September 2023

# 50+ years of lepton pair production

Keith Ellis IPPP, Durham

## What sort of a history is this anyway?

 What better way to uncover the history of lepton pair production than in the words of a main protagonist?

#### Figure 1 is then a thumbnail ten year

Dilepton Production in Hadron Collisions

Brief History

1968: Columbia-BNL Proposal to Probe Small Distances Using Virtual Photons and to Look for Bumps.

1978: Tokyo

Bumps Have Been Found:  $J/\psi$ ,  $\psi'$ , T, ...

"Small Distance Probe" Has Found a Constituent (Quark-Gluon) Model Which is Completely Consistent

with Lepton Scattering.

Fig. 1.

history and summary of my talk after which the reader can skip to the bibliography to see if I have referred to him properly. In 1978

Leon Lederman: Proceedings of the 19th ICHEP Tokyo (1978)



# The beginning...



 "Indeed, in the mass region near 3.5 GeV/c<sup>2</sup>, the observed spectrum may be reproduced by a composite of a resonance and a steeper continuum."  Drell and Yan had seen the Christenson et al data at the spring APS meeting



Drell-Yan



itions!

larges

- \* <u>Drell and Yan</u> showed that the parton model could be derived if the impulse approximation was valid.
- To accomplish this, they had to impose a transverse momentum cut-off for the particles that appeared in the quantum field theory.

$$\frac{d\sigma}{dQ^2} = \frac{4\pi\alpha}{3Q^2} \frac{1}{Q^2} \mathscr{F}(\tau) = \frac{4\pi\alpha}{3Q^2} \frac{1}{Q^2} \int_0^1 dx_1 \int_0^1 dx_2 \,\delta(x_1 x_2 - \tau) \sum_a \lambda_a^{-2} F_{2a}(x_1) F'_{2\bar{a}}(x_2)$$
No color factor!

 Rapid fall-off of the cross section, despite the fact that the partons were point-like particles (in contrast to DIS).

cf, Altarelli, Brandt & Preparata, PRL (1970)

## Leon on "Drell-Yan"

I come now to the Drell-Yan process i.e. dilepton production in hadronic collisions, (sigh!) named by Feynman after an experiment at BNL by Christenson. Here there is consid-

> Lederman, <u>Batavia Conference</u>, 9th International Symposium on Lepton and Photon Interactions at High Energy, (1979)





# The first Drell Yan prediction

#### MASSIVE LEPTON-PAIR PRODUCTION IN HADRON-HADRON COLLISIONS AT HIGH ENERGIES\*

Sidney D. Drell and Tung-Mow Yan

Stanford Linear Accelerator Center, Stanford University, Stanford, California 94305

(Received 25 May 1970)

<u>May1970!</u>

On the basis of a parton model studied earlier we consider the production process of large-mass lepton pairs from hadron-hadron inelastic collisions in the limiting region,  $s \rightarrow \infty$ ,  $Q^2/s$  finite,  $Q^2$  and s being the squared invariant masses of the laster pair and the two initial hadrons, respectively. General scaling properties and 100000 inelastic electron scattering are discussed. In particular, a rapid section as  $Q^2/s \rightarrow 1$  is predicted as a consequence of the observed invariant masses of the laster pair and the elastic scattering structure function  $\nu W_2$  near threshold.

Predictions are

approximate scaling 
$$\frac{Q^3 d\sigma}{dQ} = F(\tau), \ \tau = Q^2/s,$$

- \* angular dependence,  $(1 + \cos^2 \theta)$
- \*  $A^1$  dependence on nucleon number.



## Two explanations of Leon's shoulder



thanks to C. Quigg



<u>Altarelli, Brandt and Preparata,</u> 9th September 1970 Light cone analysis of massive pair production,

# Follow up experiment at Fermilab

- Fermilab proposal
   E288 (1974)
- A Study of Di-Lepton
   Production in Proton
   Collisions at NAL

#### NAL PROPOSAL # 288

Scientific Spokesman:

L. M. Lederman Physics Department Columbia University New York, New York 10027

FTS/Off-net: 212 - 460-0100 280-1754

A Study of Di-Lepton Production in Proton Collisions at NAL

J. A. Appel, M. H. Bourquin, D. C. Hom, L. M. Lederman, J. P. Repellin, H. D. Snyder, J. K. Yoh (Columbia University); B. C. Brown, P. Limon, T. Yamanouchi (NAL).

(Formerly #70 Phase III)

2. Intermediate Boson Production The reaction is

р

+ "N" 
$$\rightarrow W^{\pm}$$
 + anything  
 $\downarrow_{\gamma} e^{\pm} + v$ 

(4)

· (5)

Historically, such experiments have been carried out at BNL and at Argonne but suffered from the inability of theorists to predict the cross section. Thus a negative result was useless since no statement could be made concerning the W-mass. In contrast, neutrino production (or lack of it) led to the one firm number we have:  $M_{\rm W} > 2$  GeV.

However, the recent BNL dimuon experiment<sup>4</sup> demonstrated an easily measurable continuum of lepton pairs emerging from proton-uranium collisions. The arguments of Chilton<sup>5</sup> and Yamaguchi<sup>6</sup> related reaction (4) to the reaction:

> $p + "N" \rightarrow "\gamma" + anything$   $\downarrow, \mu^+ + \mu^$ or  $e^+ + e^-$ .

