynting: energy flow in gauge theories

• Slow discharge of a condensor (Poynting). Fast neutralization of a color dipole (LEP)

Y

XZ

200. cm.

Cent re of screen i s ( 0.0000, 0.0000, 0.0000)

50 GeV20105

Run:event 2542: 63750 Date 911014 Time 35925
Ebeam45.609 Evis 86.2 Emiss 5.0 Vtx ( -0.05, 0.12, -0.90)
Bz=4.350 Thrust=0.8223 Aplan=0.0120 Oblat=0.3338 Spher=0.2463

Ct rk(N= 28 Sump= 42.1) Ecal (N= 42 SumE= 59.8) Hcal (N= 8 SumE= 12.7)
Muon(N= 1) Sec Vtx(N= 0) Fdet (N= 2 SumE= 0.0)
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• How this idea become known, and a bit of my own story . . .

• Thanks to: Jim Carrazone for a seminar invitation to Fermilab, to Tom Appelquist, on
sabbatical at Fermilab, who heard my talk there and reported the work at a “Coral
Gables” conference, to (advisor) Joe Sucher who told attendees I needed a 2nd postdoc.
To Tom Kinoshita who remembered my work a year later, and to its independent inventor,
Steven Weinberg.

• S.W. recounted developing the idea while on sabbatical at SLAC, where the jet observa-
tion had recently been made by Hanson et al., then making phone cals to see how had
worked on the mass divergence problem. T. Kinoshita knew of the preprint and referred
S.W. to G.S.

• This led eventually to a phone collaboration between G.S. and S. Weinberg, and to
Phys. Rev. Lett. 1977, “Jets from Quantum Chromodynamics”: Zero-mass limit as a
diagonistic for pertubative calculability. What became known as “Infrared safety”.

• S. Weinberg to G. Sterman (as recalled) “if we join forces, I believe we will succeed”

18



• In fact, it turned out to be a little more complicated than we anticipated:

• Happily, PRL reconsidered after the acceptance of papers based on our work by Edward
Farhi (thrust) and by Howard Georgi & Marie Machacek (spherocity), both listed as
received on Sept. 26, 1977. Basham, Brown, Ellis and Love on radiation pattern and
energy correlations (PRD, PRL, 1978) followed shortly.
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What is Infrared Safety?

• Infrared Safety: “quantities . . . predictable. . . if: (a) they are finite in QCD perturbation
theory and the perturbation series is sufficiently convergent, and (b) non-perturbative
effects are not obviously dominant.”

– A. de Rújula, J. Ellis, E.G. Floratos and M.K. Gaillard, Nucl. Phys. B138 (1978) 387

• Became updated as:
QCD perturbation theory gives self-consistent predictions for a quantity C when C:

– is dominated by short-distance dynamics in the infrared-regulated theory;

– remains finite when the regulation is taken away.

• Contemporary update (or aspiration): C is IR safe when C can be computed directly in
four dimensions. (Torres-Bobadillia et al. Eur. Phys. J. 2022, Anastasiou & GS, 2022).

• Infrared Safety is not the only concept that leads to consistent perturbative analysis: In
“Parton-hadron duality”, extend calculability by the identification of parton & hadron
multiplicities at some cutoff. Dokshitzer, Diakanov, Troian Phys. Rep. 58 (1980)

– This duality is built into event generators with models for hadronization.

• Perturbative QCD is much, much more than just jet cross sections. But they lay the
groundwork, and at Tevatron and especially LHC, they have become a ubiquitous tool
(Salam, Soyez, Cacciari . . . ) see other talks in this conference.
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The simulation using a matched parton shower has a more coherent treatment of the e↵ect of parton
showers and hadronisation than the approach using a fixed-order NLO QCD calculation corrected for non-
perturbative e↵ects. However, ambiguities in the matching procedure and the tuning of the parton shower
parameters based on processes simulated only at leading order by Pythia 8 may introduce additional
theoretical uncertainties. Therefore, quantitative comparisons using theoretical uncertainties based on
Powheg are not performed in this paper.
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Figure 5: Inclusive jet cross-section as a function of jet pT in bins of jet rapidity. The results are shown for jets
identified using the anti-kt algorithm with R = 0.4. For better visibility the cross-sections are multiplied by the
factors indicated in the legend. The data are compared to the NLO QCD prediction with the MMHT2014 PDF set
corrected for non-perturbative and electroweak e↵ects. The error bars indicate the statistical uncertainty and the
systematic uncertainty in the measurement added in quadrature. The statistical uncertainty is shown separately by
the inner vertical line.
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Figure 1: The double-differential inclusive jet cross sections as a function of jet pT measured in
intervals of |y| shown with jet distance parameter R = 0.7. The data are divided by NNLO (upper
panel) and NLO+NLL predictions (lower panel) [5].

