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Effective Field Theory

Goals:

ϵ ≪ 1ℒ = ℒ(0) + ℒ(1) + ℒ(2) + 𝒪(ϵ3)

• Find simplest framework that captures the essential physics , 
while identifying suitable expansion parameters 

ℒ(0)

ϵ

Organize in a manner that can be corrected to arbitrary precision

•
•

Focus on IR dynamics,  simplify the description of UV physics 

Decoupling.  To describe physics at an IR 
scale  we do not need to know the 
detailed dynamics of what is going with 
heavy or off shell particles

m
•

Key Idea:
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II. RENORMALIZATION

Linearity:
∫

ddp [af(p) + bf(p)] = a
∫

ddp f(p) + b
∫

ddp g(p)

Scaling:
∫

ddp f(sp) = s−d
∫

ddp f(p)

Translation:
∫

ddp f(p + q) =
∫

ddp f(p)

=
∫

dp pd−1 dΩd

∫

ddp(p2)α =

0 for α < 4 and α > 4

i

16π2

( 1

εUV
−

1

εIR

)

(27)

= 0 for α = 4

d = 4 − 2ε

g(0) = Zg µε g(µ)

µ m " M , a ∼ 1

L = ψ̄(i/∂ − m)ψ −
a

M2
(ψ̄ψ)2 + . . . (28)

δm ∼
i a

M2

∫

d4k

(2π)4
/k + m

k2 − m2
=

i a

M2

∫

d4k

(2π)4
m

k2 − m2
(29)

δmcutoff ∼
a

M2
Λ2 + . . . (30)

δmdim.reg. ∼
a

M2
m2 (31)

µ ≈ m

βQED = e3

12π2

βQED = 0

Λ
hard modes

soft modes

E

m⇤2 � m2
Ken Wilson (Nobel Prize ’82)
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Effective Field Theory

Method:

ϵ ≪ 1ℒ = ℒ(0) + ℒ(1) + ℒ(2) + 𝒪(ϵ3)

• degrees of freedom

expansion parameters

•
•

symmetries

what fields?

what interactions?

Determine relevant

power counting

Modern attitude:  every QFT is an EFT. 

“a new and cooler view”,  Weinberg

Why?  
• Simplifies calculations, eliminates baggage of more general theory

• Makes approximations explicit.  Forced to consider uncertainties.

https://courses.mitxonline.mit.edu/learn/course/course-v1:MITxT+8.EFTx+3T2022/homemy free EFT online course:
6
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Effective Field Theory
ϵ ≪ 1ℒ = ℒ(0) + ℒ(1) + ℒ(2) + 𝒪(ϵ3)

Concepts:

• Renormalization order by order in ϵ

•

•

Field Freedom (field redefinitions)

•

Renormalization Group Evolution•
Universality of short and long distance parameters (functions)•

Power counting equivalent to operator dimension, or more general•

Top-Down EFT versus Bottom-Up EFT

Matching and Decoupling
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Effective Field Theory
ϵ ≪ 1ℒ = ℒ(0) + ℒ(1) + ℒ(2) + 𝒪(ϵ3)

Concepts:

• Renormalization order by order in ϵ

•

•

Field Freedom (field redefinitions)

•

Renormalization Group Evolution•
Universality of short and long distance parameters (functions)•

Power counting equivalent to operator dimension, or more general•

QCD very often 
in the vanguard
for formulating 
these concepts

Top-Down EFT versus Bottom-Up EFT

Matching and Decoupling
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Effective Field Theory
ϵ ≪ 1ℒ = ℒ(0) + ℒ(1) + ℒ(2) + 𝒪(ϵ3)

Concepts: Understood early on for 
  tree level analyses

Also true with loops, 
  spont. broken theories, etc.

H. Georgi  “Onshell EFT”,  `91
C. Arzt, `93

• Renormalization order by order in ϵ

•

•

Field Freedom (field redefinitions)

•

Renormalization Group Evolution•
Universality of short and long distance parameters (functions)•

Power counting equivalent to operator dimension, or more general•

Top-Down EFT versus Bottom-Up EFT

Matching and Decoupling
also CCWZ `69
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Effective Field Theory
ϵ ≪ 1ℒ = ℒ(0) + ℒ(1) + ℒ(2) + 𝒪(ϵ3)

Concepts:
Mass thresholds

W,  t, b, c

Chiral Pert. Thy.