The prediction for Intermediate Boson production is

# Asymptotic freedom expands it scope

- The publication of the DGLAP equation <u>Altarelli-Parisi 1977</u>, Dokshitser (Sov. Phys. JETP, 46,641) with its physical picture of parton evolution, raised the issue of whether the Drell-Yan model could be extended to QCD.
- <u>Politzer (1977)</u> deserves credit for outlining the factorization idea.
- Unlike in the parton model, the transverse momentum is now unbounded.
- <u>Transverse momentum in Drell-Yan processes (APP)</u> and <u>AEM (1979)</u> followed Politzer's lead regulating collinear/ soft singularities by continuing off-shell, (which turned out to be a tricky procedure).



cf, Sachrajda, 2/1978 - Lepton pair production and the Drell-Yan formula in QCD

# Radiative corrections to Drell-Yan



Fig. 3. The hard component of the  $\langle k_{1}^{2} \rangle$  of the muon pair as a function of their invariant mass is compared with the experimental points taken from ref. [9] for three different powers n = 4, 5, 6 of the gluon distribution, following the procedure described in the text.

- \* QCD predicts an approximate linear rise of  $\langle k_T^2 \rangle$  with s or Q^2, but only at fixed  $\tau$ .
- \* Intrinsic  $k_T$  needed.

<u>Transverse momentum in DY processes</u>, Altarelli, Parisi and Petronzio (1977) Altarelli, RKE, Martinelli had written a previous paper mainly on radiative corrections to DIS, including corrections to DY as a (erroneous) postscript

### LARGE PERTURBATIVE CORRECTIONS TO THE DRELL-YAN PROCESS IN QCD \*

#### G. ALTARELLI

Istituto di Fisica dell' Università, Istituto Nazionale di Fisica Nucleare, Sezione di Roma, Rome 00185, Italy

#### R.K. ELLIS

Center for Theoretical Physics, Laboratory for Nuclear Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

#### G. MARTINELLI

Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, Frascati 00044, Italy

Received 17 April 1979

Marciano(1975) - Dimensional Regularization and Mass singularities

### QCD corrections for hadron-hadron interactions

$$\alpha_s f_q(z) = C_F \frac{\alpha_s}{2\pi} \Big[ \Big( 1 + \frac{4\pi^2}{3} \Big) \delta(1-z) + 2(1+z^2) \Big( \frac{\ln(1-z)}{1-z} \Big)_+ + \frac{3}{(1-z)_+} - 6 - 4z \Big]$$

$$\alpha_{S} f_{G}(z) = \frac{1}{2} \frac{\alpha_{s}}{2\pi} \left[ (z^{2} + (1-z)^{2}) \ln(1-z) + \frac{9}{2} z^{2} - 5z + \frac{3}{2} \right]$$

- Correction relative to DIS
- $* \frac{\alpha_S}{2\pi} \approx \frac{1}{20}$
- Simple origin for the large size of the corrections;
- Phenomenology, *x<sub>F</sub>* distribution;
- <u>Altarelli, Ellis, Martinelli,</u> see also <u>Kubar-Andre</u> <u>and Paige</u>, and Abad and Humpert



## Drell-Yan data and K-factor



| <u>n (d o/de l de 2/exp/(- o/de l de 2/D) i model</u> |               |               |                  |                  |                               |                  |
|-------------------------------------------------------|---------------|---------------|------------------|------------------|-------------------------------|------------------|
| Reaction                                              | pN            | īρΝ           | π <sup>-</sup> N | π <sup>+</sup> N | π <sup>-</sup> H <sub>2</sub> | $(\pi^ \pi^+) N$ |
| K                                                     | $2.2 \pm 0.4$ | $2.4 \pm 0.5$ | $2.2 \pm 0.3$    | $2.4 \pm 0.4$    | $2.4 \pm 0.4$                 | $2.2 \pm 0.4$    |
| Events                                                | 960           | 44            | 5607             | 2073             | 138                           | <b></b>          |
|                                                       |               |               |                  |                  |                               |                  |

NA3, Badier et al,

### Experimental Situation for massive boson prediction



 Plots show the necessity of NLO corrections, and current ATLAS results compared with NNLO calculations.

# NLO QCD solved!

- NLO order is a solved problem numerically, (with the exception of processes first occurring at one-loop level, and processes with a large number of external partons).
   NLO electroweak corrections also often included. In some cases matched with parton shower.
- \* MadGraph5\_aMC@NLO, Recola, Openloops 2, Gosam, POWHEG(Box)
- \* Ingredients required -
  - Tree-level and one-loop diagram generation;
  - Subtraction procedure to cancel soft and collinear divergences between real and virtual (<u>ERT</u>, <u>Catani-Seymour</u>, <u>FKS</u>);
  - Reduction to known integrals (Generalized Unitarity, <u>OPP</u>, Tensor reduction to scalar integrals, <u>Passarino&Veltman Collier</u>, <u>On the fly reduction</u>);
  - Complete basis set of one-loop scalar integrals (<u>'tHooft & Veltman</u>, <u>Denner Nierste & Scharf</u>, <u>RKE & Zanderighi</u>).

# Precision QCD

- We compute higher orders in QCD to increase the precision of our predictions i.e. to reduce the theoretical error.
- As we accumulate higher order terms we can ask how our error estimates in lower order perform.
- The NNLO central value lies within the NLO error band in only 4 out of the 17 cases shown.



#### Gavin Salam, (LHCP2016)

# N<sup>3</sup>LO results for inclusive $Z/\gamma^*$ etc

- ∗ Results for Z, W<sup>±</sup>, H, WH, ZH normalized to N<sup>3</sup>LO.
- \* Both  $\mu_R$  and  $\mu_F$  are varied by a factor 2 about their central values respecting the constraint  $\frac{1}{2} < \frac{\mu_R}{\mu_F} < 2$ , "7-point scale variation"
- In most of the analyzed cases the seven point scale variation at NNLO does not capture the N3LO central value.