two jet distance parameters, R = 0.4 and 0.7. A comprehensive QCD analysis at next-to-next-
to-leading order (NNLO) is performed to study the PDFs of the proton as well as to extract the
strong coupling constant. The inclusive jet cross sections as functions of the jet pT and |y| for R =
0.7 is shown in Fig. 1. The measured jet cross sections are compared with fixed order NNLO QCD
predictions using CT14PDF. In the measurement, a wide range of the jet pT from 97 GeV up to 3.1
TeV is covered. The prediction using parton HT as renormalisation and factorisation scale results
in a softer pT spectrum than in case of set to jet pT . The NLO+NLL calculations predict harder pT

spectrum than the NNLO calculations. The data are well described by all predictions within the
experimental and theory uncertainties.

A comprehensive QCD analysis is performed to investigate the sensitivity of the presented
measurement on the proton PDFs and ↵S . Due to the small out-of-cone radiation effects, the jet
cross section for R = 0.7 is used. The results obtained with both CMS data and HERA DIS data
to the fit on the gluon PDF is shown on Fig. 2 (left). Significant improvement on the accuracy of
the PDFs is observed by using the present measurement in the QCD analysis. For the first time,
the value of the strong coupling constant at the Z boson mass is extracted in a QCD analysis at
NNLO using these data and results in ↵S = (mZ) = 0.1170 ± 0.0019. Furthermore, the model of
contact interactions (CI) is used for investigation of the effect of beyond standard model particle
exchanges between the quarks. In the context of the effective field theory (EFT)-improved SM
(SMEFT) fit, the CI Wilson coefficient c1 is taken as a free parameter. The obtained result from the
SMEFT fit with the left-handed CI model with ⇤ = 10 TeV is shown in Fig. 2 (right).
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A few general viewpoints that lead to general results

• IR logarithms arise from coalescing mass-shell (k2 = 0) poles in loop integrals, “pinches”.
(Landau equations with Coleman-Norton analysis; see Eden et al The Analytic S-matrix

1966). We look for observables that are insensitive to these)

• The basic finding: Long distance behavior ↔ classical propagation in massless theory

– An analog of the correspondence principle, where classical and quantum pictures
overlap

– Jet substructure is long-distance dominated because massless particles can propagate
classically between interactions when they preserve the flow of energy.

i i  + 1

• Such configurations are very restrictive at high energy, and reduce to parton-model like
pictures.
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lepton antilepton
lepton hadron

hadron hadron

THE UNDERLYING SINGULAR REGIONS

CLASSICAL KINEMATICS EMBEDDED IN AMPLITUDES

(Black lines represent "jet" subdiagrams)

• In each case, interactions between outgoing jets involve no local momentum transfer.

• Logarithms we organize in evolution or resummation result from integrals up to these
momentum configurations.
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• In gauge theory, the classical processes are dressed by soft vectors . . .

• A little more on how jet cross sections impose locality.
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• For leptonic annihilation (as in all cases), all final states are familiar hadrons, with nothing
special about them to tell the tale of QCD, |N〉 = |pions, protons . . .〉,

σe+e−→ hadrons(Q) ∝ ∑
N
〈0|jµem(0)|N〉 〈N |jem,µ(0)|0〉 δ4(Q− pN)

• On the other hand,
∑
N |N〉〈N | = 1, and using translation invariance this gives

σe+e−→ hadrons(Q) ∝ Im
∫
d4x e−iQ·x 〈0|T (jµem(0) jµem(x))|0〉

• On the RHS there are no classical pictures connecting J(0) and J(x) by jets in diagrams
for the matrix element → the total cross section is IR safe.

• After summing over states, we are probing the vacuum at short distances, imposed by
the Fourier transform as Q→∞. The currents are only a distance 1/Q apart.
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• But what about 2- or more-jet cross sections? We can’t use the same unitarity . . .

