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QCD: a perfect quantum field theory

• Becomes weakly coupled at short 
distances: Asymptotic Freedom            
Gross & Wilczek; Politzer

• It is the part of the Standard Model that 
can stand alone: it need not be 
embedded in a bigger theory. 

• Admits a lattice definition that matches 
onto the Asymptotic Freedom while 
allowing the theory to be defined non-
perturbatively at long distances. 



The Confinement Problem

• Why are colored quarks and gluons not 
observed as asymptotic states?

• Confined into colorless hadrons.
• On very short time scales, the propagation of 

colored objects has been observed in a myriad 
of high-energy collider events.

• Eventually, they hadronize.
• Only colorless bound states                              

are recorded by the detectors.



Clay Millenium Problems

Yang-Mills and Mass Gap 
Experiment and computer simulations suggest 
the existence of a "mass gap" in the solution to 
the quantum versions of the Yang-Mills 
equations. But no proof of this property is 
known.
Status: Unsolved



Simons Collaboration on 
Confinement and QCD Strings

Motivational quote:
“It’s about unleashing the strong force...”

From the “Oppenheimer” movie 



•A always
•B be
•C collaborating 



Euclidean Lattice SU(N) Theory
• The gauge field kinetic term is encoded in 

the plaquette terms.

• In the strong coupling expansion where 
these terms are treated as perturbations, 
the Area Law of the Wilson loop is 
obvious.

• To obtain the continuum limit, one needs 
to interpolate to the weak coupling limit 
on lattice scale



Dimensional Transmutation
• The beta function of QCD is

• We need to send the lattice spacing a0 -> 0 (and the 
number of lattice points to infinity) keeping the torus size 
fixed. And simultaneously send g0 in the lattice action to 
zero.

• The QCD scale is exponentially small compared to inverse 
lattice spacing

• The bound state masses and square root of string tension 
should be pure numbers times this quantity.



• This is strongly suggested by Monte Carlo 
simulations starting with those of Wilson; 
Creutz; … in the mid-70s.

• For example, the quark-antiquark potential 
looks asymptotically linear.

• But numerically it is 
hard to take the strict
continuum limit.

• Can the asymptotic linearity be proven?



Confining Flux Tube
• At distances much smaller 

than 1 fm, the quark-
antiquark potential is nearly 
Coulombic.

• At larger distances the 
potential should be linear 
(Wilson) due to formation of 
confining flux tubes. Their 
dynamics is described by the 
Nambu-Goto area action with 
corrections.



Large N Yang-Mills Theories
• Connection of gauge theory with string theory 

is strengthened in `t Hooft’s generalization 
from 3 colors (SU(3) gauge group) to N colors 
(SU(N) gauge group).

• Make N large, while keeping the `t Hooft
coupling fixed:

• The probability of snapping a flux tube by 
quark-antiquark creation (meson decay) is 
1/N. The string coupling is 1/N. 



D-Branes vs. Geometry
• Dirichlet branes led string theory back to gauge 

theory in the mid-90’s. Polchinski

• A stack of N Dirichlet 3-branes realizes N=4 
supersymmetric SU(N) gauge theory in 4 
dimensions. It also creates a  curved background 
of 10-d theory of closed superstrings

which for small r approaches 
whose radius is related to the coupling by



The AdS/CFT Duality
Maldacena; Gubser, IRK, Polyakov; Witten

• Relates conformal gauge theory in 4 dimensions to 
string theory on 5-d Anti-de Sitter space times a 5-d 
compact space. For the N=4 SYM theory this 
compact space is a 5-d sphere.

• The geometrical symmetry of the AdS5 space realizes 
the conformal symmetry of the gauge theory.

• The AdS space-time is a generalized           
hyperboloid. It has negative curvature.

• Over 25 years of vigorous research. 



• When a gauge theory is strongly coupled, the radius 
of curvature of the dual AdS5 and of the 5-d compact 
space becomes large:

• String theory in such a weakly curved background 
can be studied in the effective (super)-gravity 
approximation, which allows for a host of explicit 
calculations. Corrections to it proceed in powers of 

• Feynman graphs instead develop a weak coupling 
expansion in powers of λ. At weak coupling the dual 
string theory becomes difficult. 