Baglio et al, <u>2209.06138</u>, c.f. Mistlberger

### Differential distributions

### Transverse momentum distribution in DY

\* <u>DDT</u> wrote down a very beautiful formula (8/78)

$$* \frac{d\sigma}{dq^2 dq_T^2 dy} = \frac{4\pi\alpha^2}{9sq^2 q_T^2} \times \frac{\partial}{\partial \ln q_T^2} \sum_{F=q,\bar{q}} e_F^2 D_a^F(x_1, \ln \frac{q_T^2}{\mu^2}) D_b^F(x_2, \ln \frac{q_T^2}{\mu^2}) T^2(q_T^2, q^2)$$

- <u>Parisi & Petronzio</u> (2/79), based on arguments from electrodynamics, correct the form factor T. Similar conclusion by <u>Curci et al</u>, (3/79).
- \* The formulations are in b-space, (Fourier conjugate to  $q_T$  to make transverse momentum conservation multiplicative) and there is the additional result, that

the shrinkage of the intercept at  $q_T$  is calculable.

$$\frac{\left.\frac{d\sigma}{dp_T^2}\right|_{p_T=0}}{\int dp_T^2 \frac{d\sigma}{dp_T^2}} = \left(\frac{\Lambda}{Q}\right)^{\eta}, \ \eta \approx 0.6$$

(Balancing semi-hard gluons).

## All orders result for $q_T$ distribution

$$\frac{d\sigma}{dQ^2 dy dq_T^2} = \frac{4\pi\alpha^2}{9Q^2 s} \int d^2 b \exp(iq_T \cdot b) \sum_j e_j^2$$

$$\times \sum_a \int_{x_a}^1 \frac{d\xi_A}{\xi_A} f_{a/A}(\xi_a; 1/b) \frac{d\xi_B}{\xi_B} f_{b/B}(\xi_b; 1/b)$$

$$\times \exp\left\{-\int_{1/b^2}^{Q^2} \frac{d\bar{\mu}^2}{\bar{\mu}^2} \left[\ln\frac{Q^2}{\bar{\mu}} A(\alpha_S(\bar{\mu}) + B(\alpha_S(\bar{\mu}))\right]\right\}$$

$$+\frac{4\pi^2 \alpha^2}{9Q^2 s} Y(q_T; Q, x_a, x_b)$$

$$\begin{aligned} A(\alpha_S(\mu) &= \sum_{n=0}^{\infty} A^{(n)} \left(\frac{\alpha_S}{2\pi}\right)^n, \quad A^{(1)} = C_F, A^{(2)} = 2C_F \left\{ C_A(\frac{67}{18} - \frac{\pi^2}{6}) - \frac{10T_F n_f}{9} \right\} \\ B(\alpha_s(\mu)) &= \sum_{n=0}^{\infty} B^{(n)} \left(\frac{\alpha_S}{2\pi}\right)^n, \quad B^{(1)} = -3C_F, \\ B^{(2)} &= C_F \left[ C_F(\pi^2 - \frac{3}{4} - 12\zeta_3) + C_A(\frac{11\pi^2}{9} - \frac{193}{12} + 6\zeta_3) + T_R n_f(\frac{17}{3} - \frac{4\pi^2}{9}) \right] \end{aligned}$$

Collins, Sterman and Soper (1984)

# W Discovery(1983)!

- At the same time as CSS, we in <u>AEM+Mario Greco</u>
   produced q<sub>T</sub> plots using all the theoretical information available at the time.
- A similar plot using our prediction, with 68 UA1 events, (and without the UA2 data!) was presented by Carlo Rubbia in his Nobel lecture.



# $Z-p_T(2019)$

- \* LHC results at  $\sqrt{s} = 13$ TeV rather more impressive, e.g from ATLAS.
- The theoretically most evolved calculation Radish+NNLOJet (c.f. <u>Gehrmann</u>) gives the best representation of the data.



1912.02844

# If this were a proper history...

- \* First NNLO calculation of Drell-Yan process Hamberg, Van Neerven, Matsuura
- \* Issue of whether initial state interactions compromise factorization raised Brodsky, Bodwin and Lepage
  - Low order demonstration of factorization for Drell-Yan process, Lindsay, Ross, Sachrajda (1983)
  - Situation was summarized in 2004 by <u>Collins, Sterman, Soper</u> "recent work has, we believe, established its validity at all orders. Nevertheless, .... there is plenty of room for improvement in our understanding."

## Focus of the rest of the talk

- \* This concludes the historical part of the talk.
- \* For the rest of the talk I shall focus on the results at NNLO and in re-summed perturbation theory using MCFM.
- Subsequent talks will (presumably) address QCD at colliders and further efforts in NNLO QCD and first results at N<sup>3</sup>LO.
  - \* Seeing quarks and gluons: following QCD from initial to final states (Sterman)
  - From partons to jets and back Simulating QCD interactions at highest energies(Hoeche)
  - \* High-Energy Collider Observables at Ultimate Precision in QCD(Gehrmann)
  - \* Perturbative techniques for precision collider physics and cosmology(Anastasiou)
  - \* The evolution of the precision program: from QCD to SMEFT(Boughezal)

### NNLO cross sections in MCFM

# MCFM (<u>mcfm.fnal.gov</u>)

- MCFM 10.3 (January 30th, 2023) contains about 350 processes at hadron-colliders evaluated at NLO.
- \* We have tried to improve the documentation by giving a web-page and a specimen input file for every process.
- \* Since matrix elements are calculated using analytic formulae, one can expect better performance, in terms of stability and computer speed, than fully numerical codes.
- \* In addition MCFM contains many processes evaluated at NNLO using both the jettiness and the  $q_T$  slicing schemes. Non-local slicing approaches for NNLO QCD in MCFM, Campbell, RKE and Seth 2202.07738
- \* NNLO results for  $pp \to X$ , require process  $pp \to X + 1$  parton at NLO, and two loop matrix elements for  $pp \to X$ , (all provided by other authors, mainly Gehrmann et al).
- \* MCFM also includes transverse momentum resummation at N<sup>3</sup>LL+NNLO for W,Z,H,WW,ZZ,WH and ZH processes.

