Effective Field Theories of QCD

lain Stewart

50 Years of Quantum Chromodynamics, UCLA

September 13, 2023

Massachusetts Institute of Technology

QCD is the richest known QFT

$$\mathcal{L}_{\text{QCD}} = -\frac{1}{4} G^a_{\mu\nu} G^{\mu\nu a} + \bar{\psi}_i (i \not\!\!D - m_i) \psi_i$$

Responsible for a plethora of interesting states, phenomena, and fields of physics

QCD is the richest known QFT

$$\mathcal{L}_{\text{QCD}} = -\frac{1}{4} G^a_{\mu\nu} G^{\mu\nu a} + \bar{\psi}_i (i \not\!\!D - m_i) \psi_i$$

Responsible for a plethora of interesting states, phenomena, and fields of physics

Nuclei Neutron stars

plasma

Quark-gluon

jet substructure

- Asymptotic Freedom & Politzer
- Confinement
- Chiral Symmetry breaking, pions
- QCD phases and phase transitions
- Non-relativistic confined quarks $Q\overline{Q}$
- Exotic bound states, X,T,Z ...
 - large Nc

QCD is the richest known QFT

$$\mathcal{L}_{\text{QCD}} = -\frac{1}{4} G^a_{\mu\nu} G^{\mu\nu a} + \bar{\psi}_i (i \not\!\!D - m_i) \psi_i$$

Nuclei

Responsible for a plethora of interesting states, phenomena, and fields of physics

Neutron stars

Quark-gluon plasma

jet <mark>substructure</mark>

- Asymptotic Freedom
- Confinement
- Chiral Symmetry breaking, pions
- QCD phases and phase transitions
- Non-relativistic confined quarks QQ
- Exotic bound states, X,T,Z ...
 - large Nc

- Gross, Wilczek, & Politzer
- Collider physics
- Factorization & Resummation
- Gluon saturation
- Multiloop QFT, Amplitudes
- Flavor physics
- Lattice QCD
- Models

$$\mathcal{L} = \mathcal{L}^{(0)} + \mathcal{L}^{(1)} + \mathcal{L}^{(2)} + \mathcal{O}(\epsilon^3) \qquad \epsilon \ll 1$$

Goals:

- Find simplest framework that captures the essential physics $\mathscr{L}^{(0)}$, while identifying suitable expansion parameters ϵ
- Focus on IR dynamics, simplify the description of UV physics
- Organize in a manner that can be corrected to arbitrary precision

Key Idea:

 Decoupling. To describe physics at an IR scale m we do not need to know the detailed dynamics of what is going with heavy or off shell particles

Ken Wilson (Nobel Prize '82)

 $\Lambda^2 \gg m^2$

 $\mathscr{L} = \mathscr{L}^{(0)} + \mathscr{L}^{(1)} + \mathscr{L}^{(2)} + \mathscr{O}(\epsilon^3)$

 $\epsilon \ll 1$

Method: Determine relevant

- degrees of freedom what fields?
- symmetries what interactions?
- expansion parameters power counting

Why?

- Simplifies calculations, eliminates baggage of more general theory
- Makes approximations explicit. Forced to consider uncertainties.

Modern attitude: every QFT is an EFT.

"a new and cooler view", Weinberg

my free EFT online course: https://courses.mitxonline.mit.edu/learn/course/course-v1:MITxT+8.EFTx+3T2022/home

 $\mathscr{L} = \mathscr{L}^{(0)} + \mathscr{L}^{(1)} + \mathscr{L}^{(2)} + \mathscr{O}(\epsilon^3)$

 $\epsilon \ll 1$

Concepts:

- Renormalization order by order in ϵ
- Field Freedom (field redefinitions)
- Top-Down EFT versus Bottom-Up EFT
- Matching and Decoupling
- Power counting equivalent to operator dimension, or more general
- Renormalization Group Evolution
- Universality of short and long distance parameters (functions)

 $\mathscr{L} = \mathscr{L}^{(0)} + \mathscr{L}^{(1)} + \mathscr{L}^{(2)} + \mathscr{O}(\epsilon^3)$

Concepts:

- Renormalization order by order in ϵ
- Field Freedom (field redefinitions)
- Top-Down EFT versus Bottom-Up EFT
- Matching and Decoupling

- QCD very often in the vanguard for formulating these concepts
- Power counting equivalent to operator dimension, or more general
- Renormalization Group Evolution
- Universality of short and long distance parameters (functions)