The quark anti-quark potential
• The z-direction of AdS is dual to the 

energy scale of the gauge theory: 
small z is the UV; large z is the IR. 

• The quark and anti-quark are placed 
at the boundary of Anti-de Sitter 
space (z=0), but the string connecting 
them bends into the interior (z>0). 
Due to the scaling symmetry of the 
AdS space, this gives Coulomb 
potential Maldacena; Rey, Yee



Conebrane Dualities
• To reduce the number of supersymmetries in 

AdS/CFT, we may place the stack of N D3-
branes at the tip of a 6-d Ricci-flat cone X 
whose base is a 5-d Einstein space Y: 

• Taking the near-horizon limit of the 
background created by the N D3-branes, we 
find the space  AdS5 x Y, with N units of RR 5-
form flux, whose radius is given by

• This type IIB background is conjectured to be 
dual to the IR limit of the gauge theory on N 
D3-branes at the tip of the cone X. 



D3-branes on the Conifold
• The conifold is a Calabi-Yau 3-fold cone X 

described by the constraint           on 4 
complex variables.

• Its base Y is a coset T1,1 which has symmetry 
SU(2)AxSU(2)B that rotates the z’s, and also 
U(1)R :

• The Einstein metric on T1,1  is

where
• The topology of T1,1 is S2 x S3.



• The N=1 SCFT on N D3-branes at the apex of the 
conifold has gauge group SU(N)xSU(N) coupled to 
bifundamental chiral superfields A1, A2, in            ,  
and B1, B2 in           . IRK, Witten

• The R-charge of each fields is ½. This insures U(1)R
anomaly cancellation. 

• The unique SU(2)AxSU(2)B invariant, exactly marginal 
quartic superpotential is added:

• This gauge theory also has a baryonic U(1) 
symmetry under which Ak -> eia Ak; Bl -> e-ia Bl .

• It is dual to type IIB string theory on AdS5 x T1,1



Confinement and Warped Throat 
• To break conformal invariance, 

change the gauge theory: add to the 
N D3-branes M D5-branes wrapped 
over the sphere at the tip of the 
conifold. Gives SU(N+M) x SU(N).

• The 10-d geometry dual to the gauge 
theory on these branes is the warped 
deformed conifold (IRK, Strassler)

• is the metric of the deformed 
conifold, a Calabi-Yau space defined 
by the following constraint on 4 
complex variables: 



• Comparison of warp factors in the AdS, 
warped conifold, and warped deformed 
conifold cases. The warped conifold solution, 
which has a naked singularity (IRK, Tseytlin) 
should be interpreted as asymptotic (UV) 
approximation to the correct solution.



IR Behavior of the Conifold Cascade

• Here the dynamical deformation of the conifold
renders the solution smooth, and explains the IR 
dynamics of the gauge theory.

• Dimensional transmutation in the IR from the 
logarithms in the UV. . The dynamically generated 
confinement scale is

• The pattern of R-symmetry breaking is the same as in 
the SU(M) SYM theory: Z2M -> Z2

• Yet, the IR gauge theory is somewhat more 
complicated. 



• In the IR the gauge theory is SU(2M) x SU(M). The 
SU(2M) gauge group effectively has Nf=Nc. 

• The baryon and anti-baryon operators     

acquire expectation values and break the U(1) 
symmetry under which Ak -> eia Ak; Bl -> e-ia Bl.  
Hence, we observe confinement without a mass gap: 
due to U(1)baryon symmetry breaking there is a 
Goldstone boson and its massless scalar 
superpartner. 

• Fundamental string at the bottom of conifold is dual 
to the chromoelectric flux tube.

• Confinement without a mass gap!



• The quark anti-quark potential is 
qualitatively similar to that found 
in numerical simulations of QCD
(graph shows lattice QCD results 
by G. Bali et al with r0 ~ 0.5 fm). 

• The dual gravity provides a 
`hyperbolic cow’ approximation, 
i.e. a toy model, for QCD.