σe+e−→ jets(Q) ∝ ∑
N

Θ (N ∈ JetStates) 〈0|jµem(0)|N〉 〈N |jem,µ(0)|0〉 δ4(Q− pN)

• But, each set of “jet-related” states has its own unitarity! . . . (GS PRD 1978)

2792 KORGE STERMAN

where N is now the number of lines in the vacuum polarization graph t", and L is the number of loops in
G.
Next we can sum over all possible cuts a of &. Grouping the terms by 7' orderings of G,

'L E
g' '=

~

[dk;d'k, I J ' g g ] I (q S ie)'5(q S„) ', [ (q S„~)-', (29)1: g=1 Eg T(G) 0! g gc

E g
Q g' '=i dk,'dk, ,' Q (q S„+i&) ' ]Q (q S„ i~) '
I' '. ~, =f ' j=f g T(c) - V y

(2.10)

The second form follows easily from a repeated
application of the distribution identity

(&+i~) ' —(x i~)-'= -2)Ti 5(x) . (2.11)
r

E(lu&ation (2.10) is immediately recognizable as
a. restatement of the Cutkosky rules" as applied
to the graph &: The discontinuity of the diagram
is found by summing over the relevant cut di-
agrams. The reasoning leading up to (2.10) can
be reversed to derive the Feynman integral form:

I»"'(R) fr~"'(=R)dI"'I„'"' (R), (2.13)

where

(2.14)

R onto the phase space of cut &. Then the contri-
bution of region R to the cut diagram ("cut subin-
tegral") is

L
x dk~g~ Ib ). (2.12)

xL denotes the region of internal integration of
~L specified by R. A similar definition holds for
y jC (0')

Adding together all the cut subintegrals we find
the analog of (2.12),

The significance of this rederivation of a standard
result lies in the fact that the whole calculation can
be carried out at fixed values of all the plus and
tdiansverse momenta in ~. That is, once all minus
integrals have been evaluated, the discont&nuity of a
subintegral over any finite region in the plus and
tRraiisverse momenta of G is equal to the sum of the
coi'responding subintegrals in the cuts of G. Notice
that these subintegrals involve phase space, as
well as the internal loops of the cut graphs.
That this result is relevant to the cancellation

of mass divergences can be seen once we observe
that the four-momentum of an on-shell line is
uniqu&ely determined by its plus and transverse mo-
ment@ alone, unless they all vanish. Thus a
singular point is specified by giving these three
components for all the loops of the corresponding
reduced diagram. Integrating over a small re-
g'ion m plus and transverse momenta, we will
encounter only a limited class of singular points,
even when the minus momenta are fully integrated
over. In the limit of vanishing plus and transverse
momenta for some subset of the lines, the minus
integrals sum over singular points related by a
i edistribution of energy among those on-shell lines
moving in the -s direction.
: Let B denote a region of this type. Let a be a
cut. of graph G, and let x denote the projection of

(2.15)I&» (R) = —& f . d I,. (I —I&,. ) .
Cg R i-"I

Now each h( ' in (2.13) is in general mass di-
vergent; these quantities will not even be defined
unless they are regulated in some way: by adding
a small mass to propagators, or by dimensional
regularization, for instance. On the other hand,
the sum (2.15) is less singular than the individual
eut subintegrals. The multiple integrals in both
terms of (2.15) are contour integrations and can
be deformed in just the same way as in the full
Feynman integral, except that now the plus and
transverse momentum contours must be fixed
on the real axis at the boundary of the region R.
Mass divergences could arise in (2.15) either

from the plus and transverse momentum end
points, or from pinch singular points in the in-
terior of R. But the reasoning of I shows that the
only pinch singular points in the interior of B are
those whose on-shell lines have zero momentum,
and such singular points cannot lead to mass di-
vergences in the theories being considered. "
Thus mass divergences can only arise from the
boundary of R, a region of lower dimension.
In the appendix of I it was shown that power

counting at an arbitrary SP (not necessarily a
pinch SP) indicates no worse than logarithmic di-
vergence, except for contributions in gauge theo-

• Summing over jet-related states removes all pinches & long time behavior.

• The two currents are drawn together in space-time by the measurement,
the sum over states. Depends only on a hermitian Hamiltonian.

– Part of what underlies SCET. Also derived in loop-tree duality formalism by Capatti,
Hirschi, Ruiji (JHEP 2022).