Fiducial qT resummation of color-singlet processes at N<sup>3</sup>LL+NNLO, CuTe-MCFM <u>2009.11437</u>, Becher and Neumann Transverse momentum resummation at N<sup>3</sup>LL+NNLO for diboson processes, Campbell, RKE, Neumann and Seth, <u>2210.10724</u>

#### Web-page for every process, with specimen input files.

#### 15:41

#### $1 f(-p_1) + f(-p_2) \rightarrow W^+(\rightarrow v(p_3) + e^+(p_4))$

#### 1.1 W-boson production, processes 1,6

These processes represent the production of a W boson which subsequently decays leptonically. This process can be calculated at LO, NLO, and NNLO. NLO calculations can be performed by dipole subtraction, zero-jettiness slicing and  $q_T$ -slicing. NNLO calculations can be performed by zero-jettiness slicing and  $q_T$ -slicing.

When removebr is true, the W boson does not decay.

Input files for these 6 possibilities, as used plots for 'Non-local slicing approaches for NNLO QCD in MCFM', ref. [1] are given in the link below.

#### 1.2 Input files as used for NNLO studies, ref. [1]

- ./lo/input\_W+.ini
- ./nlo/input\_W+.ini
- ./nlo/input\_W+\_qt.ini
- \_/nlo/input\_W+\_scet.ini
- ./nnlo/input\_W+\_qt.ini
- \_/nnlo/input\_W+\_scet.ini

#### 1.3 Input file for transverse momentum resummed cross-sections, ref. [2]

input\_W+.ini

1.4 Input files for jet-vetoed cross-sections, ref. [3]

- vetowp30nlo.ini
- vetowp30nnlo.ini
- vetowp30nnll.ini
- vetowp30n3ll.ini
- vetowp30nlomc.ini
   vetowp30nnlomc.ini

#### 1.5 Plotter

nplotter\_W\_only.f is the default plotting routine.

#### 1.6 Example input and output file(s)

#### input1.ini process1.out

#### References

- J.M. Campbell, R.K. Ellis and S. Seth, Non-local slicing approaches for NNLO QCD in MCFM, 2202,07738.
- [2] T. Becher and T. Neumann, Fiducial q<sub>T</sub> resummation of color-singlet processes at N<sup>3</sup>LL+NNLO, JHEP 03 (2021) 199 [2009.11437].
- [3] J.M. Campbell, R.K. Ellis, T. Neumann and S. Seth, Jet-veto resummation at N<sup>3</sup>LL<sub>p</sub>+NNLO in boson production processes, 2301.11768.

# NNLO results

- In a recent paper (2202.07738) we tried to document all the processes calculated at NNLO.
- About 50% are available in MCFM.
- We use both q<sub>T</sub>
   slicing and jettiness
   slicing.

Most apart from heavy quark and jet production are generalizations of Drell-Yan

| Process                          | MCFM          | Process                                                      | MCFM          |
|----------------------------------|---------------|--------------------------------------------------------------|---------------|
| H + 0 jet [8–14]                 | ✓ [15]        | $W^{\pm} + 0$ jet [16–18]                                    | <b>√</b> [15] |
| $Z/\gamma^* + 0$ jet [11, 17–19] | <b>√</b> [15] | ZH [20]                                                      | <b>√</b> [21] |
| $W^{\pm}\gamma$ [18, 22, 23]     | <b>√</b> [24] | $Z\gamma$ [18, 25]                                           | <b>√</b> [25] |
| $\gamma\gamma$ [18, 26–28]       | <b>√</b> [29] | single top $[30]$                                            | <b>√</b> [31] |
| $W^{\pm}H$ [32, 33]              | <b>√</b> [21] | WZ [34, 35]                                                  | $\checkmark$  |
| ZZ [1, 18, 36–40]                | $\checkmark$  | $W^+W^-$ [18, 41–44]                                         | $\checkmark$  |
| $W^{\pm} + 1$ jet [45, 46]       | [3]           | Z + 1 jet [47, 48]                                           | [4]           |
| $\gamma + 1$ jet [49]            | [5]           | H + 1 jet [50–55]                                            | [6]           |
| $t\bar{t}$ [56–61]               |               | Z + b [62]                                                   |               |
| $W^{\pm}H$ +jet [63]             |               | ZH+jet [64]                                                  |               |
| Higgs WBF [65, 66]               |               | $H  ightarrow b ar{b} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$ |               |
| top decay [31, 70, 71]           |               | dijets [72–74]                                               |               |
| $\gamma\gamma+$ jet [75]         |               | $W^{\pm}c$ [76]                                              |               |
| $b\bar{b}$ [77]                  |               | $\gamma\gamma\gamma$ [78]                                    |               |
| HH [79]                          |               | HHH [80]                                                     |               |