• Renormalization order by order in ϵ

•

•

Field Freedom (field redefinitions)

•

Renormalization Group Evolution•
Universality of short and long distance parameters (functions)•

Power counting equivalent to operator dimension, or more general•

Top-Down EFT versus Bottom-Up EFT

Matching and Decoupling

Weinberg `67
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Effective Field Theory
ϵ ≪ 1ℒ = ℒ(0) + ℒ(1) + ℒ(2) + 𝒪(ϵ3)

Concepts: Effort to carry out higher 
 order calculations drove 
 field to mass independent
 schemes (like ) MS

Decouple by hand with 
  “matching” relations

• Renormalization order by order in ϵ

•

•

Field Freedom (field redefinitions)

•

Renormalization Group Evolution•
Universality of short and long distance parameters (functions)•

Power counting equivalent to operator dimension, or more general•

Top-Down EFT versus Bottom-Up EFT

Matching and Decoupling
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Effective Field Theory
ϵ ≪ 1ℒ = ℒ(0) + ℒ(1) + ℒ(2) + 𝒪(ϵ3)

Concepts: p.c. = Op. mass dim.  needs 
 coordinate homogeneity 
 (Lorentz invariance)

Many examples where p.c. 
 more involved (nonrelativistic,
 hard collisions, …)

• Renormalization order by order in ϵ

•

•

Field Freedom (field redefinitions)

•

Renormalization Group Evolution•
Universality of short and long distance parameters (functions)•

Power counting equivalent to operator dimension, or more general•

Top-Down EFT versus Bottom-Up EFT

Matching and Decoupling
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Effective Field Theory
ϵ ≪ 1ℒ = ℒ(0) + ℒ(1) + ℒ(2) + 𝒪(ϵ3)

Concepts: α(k)
s (μ)

ℒ(0) = ∑
i

Ci(μ, Λ) 𝒪i(μ, m)

eg. crucial for Electroweak H

αs ln
Λ
m

αs ln2 Λ
m

,

• Renormalization order by order in ϵ

•

•

Field Freedom (field redefinitions)

•

Renormalization Group Evolution•
Universality of short and long distance parameters (functions)•

Power counting equivalent to operator dimension, or more general•

Top-Down EFT versus Bottom-Up EFT

Matching and Decoupling

⋆

⋆

⋆

for  light flavorsk
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Effective Field Theory
ϵ ≪ 1ℒ = ℒ(0) + ℒ(1) + ℒ(2) + 𝒪(ϵ3)

Concepts:

short distance couplings  Ci
• Renormalization order by order in ϵ

•

•

Field Freedom (field redefinitions)

•

Renormalization Group Evolution•
Universality of short and long distance parameters (functions)•

Power counting equivalent to operator dimension, or more general•

Top-Down EFT versus Bottom-Up EFT

Matching and Decoupling

long distance m.elts.  ⟨𝒪i⟩

Reduce, Reuse & Recycle:

could be numbers or functions
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Effective Field Theory
ϵ ≪ 1ℒ = ℒ(0) + ℒ(1) + ℒ(2) + 𝒪(ϵ3)

Concepts:

• Renormalization order by order in ϵ

•

•

Field Freedom (field redefinitions)

•

Renormalization Group Evolution•
Universality of short and long distance parameters (functions)•

Power counting equivalent to operator dimension, or more general•

Top-Down EFT versus Bottom-Up EFT

Matching and Decoupling

Systematic symmetry breaking.  Make emergent symmetries explicit. •
15



QCD

top 
quarks

jets

nuclear 
forces

perturbative 
QCD

NRQCD
cc states

lattice
observables

pions finite T
finite 

density
energetic
hadrons

bd states
HQET

SCET

SCET

NNEFT

HDET

ChPT HTL

unstable
particle EFT

Lattice QCD 
EFTs

 (a, mπ, L, mQ)

**

*
*

*

Effective Field Theories of QCD

decoupling
masses

small xRegge 
EFTs

…
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Chiral Perturbation Theory
for Nuclear Forces



Nonlinear (fluctuations on vacuum manifold),  Σ = exp( 2i
f

⃗π ⋅ ⃗τ

2 )

ChPT-π p2

Λ2
χ

,
m2

π

Λ2
χ

≪ 1SU(2)L × SU(2)R → SU(2)V

ℒχ =
f 2

8
tr[ ∂μΣ†∂μΣ ] + v0tr[ m†

qΣ + mqΣ† ] + 𝒪(p4)

Derivatively coupled

⟨ψ̄ ψ⟩ ≠ 0

Gasser & Leutwyler `85

Weinberg

Naive dimensional analysis, count  s,     4π Λχ = 4πf (Georgi & Manohar `84)