 $\epsilon \ll 1$

9

Effective Field Theory

$$\mathcal{L} = \mathcal{L}^{(0)} + \mathcal{L}^{(1)} + \mathcal{L}^{(2)} + \mathcal{O}(\epsilon^3)$$

Concepts:

- Renormalization order by order in ϵ
- Field Freedom (field redefinitions)
- Top-Down EFT versus Bottom-Up EFT
- Matching and Decoupling
- Power counting equivalent to operator dimension, or more general
- Renormalization Group Evolution
- Universality of short and long distance parameters (functions)

Understood early on for tree level analyses Also true with loops,

spont. broken theories, etc. H. Georgi "Onshell EFT", `91 C.Arzt, `93 also CCWZ `69

 $\epsilon \ll 1$

- Power counting equivalent to operator dimension, or more general
- Renormalization Group Evolution
- Universality of short and long distance parameters (functions)

 $\mathcal{L}=\mathcal{L}^{(0)}+\mathcal{L}^{(1)}+\mathcal{L}^{(2)}+\mathcal{O}(\epsilon^3)$

Concepts:

- Renormalization order by order in ϵ
- Field Freedom (field redefinitions)
- Top-Down EFT versus Bottom-Up EFT
- Matching and Decoupling

Effort to carry out higher order calculations drove field to mass independent schemes (like \overline{MS})

Decouple by hand with "matching" relations

- Power counting equivalent to operator dimension, or more general
- Renormalization Group Evolution
- Universality of short and long distance parameters (functions)

$\epsilon \ll 1$

$$\mathcal{L} = \mathcal{L}^{(0)} + \mathcal{L}^{(1)} + \mathcal{L}^{(2)} + \mathcal{O}(\epsilon^3)$$

Concepts:

- Renormalization order by order in ϵ
- Field Freedom (field redefinitions)
- Top-Down EFT versus Bottom-Up EFT
- Matching and Decoupling
- Power counting equivalent to operator dimension, or more general
- Renormalization Group Evolution
- Universality of short and long distance parameters (functions)

p.c. = Op. mass dim. needs coordinate homogeneity (Lorentz invariance)

 $\epsilon \ll 1$

Many examples where p.c. more involved (nonrelativistic, hard collisions, ...)

$$\mathcal{L} = \mathcal{L}^{(0)} + \mathcal{L}^{(1)} + \mathcal{L}^{(2)} + \mathcal{O}(\epsilon^3)$$

Concepts:

- Renormalization order by order in ϵ
- Field Freedom (field redefinitions)
- Top-Down EFT versus Bottom-Up EFT
- Matching and Decoupling
- Power counting equivalent to operator dimension, or more general
- Renormalization Group Evolution
- Universality of short and long distance parameters (functions)

 $\epsilon \ll 1$

* $\mathscr{L}^{(0)} = \sum_{i} C_{i}(\mu, \Lambda) \mathcal{O}_{i}(\mu, m)$ eg. crucial for Electroweak H

 $\star \alpha_s^{(k)}(\mu)$ for k light flavors

$$\star \ \alpha_s \ln \frac{\Lambda}{m} \ , \ \ \alpha_s \ln^2 \frac{\Lambda}{m}$$

 $\mathcal{L} = \mathcal{L}^{(0)} + \mathcal{L}^{(1)} + \mathcal{L}^{(2)} + \mathcal{O}(\epsilon^3)$

Concepts:

- Renormalization order by order in ϵ
- Field Freedom (field redefinitions)
- Top-Down EFT versus Bottom-Up EFT
- Matching and Decoupling
- Power counting equivalent to operator dimension, or more general
- Renormalization Group Evolution
- Universality of short and long distance parameters (functions)

 $\epsilon \ll 1$

Reduce, Reuse & Recycle:

short distance couplings C_i

long distance m.elts. $\langle \mathcal{O}_i \rangle$

could be numbers or functions

 $\mathscr{L} = \mathscr{L}^{(0)} + \mathscr{L}^{(1)} + \mathscr{L}^{(2)} + \mathscr{O}(\epsilon^3)$

 $\epsilon \ll 1$

Concepts:

- Renormalization order by order in ϵ
- Field Freedom (field redefinitions)
- Top-Down EFT versus Bottom-Up EFT
- Matching and Decoupling
- Power counting equivalent to operator dimension, or more general
- Renormalization Group Evolution
- Universality of short and long distance parameters (functions)
- Systematic symmetry breaking. Make emergent symmetries explicit.