# NNLO by slicing

$$\begin{split} \sigma_{NNLO} &= \int \mathrm{d}\Phi_N \left| \left| \mathcal{M}_N \right|^2 + \int \mathrm{d}\Phi_{N+1} \left| \left| \mathcal{M}_{N+1} \right|^2 \theta_N^< + \int \mathrm{d}\Phi_{N+2} \left| \left| \mathcal{M}_{N+2} \right|^2 \theta_N^< \right. \\ &+ \int \mathrm{d}\Phi_{N+1} \left| \left| \mathcal{M}_{N+1} \right|^2 \theta_N^> + \int \mathrm{d}\Phi_{N+2} \left| \left| \mathcal{M}_{N+2} \right|^2 \theta_N^> \right. \\ &\equiv \sigma_{NNLO}(\tau < \tau_{cut}) + \sigma_{NNLO}(\tau > \tau_{cut}) \,. \\ &\theta_N^< = \theta(\tau_{cut} - \tau) \text{ and } \theta_N^> = \theta(\tau - \tau_{cut}) \end{split}$$

- Unresolved is subject to a factorization formula and power corrections.
- Resolved radiation contribution obtained from NLO calculation with one additional jet, available by subtraction in MCFM.
- As the cut on the resolved radiation becomes smaller, neglected power corrections are also smaller, but cancellation between resolved and unresolved is bigger.

$$\sigma(\tau < \tau_{cut}) = \int H \otimes B \otimes B \otimes S \otimes \left[\prod_{n=1}^{N} J_{n}\right] + \cdots$$

Unresolved

Resolved

# Slicing parameters

For color singlet production, "q<sub>T</sub>" of produced color singlet object, (Catani et al hep-ph/0703012v2)

\* "N-jettiness" (Boughezal et al) <u>1505.03893</u>  $\mathcal{T}_N = \sum_k \min_i \left\{ \frac{2p_i \cdot q_k}{Q_i} \right\}$ 

- The *p<sub>i</sub>* are light-like reference vectors for each of the initial beams and final-state jets in the problem
- \*  $q_k$  denote the four-momenta of any final-state radiation.
- \*  $Q_i = 2E_i$  is twice the lab-frame energy of each jet
- \* Can handle coloured final states, e.g. H+jet
- \* Recent new parameter "Jet veto" (Gavardi et al), 2308.11577

### NNLO results: dependence on slicing procedure

- \* For most (but not all) processes the power corrections are smaller for  $Q_T$  slicing than for jettiness.
- Factor of two in the
   exponent difference
   between the leading
   form factors for q<sub>T</sub> and
   jettiness
- \* removed by defining  $\epsilon_T = q_T^{\text{cut}}/Q$  and  $\epsilon_\tau = (\tau^{\text{cut}}/Q)^{\frac{1}{\sqrt{2}}}$

Campbell et al, 2202.07738



### Examples of NNLO results from MCFM

| Process                                        |                 | target          |                 | MCFM            |                 |                        |
|------------------------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|------------------------|
|                                                | $\sigma_{NLO*}$ | $\sigma_{NNLO}$ | $\delta_{NNLO}$ | $\sigma_{NNLO}$ | $\delta_{NNLO}$ |                        |
| $pp \rightarrow H$                             | 29.78(0)        | 39.93(3)        | 10.15(3)        | 39.91(5)        | 10.13(5)        | nb                     |
| $pp \rightarrow Z$                             | 56.41(0)        | 55.99(3)        | -0.42(3)        | 56.03(3)        | -0.38(3)        | $\mathbf{n}\mathbf{b}$ |
| $pp \rightarrow W^-$                           | 79.09(0)        | 78.33(8)        | -0.76(8)        | 78.41(6)        | -0.68(6)        | $\mathbf{n}\mathbf{b}$ |
| $pp \rightarrow W^+$                           | 106.2(0)        | 105.8(1)        | -0.4(1)         | 105.8(1)        | -0.4(1)         | nb                     |
| $pp \rightarrow \gamma \gamma$                 | 25.61(0)        | 40.28(30)       | 14.67(30)       | 40.19(20)       | 14.58(20)       | $\mathbf{p}\mathbf{b}$ |
| $pp \rightarrow e^- e^+ \gamma$                | 2194(0)         | 2316(5)         | 122(5)          | 2315(5)         | 121(5)          | $\mathbf{pb}$          |
| $pp \rightarrow e^- \bar{\nu_e} \gamma$        | 1902(0)         | 2256(15)        | 354(15)         | 2251(2)         | 349(2)          | $\mathbf{p}\mathbf{b}$ |
| $pp \rightarrow e^+ \nu_e \gamma$              | 2242(0)         | 2671(35)        | 429(35)         | 2675(2)         | 433(2)          | $\mathbf{pb}$          |
| $pp  ightarrow e^- \mu^- e^+ \mu^+$            | 17.29(0)        | 20.30(1)        | 3.01(1)         | 20.30(2)        | 3.01(2)         | fb                     |
| $pp \rightarrow e^- \mu^+ \nu_\mu \bar{\nu_e}$ | 243.7(1)        | 264.6(2)        | 20.9(3)         | 264.9(9)        | 21.2(8)         | fb                     |
| $pp \rightarrow e^- \mu^- e^+ \bar{\nu_{\mu}}$ | 23.94(1)        | 26.17(2)        | 2.23(3)         | 26.18(3)        | 2.24(2)         | fb                     |
| $pp \rightarrow e^- e^+ \mu^+ \nu_\mu$         | 34.62(1)        | 37.74(4)        | 3.12(5)         | 37.78(4)        | 3.16(3)         | fb                     |
| $pp \rightarrow ZH$                            | 780.0(4)        | 846.7(5)        | 66.7(6)         | 847.3(7)        | 67.3(6)         | fb                     |
| $pp \rightarrow W^{\pm}H$                      | 1446.5(7)       | 1476.1(7)       | 29.6(10)        | 1476.7(8)       | 30.2(4)         | fb                     |