Pheno:  multi-  processes,  predict  scattering lengths,  
            calculate pion effects on e.m. & weak currents

π ππ
Chiral loops predict non-analytic dependence on quark masses,  ln mq
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ChPT-π p2

Λ2
χ

,
m2

π

Λ2
χ

≪ 1SU(2)L × SU(2)R → SU(2)V ⟨ψ̄ ψ⟩ ≠ 0

Weinberg

ChPT-Nπ
Must also consider                expansion

p
mN

≪ 1

One nucleon with pions ℒ = ℒNπ + ℒχ Gasser, Sainio, Svarc `88
Jenkins, Manohar `91
…

Nonlinear (fluctuations on vacuum manifold),  Σ = exp( 2i
f

⃗π ⋅ ⃗τ

2 )

ℒχ =
f 2

8
tr[ ∂μΣ†∂μΣ ] + v0tr[ m†

qΣ + mqΣ† ] + 𝒪(p4)

Derivatively coupled
Gasser & Leutwyler `85

Naive dimensional analysis, count  s 4π (Georgi & Manohar `84)

Pheno:  multi-  processes,  predict  scattering lengths,  
            calculate pion effects on e.m. & weak currents

π ππ
Chiral loops predict non-analytic dependence on quark masses,  ln mq
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ChPT-π p2

Λ2
χ

,
m2

π

Λ2
χ

≪ 1SU(2)L × SU(2)R → SU(2)V ⟨ψ̄ ψ⟩ ≠ 0

Weinberg

ChPT-Nπ
Must also consider                expansion

p
mN

≪ 1

NNChPT Two or more nucleons

One nucleon with pions

ℒ = ℒNN + ℒNNπ + ℒNπ + ℒχ

ℒ = ℒNπ + ℒχ

short distance contact 
interactions ∑

i

Ci (ψ̄ ψ)2
i + …

Gasser, Sainio, Svarc `88
Jenkins, Manohar `91
…

Weinberg `90
Kaplan, Savage, Wise `98
van Kolck, Bedaque, Hammer
…

Nonlinear (fluctuations on vacuum manifold),  Σ = exp( 2i
f

⃗π ⋅ ⃗τ

2 )

ℒχ =
f 2

8
tr[ ∂μΣ†∂μΣ ] + v0tr[ m†

qΣ + mqΣ† ] + 𝒪(p4)

Derivatively coupled
Gasser & Leutwyler `85

Naive dimensional analysis, count  s 4π (Georgi & Manohar `84)

Pheno:  multi-  processes,  predict  scattering lengths,  
            calculate pion effects on e.m. & weak currents

π ππ
Chiral loops predict non-analytic dependence on quark masses,  ln mq
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6.3 Chiral EFT and nuclear physics 215

Two-nucleon force Three-nucleon force Four-nucleon force

LO

NLO

N2LO

N3LO

N4LO

…

…

…

…

…

⏤

⏤ ⏤

⏤

⏤

⏤ (preliminary)

Fig. 6.3.1 Diagrams contributing to the two-, three- and four-nucleon forces up to fifth order O(q5) in ChEFT. Solid and dashed
lines denote nucleons and pions, respectively. Solid dots, filled circles, filled squares, crossed circles and filled diamonds denote
vertices with � = 0, 1, 2, 3 and 4, respectively.

the renormalized amplitude for the box diagram is ex-
pected to be of the order of M ⇠ M2

⇡ in agreement
with the power counting formula in Eq. (6.3.3). On the
other hand, performing the integration over l01 using the
residue theorem, one obtains

M =

Z
d3l1
(2⇡)3

Ôijkl


li1l

j
1

!2
1

m

~p 2 � (~p�~l1)2 + i✏

lk2 l
l
2

!2
2

+
!2
1 + !1!2 + !2

2

2!3
1!

3
2(!1 + !2)

li1l
j
1l

k
2 l

l
2 +O

✓
1

m

◆�
, (6.3.6)

where !i =
q
~l 2i +M2

⇡ are the energies of the exchanged
pions. Remarkably, the first term in the square brack-
ets is enhanced by the factor m/M⇡ compared to the
power counting estimation. The origin of this enhance-
ment can be traced back to the pinch singularity in the
m ! 1 limit [1626, 1627], which is why we used the
relativistic expressions for the nucleon propagators64.
Notice that infrared divergences of this kind do not ap-
pear in the single-baryon sector of ChPT.