• But of course, we can’t sum over the states we prepare with hadrons in the intial state.
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3. FACTORIZATION: FINDING UNIVERSALITY FOR INITIAL-STATE PARTONS

• Generalize to incoming hadrons
(as for cosmic rays)

• In DIS: incoming hadron is a single-particle jet
– supplies quark with momentum fraction y:

J

• Factorization:

WN(q, p) =
∑

a=Q,Q̄,G

∫ 1

x
dy Ca

q2

µ2
,
x

y
, αs(µ)

 fa/N(y, µ) .
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• And for hadron-hadron scattering: electroweak annihilation (Drell-Yan) and jets again

xp'

• Factorization (here, Drell-Yan):

dσAB

dQ2dy
=

∑
a,b

∫ 1

0
dξadξb fa/A(ξa, µ)Hab

xa
ξa
,
xb

ξb
,
Q

µ
,Q2, αs(µ)

 fb/B(ξb, µ) .

• The assertion is that, as in the parton model, the parton distributions for Drell-Yan are
the same as those in DIS, and indeed are the same for QCD production of hadron jets
when suitably defined in terms of energy flow.

• Program emerged from work of: Mueller (1974), Politzer (1977)

• Then on to all orders Amati, Petronzio & Veneziano; Efremov & Radyushkin; Ellis,
Georgi, Machacek, Politzer & Ross; Mueller; Libby, GS (all 1978)

• Right around the same time as factorization and evolution in elastic amplitudes (Brodsky
& Lepage, Efremov & Radyushkin)
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• Physical bases of factorization: locality, causality and unitarity.

– Locality: hard interactions are mediated by strong or EW currents at short distances

– Unitarity: once the hard scattering occurs, final-state interactions can’t undue it, and
corrections cancel in inclusive cross section based on energy flow.

– Causality: protons can’t mutually polarize each other while they approach at the
speed of light. Gluons and massless quarks evolve independently if they recede at c.

– Gauge theory’s unphysical degrees of freedom made this challenging.
(In pQCD, scalar=longitudinal polarizations are pure gauge artifacts.)

29



• For example, local unitarity is needed to separate hard scattering from soft interactions
in hadron-hadron scattering, in “cut diagram” notation.

From Libby & GS (1978): Terms on left generically leading power and singular. Terms
on the right are power suppressed because at least one soft line disappears into a sub-
diagram that is off-shell. (higher-dimension operator)18 JKT AND LEPTON-PAIR PRODUCTIQN IN HIGH-ENERGY. ..

z t-
c II

{0) EGi
FIG. 8. Example of photon-photon scattering in dis-

cussion of divergences.

dl

{b)
c' C"i

FIG. 7. Cut reduced diagrams illustrating cancella-
tion of IR divergences when soft lines attach to hard
subdiagram H.

of these terms. As in Sec. II, power counting
shows that these pinch singular points cannot be
divergence points because soft lines attach to the
contracted subdiagram H.
This kind of reasoning led directly to two-parti-

cle irreducibility for leptoproduction reduced dia-
grams in Sec. II. Here, however, we must still
deal with the case that soft lines attach only to the
forward jets. We turn now to that possibility.
It is easy to see that in A(g) there are IR diver-

gences only when the momenta of all the external
lines of S vanish simultaneously. Suppose some
set of lines in $ have finite momenta. By (5.2b),
they cannot become part of either forward jet in
R(g). If they go on-shell in some other direction,
they will form one or more nonforward jets. But
we have just seen that all IR divergences associ-
ated with nonforward jets cancel. This leaves only
the possibility of having divergence points where
some subset pf lines T in S, and possibly jet i, are
off- shell.
Suppose T includes some of the external lines of

S. Contract T in the corresponding reduced dia-
gram. This results in a contracted vertex I con-
necting soft and jet lines. I' can only appear in the
reduced diagram of a divergence point if it is a
(composite) fermion-vector three-point vertex. '
Suppose this is the case, and that I contains no
subdiagrams of the same type. k must connect to
a fermion loop contained entirely within I". Figure
8 gives an example. In the limit that k-0 with in-
ternal vector momenta fixed and finite, the inte-
gral over the fermion loop vanishes. This theo-
rem, which is familiar from QED20. but is indepen-

(k )
D (k, r/)(P, ) k„
p k+ie

(5.3)