Schwinger Model (1962)

• Quantum Electrodynamics in 1+1 dimensions 
coupled to a charged fermion of mass m. 
Admits a theta-angle Coleman, Jackiw, Susskind (1975)

• Exactly solvable for m=0 where it reduces to 
the free Schwinger boson of mass

• It is the tightly bound state of electron and 
positron in the linear electrostatic potential.



Lattice Hamiltonian Approach
• Using the staggered fermions Kogut, Susskind, Banks 

(1975) 

• The Gauss Law Constraints Hamer, Zheng, Oitmaa (1997)



• The lattice approach revisited with the 
surprising result Dempsey, IRK, Pufu, Zan, arXiv: 2206.05308

• At m=0 the improved Hamiltonian is 
preserved by a “discrete chiral symmetry:” 
shift by one lattice unit accompanied by

• The mass shift greatly improves the 
extrapolation of strong coupling expansions 



• In earlier work the massless Schwinger model 
was assumed to be described by µ=0, and 
extrapolation to large x did not seem to give good 
results.

• We instead set                 to obtain

• Pade extrapolating to weak coupling we find

• This reproduces the mass of Schwinger boson 
with error < 0.1 %.   



Two-Flavor Schwinger Model

• For m=0 it is a conformal field theory coupled 
to a massive field. The CFT is a massless 
compact boson at the self-dual radius where it 
has SU(2) x SU(2) symmetry.

• Charge conjugation symmetry

• Is preserved by the lagrangian for theta=0 or 
pi. At            it can be broken spontaneously. 
Reminiscent of spontaneous CP breaking in 
QCD. Dashen; Creutz; Gaiotto, Kapustin, Komargodski, Seiberg



Phase Diagram at Zero Temperature
• Our proposal Dempsey, IRK, Pufu, Soegaard, Zan, arXiv: 2305.04437

• In particular, C is broken along the SU(2) invariant 
line                          where dimensional transmutation 
takes place for small m/g.



Analogy in 4D

• An analogous phase diagram of 4D QCD as a 
function of up and down quark masses 
appeared in Creutz’s talk yesterday. See his 
papers and the original work by Dashen.

• There the shaded region is where the CP 
violation occurs. 



Bosonized 2-flavor model

• Form two combinations of scalar fields

• Integrating out the gauge field, makes the plus 
field massive. There is also a massless minus field.



• For generic theta, the effective Lagrangian is

• The mass term is a relevant operator of 
dimension ½ which induces RG flow to a 
theory with mass gap 

• This vanishes for         . Could this theory be 
gapless for small m?! Georgi

• We don’t think so, but the energy gap is non-
perturbatively small. 



• When

• This was derived by Coleman in 1976, but he 
did not study the logarithmic RG flow of the 
two nearly marginal operators. 

• This is the Berezinskii-Kosterlitz-Thouless flow 
in the sine-Gordon model 



• The beta functions are

• The SU(2) invariant flow is along

• Starting with the bare values



• This exponentially small scale is analogous to 
the appearance of ΛQCD

• Numerical evidence in support of the 
exponentially small gap and our proposed 
phase diagram is provided by the 
Entanglement Entropy



Lattice Hamiltonian calculation

• Analogously to the 1-flavor case, we adopt

• The mass shift is
• Very important in the 2-flavor case. For m=0 a 

discrete chiral symmetry is preserved. It is the 
lattice translation by one site.



• For m<<g, the low-energy dynamics is 
governed by the sine-Gordon with 

• Four light particles with masses 
• An SU(2) triplet of pseudoscalar pions

followed by a singlet sigma meson.
• The ratio of masses is          Coleman

• A recent Hamiltonian calculation including the 
mass shift reproduces this ratio well. Itou, 
Matsumoto, Tanizaki; arXiv:2307.16655



Discussion

• For              and m<<g, the low-lying bound states 
have exponentially small masses compared to the 
UV scale g.

• Calculating them numerically is an interesting 
challenge. 

• The lattice Hamiltonian approach with Tensor 
Network methods gives precision results in 1+1 
dimensions.

• Worth revisiting also in 2+1 and 3+1.
• Connection with quantum simulation and 

computation.
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