To identify all enhanced types of contributions to
the amplitude it is useful to recall that performing the
integration over l0 leads to a decomposition of Feyn-
man diagrams into a sum of diagrams emerging in old-
fashioned time-ordered perturbation theory (TOPT).
Indeed, the first (enhanced) term in the square brackets
64 This singularity is the basis of the covariant spectator the-
ory discussed in Sec. 5.3.

in Eq. (6.3.6) stems from two-nucleon-reducible TOPT
diagrams which have an intermediate state involving
two nucleons and no pions. Energy denominators asso-
ciated with such purely nucleonic intermediate states of
TOPT diagrams involve only nucleon kinetic energies
⇠M2

⇡/m ⌧ M⇡ and are smaller than what is expected
from NDA. This leads to the enhancement of reducible-
type diagrams beyond the power counting estimation
in Eq. (6.3.3)65. In contrast, the second term in the
square brackets of Eq. (6.3.6) emerges from irreducible
two-pion exchange diagrams with intermediate states
involving at least one pion and results in the contribu-
tion M ⇠ M2

⇡ in agreement with Eq. (6.3.3).
In his seminal work [1626, 1627], Weinberg has ar-

gued that the breakdown of perturbation theory for
the scattering amplitude in the few-nucleon sector of
ChEFT can be traced back to the enhancement of re-
ducible diagrams, which need to be resummed to all or-
ders. He also noticed that ladder-type reducible TOPT
diagrams automatically get resummed by solving the
Lippmann-Schwinger-type integral equations for the am-
plitude

M = V + V G0M = V + V G0V + V G0V G0V + . . . .

Indeed, the terms on the right-hand side of Eq. (6.3.6)
can be easily identified with the iterated one-pion ex-
65 Reducible and irreducible diagrams also play a central role
in the derivation of the Bethe-Salpeter equation; see Sec. 5.3.
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FIG. 8: (Color online) Chiral expansion of the np phase shifts in comparison with the Nijmegen [20] (solid dots) and the GWU
[100] (open triangles) np partial wave analysis. Black dotted, orange dashed, green short-dashed-dotted, blue dashed-double-
dotted and violet long-dashed-dotted lines show the results at LO, NLO, N2LO, N3LO and N4LO, respectively, calculated using
the cuto↵ ⇤ = 450MeV. Only those partial waves are shown which involve contact interactions at N4LO.

A. Convergence of the chiral expansion

Having specified the fitting procedure, we are now in the position to present our results. In Fig. 8, we show the
resulting np phase shifts and mixing angles in the fitted channels, namely in the S-, P- and D-waves and the mixing
angles ✏1 and ✏2, in comparison with the Nijmegen multi-energy [20] and the GWU single-energy [100] partial wave
analyses. While we restrict ourselves to the case of the intermediate cuto↵ of ⇤ = 450 MeV throughout this section,
the results for other cuto↵ values are qualitatively similar. Notice further that the P- and D-wave phase shifts and
the mixing angles ✏1 and ✏2 (the D-wave phase shifts and the mixing angle ✏2) are predicted in a parameter-free way
at LO (up to N2LO). As expected, our results are similar to the ones of Refs. [6, 7], where a coordinate-space version
of the local regulator was employed and the fits were performed to the NPWA. In most of the channels shown, one
observes a good convergence of the chiral expansion with the results showing little changes between N3LO and N4LO.

The situation is, however, di↵erent for F-waves where the results are still not converged at the level of N4LO as
shown in Fig. 9. Here, the di↵erences between the N3LO and N4LO predictions are clearly visible, and the empirical
phase shifts are still not reproduced at N4LO. To further elaborate on this issue, we performed fits based on the
N4LO chiral potential and including the leading F-wave contact interactions which apear at N5LO and are given
in Eq. (2.17). Here and in what follows, the resulting partial N5LO potential is referred to as N4LO+. As will be
discussed in section VIIB, the resulting N5LO contact interactions appear to be of a natural size. The di↵erence
between the N4LO and N4LO+ results can thus be regarded as a lower bound of the N4LO theoretical uncertainty. In
the resonance-saturation picture, it can be traced back to the short-range contributions due to heavy-meson exchanges
which are not accounted for at the level of N4LO. The fact that the LECs Ei come out of a natural size suggests that
the poor convergence pattern for F-waves shown in Fig. 9 does not reflect any failure of the chiral EFT. Rather, the
3F2, 1F3 and 3F3 partial waves simply do not provide a suitable testing ground for the chiral pion exchange potential
as originally suggested in Ref. [67] due to the large short-range contributions to the corresponding phase shifts at
energies Elab & 150 MeV. Notice that the impact of short-range operators decreases rapidly with increasing values of
the orbital angular momentum and becomes small for G- and higher partial waves. Finally, we emphasize that the
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Fig. 6.3.1 Diagrams contributing to the two-, three- and four-nucleon forces up to fifth order O(q5) in ChEFT. Solid and dashed
lines denote nucleons and pions, respectively. Solid dots, filled circles, filled squares, crossed circles and filled diamonds denote
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the renormalized amplitude for the box diagram is ex-
pected to be of the order of M ⇠ M2