Effective Field Theories of QCD

Chiral Perturbation Theory for Nuclear Forces

ChPT-
$$\pi$$
 $SU(2)_L \times SU(2)_R \to SU(2)_V$ $\langle \bar{\psi}\psi \rangle \neq 0$ $\frac{p^2}{\Lambda_\chi^2}, \frac{m_\pi^2}{\Lambda_\chi^2} \ll 1$
Weinberg
 $\mathscr{L}_\chi = \frac{f^2}{8} \text{tr} \left[\partial^\mu \Sigma^\dagger \partial_\mu \Sigma \right] + v_0 \text{tr} \left[m_q^\dagger \Sigma + m_q \Sigma^\dagger \right] + \mathcal{O}(p^4)$ Gasser & Leutwyler `85
Derivatively coupled
Nonlinear (fluctuations on vacuum manifold), $\Sigma = \exp\left(\frac{2i}{f}\frac{\pi \cdot \vec{\tau}}{\sqrt{2}}\right)$
Naive dimensional analysis, count 4π s, $\Lambda_\chi = 4\pi f$ (Georgi & Manohar `84)
Chiral loops predict non-analytic dependence on quark masses, $\ln m_q$
Pheno: multi- π processes, predict $\pi\pi$ scattering lengths,
calculate pion effects on e.m. & weak currents

ChPT-
$$\pi$$
 $SU(2)_L \times SU(2)_R \to SU(2)_V$ $\langle \bar{\psi}\psi \rangle \neq 0$ $\frac{p^2}{\Lambda_\chi^2}, \frac{m_\pi^2}{\Lambda_\chi^2} \ll 1$
 $\mathscr{L}_\chi = \frac{f^2}{8} \text{tr} \left[\partial^\mu \Sigma^\dagger \partial_\mu \Sigma \right] + v_0 \text{tr} \left[m_q^\dagger \Sigma + m_q \Sigma^\dagger \right] + \mathcal{O}(p^4)$ Gasser & Leutwyler `85
Derivatively coupled
Nonlinear (fluctuations on vacuum manifold), $\Sigma = \exp\left(\frac{2i \ \pi \cdot \vec{\tau}}{f \ \sqrt{2}}\right)$
Naive dimensional analysis, count 4π s (Georgi & Manohar `84)
Chiral loops predict non-analytic dependence on quark masses, $\ln m_q$
Pheno: multi- π processes, predict $\pi\pi$ scattering lengths,
calculate pion effects on e.m. & weak currents
ChPT-N π One nucleon with pions $\mathscr{L} = \mathscr{L}_{N\pi} + \mathscr{L}_{\chi}$ Gasser, Sainio, Svarc `88
Jenkins, Manohar `91
...

QCD effects for Weak Interactions

 $B \rightarrow X_s \gamma$

Importance of RGE for electroweak-H Wilson coefficients

$$m_b \ll m_{W,Z,t,H}$$

Calculated up to NNLO, with anomalous dimensions up to 4-loops

Misiak, Asatrian, Bieri, Czakon, Czarnecki, Ewerth, Ferroglia, Gambino, Gorbahn, Greub, Haish, Hovhannisyan, Hurth, Mitov, Poghosyan, Slusarczyk, Steinhauser `06

Misiak, Asatrian, Boughezal et.al. (update in `15)

Heavy Quark Effective Theory

HQET
$$k^{\mu} \sim \Lambda_{QCD} \ll m_Q = m_{b,c}$$

 $\mathscr{L}_{HQET} = \bar{h}_v iv \cdot D h_v + \mathscr{L}_{QCD}^{q,g} + \mathcal{O}\left(\frac{1}{m_Q}\right)$
 v^{μ} velocity:
 $p_Q^{\mu} = m_Q v^{\mu} + k^{\mu}$
U(4) Heavy Quark Spin-Flavor symmetry (b & c)
Pheno:
• $B \rightarrow D^{(*)} \ell \bar{\nu}$ single leading "Isgur-Wise" form factor
 $no \ \mathcal{O}(1/m_Q)$ corrections at zero-recoil

dedicated program for form factors on lattice

$$\rightarrow V_{cb}$$

HQET
$$k^{\mu} \sim \Lambda_{QCD} \ll m_Q = m_{b,c}$$

 $\mathscr{L}_{HQET} = \bar{h}_v iv \cdot D h_v + \mathscr{L}_{QCD}^{q,g} + \mathcal{O}\left(\frac{1}{m_Q}\right)$
 v^{μ} velocity:
 $p_Q^{\mu} = m_Q v^{\mu} + k^{\mu}$
U(4) Heavy Quark Spin-Flavor symmetry (b & c)
Pheno:
• universal non-pert. corrections: kinetic energy $\langle Q_v | \bar{h}_v D_T^2 h_v | Q_v \rangle$

and chromomagnetic term $\mu_G^2 = -\langle Q_v | \bar{h}_v g \sigma_{\mu\nu} G^{\mu\nu} h_v | Q_v \rangle / 3$

$$r = \frac{m_{B^*}^2 - m_B^2}{m_{D^*}^2 - m_D^2} = \frac{C_G(m_b, \mu)}{C_G(m_c, \mu)} + \frac{\sum_p}{\mu_G^2} \left(\frac{1}{m_b} - \frac{1}{m_c}\right) + \dots$$
28