We refer to these quantities as propagators for
"G"and "K vectors, " respectively. For cut lines
(5.3) still holds, but with (2v)5(k') replacing i/-
(k'+i~) in D,.(k, q)
The sign of the ie in (5.3) is the same whether

line k is to the right or left of the cut. The sign is
chosen to produce no new pinch singular points in
the k integral; It is the same on both sides of the
cut because moving k across the cut reverses the
sign of its flow relative to the jet momentum p, .
That is, when k is attached on the left of C it ap-
pears in denominators such as (q+k)'+is - 2q k
+i@, while on the right it appears in denominators
such as (q' —k)' —ie--2q' k —ie. Poles from any
such denominators will not pinch the contour
against the poles p k+ie in Eq. (5.3) for q and q'
proportional to p. We therefore assume that the
power counting of Refs. 8 and 17 can be applied
even in the presence of such terms.
The decomposition (5.3) is chosen so that the IR

divergence comes entirely from K-vectors. This
is because

G„„(k,q, p, ) x(p, )„=0, (5 4)

while power counting indicates divergence only in
terms where the soft line k couples. to the nonzero

dent of the mass of the fermion, eliminates diver-
gence from any such pinch singular point. The rea-
soning can now be extended to other three-point
subdiagrams I", which may contain I'. In sum-
mary, we find IR divergence only when the momen-
ta of all external lines of S vanish together. But
then, since divergence is logarithmic, ' "a sup-
pression at k =0 in an& of these momenta will pre-
vent divergence at any pinch singular point in R(g)
involving lines in S.
To demonstrate the claimed cancellation we use
a modification of the Grammer-Yennie technique'
for the IR problem in QED. Suppose line k attaches
to jet i. Ne decompose the propagator D„„(k,q) as
follows:
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• Analysis made well-defined by QFT analysis of parton distributions; culminating in Collins
& Soper 1982:

J C Colhns, D E Soper/Parton distribution and decay 447 

The above definition is gauge-dependent:  what is defined to be a quark in one 
gauge is a quark plus gluons in another  gauge. We find it useful to work in a 
physical gauge like the axial gauge or the Coulomb gauge. Then there is a gauge 
fixing vector n", and ~ depends on the variable ( -= (2P. n)2/In 21. This ~'-dependence 
is useful if we wish to compute,  for example,  the Drell-Yan process at low transverse 
momentum,  where the cross section is suppressed by a Sudakov form factor [10, 11]. 
In a physical gauge, the Sudakov effects factorize and appear  in the ( -dependence  
of ~ (x ,  kT), with x/~ being the overall center-of-mass energy. In ref. [1] the fact 
that the energy dependence is thereby turned Into a gauge dependence is exploited 
to compute the energy dependence.  

In an exactly analogous fashion we define the antiquark distribution: 

~;/a(x, kT, ()--2(2~.)3 dy d2yT e "~P+" -k~- Y~)Tr T+{PIO~(O, y- ,  yT)0~(0)IP)(2.2) 

and the gluon distribution: 

~/A(X,  kT, ~ ) -  
¢ 
J d y  d2yTe ,c,P ~' -kT VT) 

x p  +(-2,tr) 3 

× (PIFa(O, y , yT)+~Fa(O)+~IP>, (2.3) 

where fu~ = O~A~-8~4~. All the definitions (2.1) to (2.3) are normalized so that 
in free field theory with A replaced by a par ton state 

~a/b(X, kT) = ¢~at,8(X -- 1)8~2)(kT) . 

For the remainder  of this section and the next section we will be concerned with the 
distributions integrated over kT. We find it convenient to make these definitions gauge 
invariant. The ultraviolet divergences [5] that arise as kw~ ~ can be dimensionally 
regulated and in sect. 3 we will renormalize them away. Our definition of the 
gauge-mvariant  quark distribution is 

/ ( 0 ~ , ,  1 f ,/Akx) =~--~ dy e '~P*~ <P1¢7,°'(0, y- ,  OT)~ ÷ 

f[ x P exp [ig ~°) d ~ - A  (°t÷''~ tu, )7-, Ow)ta]Ol°~(o)le)~, (2.4) 

1 a where P denotes path ordering, G = ~,~ , and the c indicates that only contributions 
from connected graphs are to be included. The superscripts (0) mean unrenormal-  
ized: since f(0) itself has ultraviolet divergences, it proves convement  to write the 
definition completely in terms of unrenormalized quantities. 

Now e(0) J~/A (X) is essentially J d2kT~,/A(X, kw) with a line-integral of the color charge 
inserted to give gauge invariance. Renormalizat ion can be thought of as removing 
a "spurious"  divergent part  of the integral. We call the divergence spurious because 
in any physical process there is an essennally kinematic cut-off on transverse 

• The Wilson lines summarize the effects of gauge degrees of freedom: at high energy,
to partons the rest of the world consists of a source of unphysically-polarized gluons,
emerging from the opposite light cone.
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• Historically, another round of factorization studies concerned exchanges cancelled in the
sum over final states. (The period I had the good fortune to work with John Collins and
Dave Soper.)