⇡ in agreement
with the power counting formula in Eq. (6.3.3). On the
other hand, performing the integration over l01 using the
residue theorem, one obtains

M =

Z
d3l1
(2⇡)3

Ôijkl


li1l

j
1

!2
1

m

~p 2 � (~p�~l1)2 + i✏

lk2 l
l
2

!2
2

+
!2
1 + !1!2 + !2

2

2!3
1!

3
2(!1 + !2)

li1l
j
1l

k
2 l

l
2 +O

✓
1

m

◆�
, (6.3.6)

where !i =
q
~l 2i +M2

⇡ are the energies of the exchanged
pions. Remarkably, the first term in the square brack-
ets is enhanced by the factor m/M⇡ compared to the
power counting estimation. The origin of this enhance-
ment can be traced back to the pinch singularity in the
m ! 1 limit [1626, 1627], which is why we used the
relativistic expressions for the nucleon propagators64.
Notice that infrared divergences of this kind do not ap-
pear in the single-baryon sector of ChPT.

To identify all enhanced types of contributions to
the amplitude it is useful to recall that performing the
integration over l0 leads to a decomposition of Feyn-
man diagrams into a sum of diagrams emerging in old-
fashioned time-ordered perturbation theory (TOPT).
Indeed, the first (enhanced) term in the square brackets
64 This singularity is the basis of the covariant spectator the-
ory discussed in Sec. 5.3.

in Eq. (6.3.6) stems from two-nucleon-reducible TOPT
diagrams which have an intermediate state involving
two nucleons and no pions. Energy denominators asso-
ciated with such purely nucleonic intermediate states of
TOPT diagrams involve only nucleon kinetic energies
⇠M2

⇡/m ⌧ M⇡ and are smaller than what is expected
from NDA. This leads to the enhancement of reducible-
type diagrams beyond the power counting estimation
in Eq. (6.3.3)65. In contrast, the second term in the
square brackets of Eq. (6.3.6) emerges from irreducible
two-pion exchange diagrams with intermediate states
involving at least one pion and results in the contribu-
tion M ⇠ M2

⇡ in agreement with Eq. (6.3.3).
In his seminal work [1626, 1627], Weinberg has ar-

gued that the breakdown of perturbation theory for
the scattering amplitude in the few-nucleon sector of
ChEFT can be traced back to the enhancement of re-
ducible diagrams, which need to be resummed to all or-
ders. He also noticed that ladder-type reducible TOPT
diagrams automatically get resummed by solving the
Lippmann-Schwinger-type integral equations for the am-
plitude

M = V + V G0M = V + V G0V + V G0V G0V + . . . .

Indeed, the terms on the right-hand side of Eq. (6.3.6)
can be easily identified with the iterated one-pion ex-
65 Reducible and irreducible diagrams also play a central role
in the derivation of the Bethe-Salpeter equation; see Sec. 5.3.

Reinert, Krebs,
 Epelbaum
(1711.08821)short dist. contacts

long distance π
eg.  NN 
phase 
shifts
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Fig. 6.3.1 Diagrams contributing to the two-, three- and four-nucleon forces up to fifth order O(q5) in ChEFT. Solid and dashed
lines denote nucleons and pions, respectively. Solid dots, filled circles, filled squares, crossed circles and filled diamonds denote
vertices with � = 0, 1, 2, 3 and 4, respectively.

the renormalized amplitude for the box diagram is ex-
pected to be of the order of M ⇠ M2

⇡ in agreement
with the power counting formula in Eq. (6.3.3). On the
other hand, performing the integration over l01 using the
residue theorem, one obtains
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where !i =
q
~l 2i +M2

⇡ are the energies of the exchanged
pions. Remarkably, the first term in the square brack-
ets is enhanced by the factor m/M⇡ compared to the
power counting estimation. The origin of this enhance-
ment can be traced back to the pinch singularity in the
m ! 1 limit [1626, 1627], which is why we used the
relativistic expressions for the nucleon propagators64.
Notice that infrared divergences of this kind do not ap-
pear in the single-baryon sector of ChPT.