Soft Collinear Effective Theory

Soft Collinear Effective Theory

"EFT for Collider Physics"

EFT for hard interactions which produce energetic (collinear) and soft particles.

Bauer, Fleming, Luke, Pirjol, IS `00, `01

Higgs production, DY, ...

Jet Physics

Jet Substructure

B-Decays and CP violation

Quarkonia Production

TMDs / Nuclear Physics

Higher order Resummation Infrared Structure of Gauge Theory Subtractions for Fixed Order QCD

Gauge theory at Subleading Power

High Energy Limit / Regge phenomena

Perturbative Factorization: for multi-scale problems with fixed # jets

Perturbative Factorization: for multi-scale problems with fixed # jets

Perturbative Universality

- H determined by hard process, independent of jet radius, etc.
- universal • J_i , $\mathcal{I}_{a,b}$ splitting and virtual effects for parton i, collinear encode jet dynamics, independent of H dynamics
- Soft radiation, all partons contribute, eikonal Feynman rules universal soft dynamics

Scale dependence \leftrightarrow RGE sums up logarithms $\log\left(\frac{\mu_H}{\mu_C}\right),...$

E

Perturbative QCD Results:

fixed order:

$$\hat{\sigma} = \sigma_0 \left[1 + \alpha_s + \alpha_s^2 + \dots \right]$$

= LO + NLO + NNLO + ...

SCET anomalous dimensions:

resummation of large (double) logs $L = \log(...)$

$$\log\left(\frac{p_T}{Q}\right)$$
, ...

 $\log\left(\frac{\Lambda_{\rm QCD}}{\Omega}\right)$

$$\ln \hat{\sigma}(y) = \sum_{k} L(\alpha_{s}L)^{k} + \sum_{k} (\alpha_{s}L)^{k} + \sum_{k} \alpha_{s}(\alpha_{s}L)^{k} + \sum_{k} \alpha_{s}^{2}(\alpha_{s}L)^{k} + \dots$$
$$= LL + NLL + NLL + N^{3}LL + \dots$$

•

Soft Collinear Effective Theory

dominant contributions from isolated regions of momentum space

Key Simplifying Principle is to Exploit the Hierarchy of Scales E μ_H μ_J μ_p ℓ^+ SCET μ_B J_2 μ_J, μ_B J_3 μ_S μ_S Wilson coefficients + operators at μ_H $\mathcal{L} = \sum_{i} C_{i} O_{i}$ μ_p $d\sigma = \int (\text{phase space}) \left| \sum_{i} C_{i} \langle O_{i} \rangle \right|^{2} = \sum_{j} H_{j} \otimes (\text{longer distance dynamics})_{j}$ 37

Hard-collinear factorization

Ε SCET

Operators are built of building block fields:

$$\mathcal{O} = (\mathcal{B}_{n_a\perp})(\mathcal{B}_{n_b\perp})(\mathcal{B}_{n_1\perp})(\bar{\chi}_{n_2})(\chi_{n_3})$$

"quark jet" $\chi_n = (W_n^{\dagger} \xi_n)$ "gluon jet" $\mathcal{B}_{n\perp}^{\mu} = \frac{1}{g} [W_n^{\dagger} i D_{\perp}^{\mu} W_n]$ or $\mathcal{B}_{n\perp}^{A\mu} = \frac{1}{g} \frac{1}{\bar{n} \cdot \partial_n} \bar{n}_{\nu} G_n^{B\nu\mu} \mathcal{W}_n^{BA}$

SCET Lagrangian

Dynamics of infrared modes

(typically once)

Hard Scattering Glauber gluon exchange operators (only factorization violating term)

•
$$\mathcal{L}_{hard}^{(0)} = \sum_{i} C_i^{(0)} \mathcal{O}_i^{(0)}$$

Leading operators for a given process

•
$$\mathcal{L}_{dyn}^{(0)} = \sum_{n} \mathcal{L}_{n}^{(0)} + \mathcal{L}_{soft}^{(0)}$$