Table 4. NLO results, computed using MCFM with NNLO PDFs (denoted  $\sigma_{NLO^*}$ ), total NNLO cross sections from vh@nnlo ( $W^{\pm}H$  and ZH only) and MATRIX (remaining processes, using the extrapolated result from Table 6 of Ref. [24]) and the target NNLO coefficients ( $\delta_{NNLO}$ , with  $\delta_{NNLO} = \sigma_{NNLO} - \sigma_{NLO^*}$ ). The result of the MCFM calculation (0-jettiness, fit result  $b_0$  from Eq. (3.9)) is shown in the final column.

## Resummed calculations at small-qT

### Transverse momentum resummation at small q<sub>T</sub>

- Transverse momentum resummation (à la DDT) is nowadays often performed in SCET language.
- \* Current state of the art has NNLO matched to N<sup>3</sup>LL
- \* Table shows the perturbative results needed at each nominal order,  $L \sim 1/\alpha_s$

| Approximation    | Nominal order   | Accuracy $\sim \alpha_s^n L_{\perp}^k$ | $\Gamma_{\mathrm{cusp}}$ | $\gamma_{ m coll.}$ | H      |
|------------------|-----------------|----------------------------------------|--------------------------|---------------------|--------|
| LL               | $\alpha_s^{-1}$ | $2n \ge k \ge n+1$                     | $\Gamma_0$               | tree                | tree   |
| NLL+LO           | $lpha_s^0$      | $2n \ge k \ge n$                       | $\Gamma_1,$              | $\gamma_0$          | tree   |
| $N^{2}LL+NLO$    | $lpha_s^1$      | $2n \ge k \ge \max(n-1,0)$             | $\Gamma_2$               | $\gamma_1$          | 1-loop |
| $N^{3}LL + NNLO$ | $lpha_s^2$      | $2n \ge k \ge \max(n-2,0)$             | $\Gamma_3$               | $\gamma_2$          | 2-loop |

Table adapted from Becher, Neubert and Pecjak

# Small- $q_T$ in SCET language



# Collinear Anomaly

- \* In SCET the beam functions and the soft function have light-cone divergences which are not regulated by dimensional regularization;
- \* These are not soft divergences; they are due to gluons at large rapidity;
- \* This requires an additional regulator, which can be removed at the end of the calculation;
- \* However a vestige of this regulator remains. The product of the two beam functions depends on the large scale of the problem, Q;
- \* This has been called the "collinear factorization anomaly" of SCET. Quantum effects modify a classical symmetry,  $p \rightarrow \lambda p$ ,  $\bar{p} = \bar{\lambda}\bar{p}$  with only  $\lambda\bar{\lambda} = 1$  unbroken.

Becher, Neubert, <u>1007.4005</u>

### SCET-based resummation: New information on the constants

 The more recent information on the constants in this formula will be used later on.

$$\beta(\alpha_s) = -2\alpha_s \sum_{n=0}^{\infty} \beta_n \left(\frac{\alpha_s}{4\pi}\right)^{n+1} = -0.12 - 0.015 - 0.0018 - 0.0012 - 0.000095$$
  

$$\Gamma_{\text{cusp}}^i(\alpha_s) = \sum_{n=0}^{\infty} \Gamma_n^i \left(\frac{\alpha_s}{4\pi}\right)^{n+1} = 0.133 + 0.023 + 0.0037 + 0.00058 + 0.00065$$
  

$$\gamma(\alpha_s) = \sum_{n=0}^{\infty} \gamma_n \left(\frac{\alpha_s}{4\pi}\right)^{n+1} = -0.1 + 0.00035 - 0.0019 + 0.0000029$$

\* Numerical values are in the MSbar scheme, with  $n_f = 5$ and  $\alpha_S = \pi/10$ 

## Vector boson pair production at small $q_T$

- Resummation effects are potentially more important for vector boson pair production at the same q<sub>T</sub> since Q is larger.
- Resummation at N<sup>3</sup>LL+NNLO becomes important below
   ~ 50 - 100 GeV.



Transverse momentum distribution of the ZZ pair at NNLO and NNNLL+NNLO using <u>CMS cuts</u> at  $\sqrt{s} = 13.6$  TeV

# Matching to fixed order



$$\frac{d\sigma^{N^{3}LL}}{dq_{T}} + \Delta\sigma$$
, where  $\Delta\sigma = \left[\frac{d\sigma^{NNLO}}{dq_{T}} - \frac{d\sigma^{N^{3}LL}}{dq_{T}}\right]_{\text{expanded to NNLC}}$ 

- Fixed order result
   recovered up to higher
   order terms, (which can
   induce unphysical
   behavior).
- \* Also problems at small  $q_{T'}$ introduce cutoff  $q_0$ ;
- So we need to implement a transition function, and choose its parameters on a case-by-case basis.



$$\frac{d\sigma^{N^{3}LL}}{dq_{T}}\Big|_{\text{matched to NNLO}} = t(x)\Big[\frac{d\sigma^{N^{3}LL}}{dq_{T}} + \Delta\sigma\Big|_{q_{t}>q_{0}}\Big] + (1 - t(x))\frac{d\sigma^{\text{NNLO}}}{dq_{T}}$$