• Collins & GS (1981), Brodsky, Bodwin and Lepage (1981); Collins, Soper, & GS (1985,88),
Bodwin (1985); Aybat & GS (2008), J.C. Collins (Foundations of pQCD (2011))

• These papers looked more closely at how final-state interactions really cancel.

• Here’s a representative sequence from Collins, Soper, GS (1985):

122 J C Collins et al / Hadron-hadron s~attermg 

( t 
Fig 4 1 General leading surface with muon pair of momentum U'  and (Q - k) ~' shown exphcxtly 

In (4.2), we may ignore mtermedxate states that occur during the hard interaction, as 
well as those in whtch one or morejet  lines move backwards In time, since these have 
state denominators of O(v~), and we wish to investigate only those states with small 
denolmnators. 

Consider now the final states, that is, those that occur after the electromagnetic 
current operator of the Drell-Yan process. They are represented schematically in fig 
4.1, and they can be treated by a method familiar from e+e - annihilation [2, 3]. We 
let there be m final-state lnteracuons, and we label the final states by ~ = 1, , m + 1. 
Then for each Ume ordering which contributes to (4 2) we find the factor 

f = l  

where now only final states of a gtven time ordering are included. Using the identity 

(x  + ,~)-~ - ( ~  - , ~ ) - 1  = - 2~ ,8 (~) ,  

J C Colhns et a l /  Hadron-hadron scattering 
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Fig 4 2 Leading pinch singular surfaces which remain after the cancellatxon of final states 

Before developing the role of soft gluons further, we need to study the couphng of 
colllnear lines to the hard part. We will fred a slmphflcauon resulting from gauge 
mvartance,  which is an important ingredient m factonzat~on, and which also 
facdltates the discussion of soft cancellation 

4 3 FACTORING COLLINEAR LINES 

AS discussed m sect. 3, colhnear hnes are attached to H as in fig 4.3 The hnes 
labelled a , .  d are quarks, ghosts or physically polarized gluons, and all other hnes 
are longitudinally polarized gluons, which are colhnear to either Ja or JB Because H 
is only sensmve to UV momenta,  its external lines may be taken on-shell for the 
purposes of the followmg argument. 

For  the longatudmally polarized gluons, connected to H, we can make the 
following "colhnear  approxamauons" [12] for gluon propagators hnked to the hard 
part,  

u ~k/~H 13 
= , ( 4  8a) g~flHfl u .  k -  te 
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) 

J 

Fig 4 6 General leading pinch singular surface after the factonzatlon of long/tudmally polarized gluon 
jet hnes from the hard part Note the routing of soft momenta Th~s ~s the graphacal representatmn of eq 

(4 10) 

( u, } of  vertices of JA at which the soft hnes ( q," } at tach 

7/~= + 1 ,  u , < ~ < C ,  

= - 1 ,  u , > ~ > C ,  

= 0,  otherwise,  (4 13a) 

where  again > ( < )  means after (before) m terms of t lme-ordenng,  and 

%, - + 1, q,~ flows on actwe (spectator)  jet  hne j to the left (right) of C,  

- - 1, q,~ flows on spectator (actwe) je t  hne j to the left (right) of C,  

= 0, q,~ does not  flow on jet  hne j (4 13b) 

These  choices are dictated by the flow of soft momenta  shown in fig. 4 6. A simple 
but  impor tan t  identi ty relating ~/~, and toj, is 

,/f, = Y'. toj,. (4 14) 
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Fig 5 2 
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J 

Completely factorized form Thxs is the graphical representation of eq (5 3) 

I n  this form,  the jets ,  the soft pa r t  and  the hard  par t  are all  fac tored  W e  can 
the re fo re  s epa ra t e ly  sum over their  cuts W e  thus def ine 

v = E v (5 5) 
C 

The func t ion  U conta ins  all the soft enhancements  associa ted  with the s ingular  
surface.  I t  has  been  discussed m deta i l  elsewhere in the context  of  e + e -  ann ih i l a t ion  
[4] There,  i t  was shown that  U c , c d ,  d = ~ c , c ~ d , d  . That  IS, all ItS higher  o rde r  cor rec t ions  
cancel  comple te ly .  To  ob t a in  this result ,  one need only sum over cuts  and  in tegra te  
over  energies  at  f ixed spa t ia l  loop  m o m e n t a  The cancel la t ion  then fol lows f rom 
un l t a r i ty ,  in a m a n n e r  slrmlar  to the  cancel la t ion  of  final s tate in te rac t ions  in sect 4 
W e  m a y  no te  tha t  m ref [4] a phys ica l  gauge was employed ,  bu t  this does not  affect  
the  a rgumen t .  Also,  our  func t ion  U above  is comparab le  to U(b = 0) in ref [4] 