To identify all enhanced types of contributions to
the amplitude it is useful to recall that performing the
integration over l0 leads to a decomposition of Feyn-
man diagrams into a sum of diagrams emerging in old-
fashioned time-ordered perturbation theory (TOPT).
Indeed, the first (enhanced) term in the square brackets
64 This singularity is the basis of the covariant spectator the-
ory discussed in Sec. 5.3.

in Eq. (6.3.6) stems from two-nucleon-reducible TOPT
diagrams which have an intermediate state involving
two nucleons and no pions. Energy denominators asso-
ciated with such purely nucleonic intermediate states of
TOPT diagrams involve only nucleon kinetic energies
⇠M2

⇡/m ⌧ M⇡ and are smaller than what is expected
from NDA. This leads to the enhancement of reducible-
type diagrams beyond the power counting estimation
in Eq. (6.3.3)65. In contrast, the second term in the
square brackets of Eq. (6.3.6) emerges from irreducible
two-pion exchange diagrams with intermediate states
involving at least one pion and results in the contribu-
tion M ⇠ M2

⇡ in agreement with Eq. (6.3.3).
In his seminal work [1626, 1627], Weinberg has ar-

gued that the breakdown of perturbation theory for
the scattering amplitude in the few-nucleon sector of
ChEFT can be traced back to the enhancement of re-
ducible diagrams, which need to be resummed to all or-
ders. He also noticed that ladder-type reducible TOPT
diagrams automatically get resummed by solving the
Lippmann-Schwinger-type integral equations for the am-
plitude

M = V + V G0M = V + V G0V + V G0V G0V + . . . .

Indeed, the terms on the right-hand side of Eq. (6.3.6)
can be easily identified with the iterated one-pion ex-
65 Reducible and irreducible diagrams also play a central role
in the derivation of the Bethe-Salpeter equation; see Sec. 5.3.
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Fig. 6.3.2 Diagrams contributing to the single-, two- and three-nucleon electromagnetic current operators at lowest orders of chiral
EFT using the counting scheme with m ⇠ ⇤2

b
/M⇡. Wiggly lines denote photons. Blue and red diagrams depict the contributions

to the current and charge densities, respectively. An open circle shows an insertion of the kinetic energy term with � = 2. For
remaining notations see Fig. 6.3.1.

magnetic nuclear currents is shown in Fig. 6.3.2. Simi-
larly to the case of the nuclear forces, the chiral power
counting leads, in general, to a suppression of many-
body operators. On the other hand, the leading contri-
butions to the single- and two-nucleon current density
both appear at NLO. In contrast, the exchange charge
density contributions are strongly suppressed relative to
the LO term (the charge operator of the nucleon), with
both two- and three-nucleon contributions appearing at
N3LO. A comprehensive review of nuclear currents in
ChEFT, including a detailed comparison of results ob-
tained by different groups and a thorough discussion
of the differences between them, can be found in Ref.
[1684].

All results described above are based on the effec-
tive chiral Lagrangian involving pions and nucleons as
the only explicit DoF. As already emphasized in the
previous section, given the low excitation energy of the
�-resonance and its strong coupling to the ⇡N system,
it might be advantageous to also treat the� DoF as dy-
namic. This formulation of ChEFT was already applied
to derive the NN force and most of the 3NF contribu-
tions up through N3LO [1643, 1685–1688]. The explicit
treatment of the � leads to a reshuffling of certain con-
tributions to lower orders in the EFT expansion. In par-
ticular, a part of the unnaturally strong N2LO TPEP
is shifted to NLO, and the LECs c3,4 take more natu-

ral numerical values [1666]. These results indeed sup-
port the expected better convergence pattern of ChEFT
with explicit � DoF.

Last but not least, ChEFT has also been extended
to the SU(3) sector and applied to study the inter-
actions between nucleons and hyperons, see e.g. Refs.
[1689–1691] and Ref. [1692] for a recent review article.