### Example of $q_T$ resummation in four lepton events(ZZ)

\* ATLAS  $\sqrt{s} = 13$ TeV, 139fb<sup>-1</sup> data, <u>2103.01918</u>

| lepton cuts       | $q_T^{\ell_1} > 20 \text{GeV},  q_T^{\ell_2} > 10 \text{GeV},$ |
|-------------------|----------------------------------------------------------------|
|                   | $q_T^{\ell_{3,4}} > 5 \text{GeV},  q_T^e > 7 \text{GeV},$      |
|                   | $ \eta^{\mu}  < 2.7,  \eta^e  < 2.47$                          |
| lepton separation | $\Delta R(\ell,\ell') > 0.05$                                  |

- \*  $m_{4l}$  > 182 GeV to avoid Higgs region.
- \* Low  $q_T$  data, plotted as a function of  $m_{4l}$

\*\*

\* Agreement with data improves as  $m_{4l}$  increases.



Fiducial *q*<sub>T</sub> resummation of color singlet processes at N<sup>3</sup>LL+NNLO, Becher and Neumann, <u>2009.11437</u> Transverse momentum resummation at N<sup>3</sup>LL+NNLO for diboson processes, Campbell, RKE, Neumann and Seth, <u>2210.10724</u>

## Jet veto cross sections

- \* It is often important to impose a veto on jets, e.g. in W+Wproduction to veto against top pair background
- \* Although with  $p_T^{\text{veto}} \sim 25 \text{ GeV}$ , logarithms are not as large as in transverse momentum resummation which extends to smaller  $p_T$ .
- Resummation is sometimes necessary
- We perform resummation at N3LLp+NNLO, (p=partial, because the coefficient of the collinear anomaly coefficient is only known approximately.

For initial studies see, for example, Becher et al, <u>1307.0025</u>, Stewart et al, <u>1307.1808</u>

### New ingredients for jet-veto resummation

- Important step in making SCET results for almost complete
   N<sup>3</sup>LL available. For details of the missing piece, see later.
- Formalism applies to jets vetoed over all rapidity, (which is not the case experimentally).

|                                                                                                                                                                  | and the second second second second |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| Samuel Abreu <sup>6,0</sup> Jonathan P. Caunt <sup>6</sup> Pier Francesco Monni <sup>6</sup> Pobert Stafron <sup>6</sup>                                         | Soft function<br>Abreu et al,       |
| <sup>a</sup> CERN, Theoretical Physics Department, CH-1211 Geneva 23, Switzerland                                                                                | 2204.03987                          |
| <sup>b</sup> Higgs Centre for Theoretical Physics, School of Physics and Astronomy, The University of Isan<br>burgh, Edinburgh EH9 3FD, Scotland, United Kingdom | -                                   |
| <sup>c</sup> Department of Physics and Astronomy, University of Manchester, Manchester M13 9PL, Unite<br>Kingdom                                                 | ed                                  |
| <sup>d</sup> Department of Physics, Brookhaven National Laboratory, Upton, N.Y., 11973, U.S.A.                                                                   |                                     |
| E-mail: samuel.abreu@cern.ch, jonathan.gaunt@manchester.ac.uk,                                                                                                   |                                     |
| pier.monni@cern.ch, rszafron@bnl.gov                                                                                                                             |                                     |
|                                                                                                                                                                  |                                     |

The analytic two-loop soft function for leading-jet  $p_T$ 

PREPARED FOR SUBMISSION TO JHEP

CERN-TH-2022-118, ZU-TH 30/22

Quark and gluon two-loop beam functions for leading-jet  $p_T$  and slicing at NNLO

Beam functions Abreu et al, <u>2207.07037</u>

Samuel Abreu,<sup>a,b</sup> Jonathan R. Gaunt,<sup>c</sup> Pier Francesco Monni,<sup>a</sup> Luca Rottoli,<sup>d</sup> Robert Szafron<sup>e</sup>

<sup>a</sup>CERN, Theoretical Physics Department, CH-1211 Geneva 23, Switzerland

- <sup>b</sup>Higgs Centre for Theoretical Physics, School of Physics and Astronomy, The University of Edinburgh, Edinburgh EH9 SFD, Scotland, United Kingdom
- <sup>c</sup>Department of Physics and Astronomy, University of Manchester, Manchester M13 9PL, United Kingdom

<sup>d</sup>Department of Physics, University of Zürich, CH-8057 Zürich, Switzerland

<sup>c</sup>Department of Physics, Brookhaven National Laboratory, Upton, N.Y., 11973, U.S.A. E-mail: samuel.abreu@cern.ch, jonathan.gaunt@manchester.ac.uk,

pier.monni@cern.ch, luca.rottoli@physik.uzh.ch, rszafron@bnl.gov

### Jet veto cross section

- Jets defined using sequential recombination jet algorithms, (n=1(antik<sub>T</sub>), n=0(Cambridge-Aachen) n=-1(k<sub>T</sub>);
- \* Jet vetos also generate large logarithms, as codified in factorization formula; however logarithms tend to be smaller than in transverse momentum resummation, since  $p_T^{\text{veto}} \sim 25 \text{ GeV}$ ;
- Beam and Soft functions for leading jet *p<sub>T</sub>* recently calculated at twoloop order using an exponential regulator by Abreu et al.
- \* Jet veto cross sections are simpler than the *p<sub>T</sub>* resummed calculation (No b space).

$$d_{ij} = \min(p_{Ti}^n, p_{Tj}^n) \frac{\sqrt{\Delta y_{ij}^2 + \Delta \phi_{ij}^2}}{R}, \qquad d_{iB} = p_T^n$$



### Jet veto cross sections in a limited rapidity range

- \* Formula so far are valid for jet cross sections which are vetoed for all values of rapidity  $\eta_{cut}$
- \* Experimental analyses perform jet cuts for  $\eta < \eta_{cut}$
- To apply the resummed theory we need to be in a region where (see 1810.12911).