W e  have  thus  shown that  the effects of  soft gluons cancel  in the Dre l l -Yan  cross 
secUon at  l ead ing  twist, and  we m a y  use this cancel la t ion  to ehmlna te  all soft  gluons 

• Ward identities mediate the transition from the second to third and third to fourth
pictures.
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• When “collinear” factorization is not enough, it gets even more interesting.

• Causality ensures that outgoing jets do not exchange momenta with each other, except
through soft lines. Interactions with scattering centers “lying in wait” are another matter.
Corrections due to scattering from spectators are power-suppressed (GS and J.W. Qiu,
NPB 1991), but this this effect can be large in dense media (AA!).

• Factorization as above also assumes partons are “dilute” in hadrons – at small x this
fails, and again power corrections may dominate. Expansions in fG/h(x)/R2

HQ
2. (Gribov,

Levin, & Ryskin, Phys. Rep. 1983; Mueller & Qiu, NPB 1985; . . . CGC)

• Small-x in DIS opens the door to the total cross section, organized by logs of x rather
than Q, and perturbative pictures of the pomeron, the shadow of the total cross section
(Balitsky, Fadin, Kuraev, Lipatov, Sov. J. Nucl. Phys., 1977, 1978 . . . )

• Another connection: to mathematics of solvable models: Lipatov (1993); Fadeev &
Korchemsky (1995) . . .
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4. USING FACTORIZATION AND UNIVERSALITY

• Introducing hierarchical scales in measurements

• Factorization and/or effective theory to separate scales

• Consistency and/or renormalization group equations to resum dependence on scale ratios

• In IR-regulated calculations, scales can be set to zero. The universality of anomalous
dimensions connects physical to formal calculations, and to other theories

• Classic example is the Drell-Yan pair QT :

SciPost Phys. Proc. 8, 031 (2022)

Table 3: Measured integrated fiducial cross section in electron and muon decay chan-
nels at Born level as well as the combination (from [3]). The prediction at NNLO in
↵S uses the CT14 PDF set.

Channel Measured cross-section⇥B(Z/�⇤ ! l l) Predicted cross-section⇥B(Z/�⇤ ! l l)
(value± stat.± syst.± lumi.) (value±PDF±↵S ± scale± intrinsic)

Z/�⇤ ! ee 738.3 ± 0.2 ± 7.7 ± 15.5pb
Z/�⇤ ! µµ 731.7 ± 0.2 ± 11.3 ± 15.3 pb
Z/�⇤ ! l l 736.2 ± 0.2 ± 6.4 ± 15.5pb 703+19+6+4+5

�24�8�6�5 pb

RADISH program [19, 20] combines a fixed NNLO order prediction of the Z+jet cross sec-
tion with resummation of the log(mll/p

ll
T ) terms at next-to-next-to-next-to-leading-logarithm

(N3LL) accuracy. Except for larger uncertainties in the low pll
T and low �⇤⌘ region, the RADISH

prediction agrees with the data over the full spectra with uncertainties typically from 1 to 3
percent.

(a) (b)

Figure 3: Comparison of normalized (a) pll
T and (b) �⇤⌘ distributions predicted by var-

ious computations. The uncertainties of Sherpa and Radish predictions are presented
by error bands. Plots are taken from [3].

5 Conclusion

This article reviewed the state-of-the-art ATLAS measurement of W and Z production cross-
sections at 2.76 TeV as well as the measurement of transverse momentum distribution of Drell-
Yan lepton pair at 13 TeV, using proton-proton collision data at LHC.

At 2.76 TeV, the production cross-sections for W and Z bosons are measured in fiducial
regions and then extrapolated to the full phase space. Measured ratios and asymmetries com-
posed of fiducial cross-sections are also reported, all in agreement with NNLO QCD calcula-
tions. In the measurement of pll

T and �⇤⌘ of Drell-Yan lepton pairs at 13 TeV, the data agrees
with QCD prediction based on resummation approaches within uncertainties.