6.3.3 Applications

As already pointed out, nuclear interactions derived in
ChEFT are singular at short distances and need to be
regularized prior to solving the dynamical equation. A
broad range of regulators featuring different functional
dependence on momenta and relative distances have
been proposed in the literature, see Refs. [1672, 1693–
1697] for some examples and Ref. [1698] for a related
discussion. For the long-range OPEP and TPEP, it is
advantageous to use a local regularization in order to
preserve the analytic structure of the amplitude [1672,
1696]. For short-range terms, angle-independent non-
local regulators maintain a one-to-one correspondence
between the plane-wave and partial-wave bases, which
simplifies the determination of the corresponding LECs.
This choice is utilized in both available N4LO imple-
mentations of the NN potentials [1672, 1699] which,
however, differ in their way of regularizing the long-

220 6 EFFECTIVE FIELD THEORIES

range terms. In both cases, the LECs accompanying
the NN short-range interactions were determined solely
from the neutron-proton and proton-proton data. Al-
ternative fitting strategies, which include information
about light and medium-mass nuclei and even nuclear
matter, are also being explored [1700].

The very accurate and precise NN potentials of [1672,
1701], derived in chiral EFT with pions and nucleons
as the only active DoF, provide an outstanding descrip-
tion of NN data up to the pion production threshold69.
In fact, the results of Ref. [1701] comprise a full-fledged
partial wave analysis of NN scattering data based solely
on chiral EFT. For more details and comparison be-
tween different NN potentials see Ref. [1702].

To give an impression about the convergence pat-
tern of ChEFT consider the total cross section for neut-
ron-proton scattering at Elab = 100 MeV as a represen-
tative example. Using the potentials from Ref. [1701]
one obtains for the cutoff ⇤ = 450 MeV (in mb)

�tot = 84.0[q0]�10.2[q2]+0.4[q3]�0.4[q4]+0.6[q5]�0.0[q6],

where the last term gives the contribution of the order-q6
F-wave contact interactions. Given that the expansion
parameter is q = pcms/⇤b ⇠ 1/3, where we have used
⇤b = 650 MeV [1696, 1703, 1704], one observes that
the order-q3 and q4 contributions appear to be smaller,
while the order-q5 correction is somewhat larger than
naively expected. The truncation error of the calculated
value can be estimated using a Bayesian approach by
inferring the information about the convergence pattern
of the ChEFT from the results at all available orders
[1703]; see also Ref. [1696] for a related earlier work.
Using the Bayesian model from Ref. [1705], the N4LO
truncation error for the case at hand is estimated to be
��tot = 0.14 mb at 68% confidence level. The final re-
sult then reads �tot = 74.35(14)(17)(1) mb, where the
last two errors refer to the statistical error and uncer-
tainty in the ⇡N LECs.

The sub-percent accuracy level of ChEFT has also
been reached for other low-energy observables in the
NN sector [1702]. In particular, the charge and quadrupole
form factors of the deuteron were analyzed to N4LO in
Refs. [1706, 1707]. The predicted value for the deuteron
structure radius, rstr = 1.9729+0.0015

�0.0012 fm, was used,
in combination with the very precise measurement of
the charge radius difference between 2H and the proton
[1708], to determine the neutron radius. The obtained
value of the quadrupole momentQd = 0.2854+0.0038

�0.0017 fm2

[1707] is in a very good agreement with the spectroscopy
determination Qd = 0.285699(15)(18) fm2 [1709].
69 This requires the inclusion of four order-q6 contact interac-
tions that contribute to F-waves [1672, 1699].

The spontaneously broken approximate chiral sym-
metry of QCD, together with the experimental informa-
tion about the ⇡N system, allow one to predict the long-
range behavior of the nuclear forces. In the NN sector,
these predictions have been verified from experimental
data. For example, the only order-q3 contribution to
the NN force comes from the TPEP in Eqs. (6.3.14)
(since the contact interactions contribute at orders q2i,
i = 0, 1, 2, . . .). Adding these parameter-free contribu-
tions to the potential was demonstrated to very signifi-
cantly improve the description of the data [1696, 1710,
1711]. A similar improvement is observed by adding the
order-q5 TPEP [1670, 1672, 1712]. It is also worth men-
tioning that the potentials of [1672] achieve a compara-
ble precision to that of the available high-precision phe-
nomenological potentials while having a much smaller
number of adjustable parameters70 This is yet another
evidence of the important role played by chiral symme-
try. Finally, the convergence of the chiral EFT expan-
sion can be further improved by the inclusion of �’s as
explicit DoF of the theory. This is supported by the re-
cently developed Norfolk chiral many-body interactions
[1713]; see also Ref. [1714] for a related discussion.