Collinear and Soft dynamics (Factorizes after soft-collinear decoupling)

Often the leading power physics Factorizes. $\mathcal{F}_{\mathcal{G}}^{(\emptyset)}$

Copies of QCD* give dynamics in different sectors, with hard operators providing the only connection between sectors

Examples:

δ. Dijet production $e^+e^- \rightarrow 2$ jets n-collinear n-collinear iet jet thrust $\tau \ll 1$ usoft particles $\frac{d\sigma}{d\tau} = \sigma_0 H(Q,\mu) Q \int d\ell \, d\ell' \, J_T (Q^2 \tau - Q\ell,\mu) S_T (\ell - \ell',\mu) F(\ell')$ jet functions perturbative non-perturbative hard soft function (combined) soft function function $d\sigma^{
m nonsingular}$ i+d aunonsingular 10 singular total 1 0.1singular 0.01 nonsingular subt. subt. 10^{-3} 10 0.3 0.1 0.20.4 0.50.0 $\tau = 1 - T$

Cross check with C-parameter fit (also confirms universality of Ω_1) Hoang et.al 15

Recent cross check by predicting EEC without a fit (agree with OPAL data) Schindler, IS, Sun 23

The Higgs p_T Spectrum and Total Cross Section with Fiducial Cuts at N³LL'+N³LO

Billis, Dehnadi, Ebert, Michel, Tackmann [2102.08039]

Consider $gg
ightarrow H
ightarrow \gamma\gamma$ with ATLAS fiducial cuts:

$$p_T^{\gamma 1} \ge 0.35 \, m_H \,, \quad p_T^{\gamma 2} \ge 0.25 \, m_H \,, \quad |\eta^{\gamma}| \le 2.37 \,, \quad |\eta^{\gamma}| \notin [1.37, 1.52]$$
$$\sigma^{\text{fid}} = \int dq_T dY A(q_T, Y; \Theta) \, W(q_T, Y) \qquad \qquad \text{A=acceptance}$$

Fiducial cross section measures deviation from SM gluon-fusion:

Acceptance causes a need for resummation to obtain Fiducial cross section

cutting on photon p_T induces large logs

Resummation Inputs

- Three-loop soft and hard function ... includes in particular the three-loop virtual form factor [Li, Zhu, '16] [Baikov et al. '09; Lee et al. '10; Gehrmann et al. '10]
- Three-loop unpolarized and two-loop polarized beam functions
 [Ebert, Mistlberger, Vita '20; Luo, Yang, Zhu, Zhu '20]
 [Luo, Yang, Zhu, Zhu '19; Gutierrez-Reyes, Leal-Gomez, Scimemi, Vladimirov '19]
- Four-loop cusp, three-loop noncusp anomalous dimensions
 [Brüser, Grozin, Henn, Stahlhofen '19; Henn, Korchemsky, Mistlberger '20; v. Manteuffel, Panzer,
 Schabinger '20] [Li, Zhu, '16; Moch, Vermaseren, Vogt '05; Idilbi, Ma, Yuan '06; Vladimirov '16]

Fixed Order Inputs (for non-singular, not discussed here)

- At NNLO, renormalize & implement bare analytic results for $W(q_T, Y)$ [Dulat, Lionetti, Mistlberger, Pelloni, Specchia '17]
- At N³LO, use existing binned NNLO₁ results from NNLOjet
 [Chen, Cruz-Martinez, Gehrmann, Glover, Jaquier '15-16; as used in Chen et al. '18; Bizoń et al. '18]
- Use N³LO total inclusive cross section as additional fit constraint on underflow [Mistlberger '18]

Implemented in C++ Library "SCETlib"

Billis, Dehnadi, Ebert, Michel, Tackmann [2102.08039]

Results

The fiducial q_T spectrum at N³LL'+N³LO

The total fiducial cross section at N³LO and N³LL'+N³LO (SM)

Precision and convergence improved

Subleading Power

SCET enables a systematic study of power corrections in various observables

Interesting:

- Formal questions: Factorization? Universality of functions? Universality of anomalous dimensions?
- Sudakov suppression at subleading power?
- Improve Fixed Order Calculations (subtractions)
- Examples where subleading power is needed (high precision, B's)

Subleading Power in SCET

Subleading Hard Scattering Operators

Subleading Lagrangians

·

Conjecture

Moult, IS, Vita, Zhu `19

• Proof (refactorization)

Beneke, Garny, Jaskiewicz, Strohm, Szafron, Vernazza, Wang `22

The End