031.7

(Z. Wu for ATLAS (2022))

• A bit more, to get an example . . .
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• Drell-Yan QT (Dokshitzer-Diakanov-Troian; Curci-Greco-Srivastrava; Parisi-Petronzio,
Collins-Soper, Collins-Soper-GS (1980-85)). Starts with a factorization in impact pa-
rameter space.

• The cross section is independent of µ and of the vectors nµ introduced to quantify
collinearity.

• Apply separation of variables to both equations, as in evolution . . .
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• The result is an inverse transform of the solutions to the two equations

• The function A(αs) is the “cusp” anomalous dimension, appearing a numerous other
applications, for example “threshold resummations”
(GS, Catani & Trentadue (1988) . . . )

• Redeveloped for heavy quark production, “high energy factorization” (R.K. Ellis and J.
Collins; Catani, Ciafaloni, Hautmann, NPB 1991).
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5. SUMMARY AND FOR THE COMING YEARS

What changed QCD from curious to obvious

• Lattice QCD verification of coexistence of confinement
with asymptotic freedom (Creutz (1979))

• Fundamental degrees of freedom coming to life as jets . . .

• Petra: gluon jet (1979); UA1, UA2: very high-pT quark-quark scattering (1982)
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• At 50 years, QCD is still young.

• Many original issues remain: weak to strong QCD.

– fine jet substructure

– footprints of color flow (new physics searches)

– confinement for moving quanta

– theory of hadronization

• All scales are relevant in all accelerator experiments.

• New ideas are being developed to exploit them, and older concepts used in new ways
(viz. energy correlations).
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• Local unitarity, for example, should make it possible to identify bespoke weight functions
for studies of final state dynamics. A general form (GS and Ani Venkata to appear 2023)
in e+e− annihilation is:

We can apply Eq. (3.12) to TOPT expressions like Eq. (3.5) in a straightforward
fashion. First, using the graphical Euler identity in the form

LJ + LS = NJ + NS ≠ V + 1 , (3.13)

we see immediately that Eq. (3.12) may be written equivalently as

LJ + 3LS + pnum ≠ NS ≠ (V ≠ 1) Ø 0 , (3.14)

where here V is the total number of vertices in the on-shell TOPT diagram found by
contracting all states that are o�-shell at this pinch surface. This is also the number
of states that are pinched on-shell. In this expression, of course, LJ remains the
total number of internal loops of all jets and LS the number of loops that carry zero
momentum in all three remaining components. For leptonic annihilation [22], the
natural normal variables are all three remaining components of the LS soft loops,
l̨soft ≥ ⁄ and for each jet loop momentum l̨jet, l2‹, jet ≥ ⁄. The dependence of all
denominators is then linear in ⁄. As a result, the inequality of Eq. (3.14) ensures that
divergences in TOPT are at worst logarithmic, just as in covariant perturbation theory.

Notice that it is necessary to saturate the inequality (3.14) for a specific time order
and pinch surface to contribute to an infrared divergence. This eliminates infrared
divergences for time orders where a vertex that connects on-shell jet lines and/or soft
lines appears between o�-shell denominators, simply because choosing such an order
sacrifices at least one on-shell state for an o�-shell state. For this reason, in identifying
pinch surfaces, we may capture their leading infrared behavior by their “reduced dia-
grams”, found by shrinking any loop momenta internal to the jets but not in the jet
direction to points. The resulting time-ordered reduced diagrams automatically have
the maximum number of on-shell denominators. The logarithmic nature of infrared di-
vergences applies to each term in the original expression of the weighted cross section,
Eq. (2.9) as well as to its linear combinations in Eq. (3.4) and (3.5) for an arbitrary
weight function, fC .

In summary, a general weighted cross section encounters at worst lograithmic sin-
gularities in individual terms in the sum found by combining Eqs. (3.2) and (3.4),

�[f ] =
ÿ

G

ÿ

·G

⁄
dLG N·G

NGŸ
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2Êi

◊
A
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s=1

i
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fn+1

+
nÿ
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s=1

i

Q⁄s ≠ q
jœs Êj + i‘

≠
n+1Ÿ

s=1

i

Q⁄s ≠ q
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B
. (3.15)

18• fC is an infrared-safe weight function of the momenta in state C, dependent on energy
flow (and possibly charge – K. Lee & I. Moult 2023)

• IR finite in four dimensions, and a tool to study power corrections to partial cross sections.

• Unprecedented computational concepts and capacities are still to be exploited.

• Extraordinary experimental and theoretical developments make the dream of mapping
the paths between partons and hadrons a possibility.
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