#### Figure taken from <u>1810.12911</u>

Strategy: determination where resummation is potentially important, before considering limited rapidity range resummation

# Effects of rapidity cuts at fixed order

- The usual jet veto resummation imposes no cut on the jet rapidity, unlike the experimental analysis.
- \* To apply this theory we need  $\eta_{\rm cut} \gg \ln(Q/p_T^{\rm veto})$
- \* We can address the potential impact by looking at fixed order.
- وہ More important for Higgs <sup>off</sup> (and WW and ZZ) than for Z.

| Process    | Ref. | $y_{ m cut}$ |
|------------|------|--------------|
| Higgs      | —    | no study     |
| Z (CMS)    | [38] | 2.4          |
| W (ATLAS)  | [43] | 4.4          |
| WW (CMS)   | [39] | 4.5          |
| WZ (ATLAS) | [44] | 4.5          |
| WZ (CMS)   | [45] | 2.5          |
| ZZ (CMS)   | —    | no study     |
|            |      |              |



# Phenomenological results in N<sup>3</sup>LL<sub>p</sub>

N<sup>3</sup>LL<sub>p</sub> $\equiv$ N<sup>3</sup>LL with limited information on higher order collinear anomaly coefficient,  $d_3^{veto}$ 

### Comparison of NNLO, N<sup>3</sup>LL<sub>p</sub> and N<sup>3</sup>LL<sub>p</sub>+NNLO predictions for Higgs production.

- Shown are the ratios of NNLO and N<sup>3</sup>LL<sub>P</sub> to our best prediction.
- \* For pTveto < 30 GeV NNLO and N<sup>3</sup>LL<sub>p</sub> almost overlap, but the combined prediction has the smallest error



# Jet veto in $W^+W^-$ production

- \* Evidence that neither NNLO nor N<sup>3</sup>LL alone is sufficient, especially around  $p_T^{\text{veto}} = 25 - 30 \text{GeV}$ , R=0.5
- R dependence is modest (zero at NLO!)
- \*  $|\eta_{cut}| < 4.5$ , so we can argue that  $(\ln(Q/p_T^{veto}) = 1.3 - 2.2) \ll 4.5$



## Comparison to data

The data lies
 between the
 N<sup>3</sup>LLp and the
 N<sup>3</sup>LLp+NNLO
 and is marginally
 inconsistent with
 the NNLO alone.



# Epilogue

- With exception of heavy quark and jet production, the most important high energy processes studied at colliders are really the production of massive bosons, (W,Z/γ\*, H, WW, WZ, ZZ, Wγ etc., sometimes in association with jets) which fall under the rubric of Drell-Yan/Lepton pair/Color singlet production.
- \* The precision QCD community is lucky. Although not necessarily designed as such, the LHC is *de facto* a precision QCD machine.
- Our understanding of these processes, much more sophisticated than 45 years ago, builds on the simple results for lepton pair production.

# RGE's for SCET quantities

\* 
$$\frac{d}{d\ln\mu}F_{qq}(L_{\perp},\mu) = 2\Gamma_{\text{cusp}}^F$$

\* 
$$\frac{d}{d\ln\mu}h^F(L_{\perp},\mu) = 2\Gamma^F_{\rm cusp}(\mu)L_{\perp} - 2\gamma^q(\mu)$$

\* 
$$\frac{d}{d \ln \mu} C_V(-M^2 \mu) = \left[ \Gamma_{\text{cusp}}^F(\mu) \ln \frac{-M^2}{\mu^2} + 2\gamma^q(\mu) \right] C_V(-M^2 \mu)$$

### Refactorization



\* In terms of reduced beam function jet vetoed cross section is now given by,

$$* \frac{d^2 \sigma(p_T^{veto})}{dQ^2 dy} = \frac{d\sigma_0}{dQ^2} \bar{H}(Q,\mu,p_T^{veto}) \bar{B}_q(\xi_1,p_T^{veto},R,\mu) \bar{B}_{\bar{q}}(\xi_2,p_T^{veto},R,\mu) + \mathcal{O}(p_T^{veto}/Q) \,,$$

\* The two pieces are separately RG invariant:  $\frac{d}{d\mu}\bar{H}(Q,\mu,p_T^{veto}) = \mathcal{O}(\alpha_s^3)$ and  $\frac{d}{d\mu}\bar{B}_q(\xi_1,p_T^{veto},R,\mu)\bar{B}_{\bar{q}}(\xi_2,p_T^{veto},R,\mu) = \mathcal{O}(\alpha_s^3)$ 

# Jet veto in Z production

- \* At  $p_T^{\text{veto}} \sim 25 30$  all calculations agree within errors.
- However error estimates differ between NNLO and N<sup>3</sup>LL +NNLO.
- \* For  $p_T^{\text{veto}} = 30 \text{ GeV}$ ,  $(\ln(Q/p_T^{\text{veto}} = 1.1) \ll (\eta_{\text{cut}} = 2.4)$
- \* As expected at (unphysically) small  $p_T^{\text{veto}}$ resummed calculations show deviations from fixed order.
- \* Jet veto resummation probably not so necessary at  $p_T^{veto} \sim 30 \text{ GeV}$ , for W or Z production.