Beyond the two-nucleon system, the results are pre-
sently limited to the N2LO accuracy level due to the
lack of consistently regularized many-body interactions
and exchange currents starting from N3LO. As dis-
cussed in Refs. [1640, 1684, 1702], using dimensional
regularization in the derivation of nuclear interactions
in combination with a cutoff regularization of the Schrö-
dinger equation leads, in general, to violations of chiral
symmetry. This issue affects all loop contributions to
the 3NF and exchange current operators, which there-
fore need to be re-derived using symmetry-preserving
cutoff regularization.

At the N2LO level, the results for three-nucleon
scattering observables [1705, 1715–1717] and the spec-
tra of light- and medium-mass nuclei [1715, 1717–1724]
are mostly consistent with experimental data within er-
rors; see also Refs. [1725, 1726] for review articles. As a
representative example, we show in Fig. 6.3.3 the cal-
culated ground state energies of p-shell nuclei from Ref.
[1715].

ChEFT interactions and associated currents have
been vigorously utilized in the past ten years to study
both static and dynamical electroweak properties of nu-
clei, including electromagnetic form factors[860, 1707,
1728], electromagnetic moments[1728–1730], electrowe-
ak decays[1731, 1732], and low-energy reactions such as
electroweak captures[1733, 1734]. ChEFT currents were
70 The N4LO potentials of [1672] depend on 27 LECs fitted to
NN data, while the realistic potentials typically involve 40-50
adjustable parameters.
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been reached for other low-energy observables in the
NN sector [1702]. In particular, the charge and quadrupole
form factors of the deuteron were analyzed to N4LO in
Refs. [1706, 1707]. The predicted value for the deuteron
structure radius, rstr = 1.9729+0.0015
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in combination with the very precise measurement of
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[1708], to determine the neutron radius. The obtained
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[1707] is in a very good agreement with the spectroscopy
determination Qd = 0.285699(15)(18) fm2 [1709].
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tions that contribute to F-waves [1672, 1699].

The spontaneously broken approximate chiral sym-
metry of QCD, together with the experimental informa-
tion about the ⇡N system, allow one to predict the long-
range behavior of the nuclear forces. In the NN sector,
these predictions have been verified from experimental
data. For example, the only order-q3 contribution to
the NN force comes from the TPEP in Eqs. (6.3.14)
(since the contact interactions contribute at orders q2i,
i = 0, 1, 2, . . .). Adding these parameter-free contribu-
tions to the potential was demonstrated to very signifi-
cantly improve the description of the data [1696, 1710,
1711]. A similar improvement is observed by adding the
order-q5 TPEP [1670, 1672, 1712]. It is also worth men-
tioning that the potentials of [1672] achieve a compara-
ble precision to that of the available high-precision phe-
nomenological potentials while having a much smaller
number of adjustable parameters70 This is yet another
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try. Finally, the convergence of the chiral EFT expan-
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cently developed Norfolk chiral many-body interactions
[1713]; see also Ref. [1714] for a related discussion.

Beyond the two-nucleon system, the results are pre-
sently limited to the N2LO accuracy level due to the
lack of consistently regularized many-body interactions
and exchange currents starting from N3LO. As dis-
cussed in Refs. [1640, 1684, 1702], using dimensional
regularization in the derivation of nuclear interactions
in combination with a cutoff regularization of the Schrö-
dinger equation leads, in general, to violations of chiral
symmetry. This issue affects all loop contributions to
the 3NF and exchange current operators, which there-
fore need to be re-derived using symmetry-preserving
cutoff regularization.

At the N2LO level, the results for three-nucleon
scattering observables [1705, 1715–1717] and the spec-
tra of light- and medium-mass nuclei [1715, 1717–1724]
are mostly consistent with experimental data within er-
rors; see also Refs. [1725, 1726] for review articles. As a
representative example, we show in Fig. 6.3.3 the cal-
culated ground state energies of p-shell nuclei from Ref.
[1715].

ChEFT interactions and associated currents have
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both static and dynamical electroweak properties of nu-
clei, including electromagnetic form factors[860, 1707,
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TABLE II. Convergence pattern of the chiral expansion and the truncation errors for the deuteron structure radius and the
quadrupole moment. All results are obtained for the cuto↵ ⇤ = 500 MeV and Qmax = 6 fm�1. Truncation errors for rstr are
recalculated from errors estimated for r2str using the Bayesian approach as described in this Section.

LO NLO N2LO N3LO N4LO

r2str [fm2] 3.8± 1.4 3.86± 0.13 3.873± 0.029 3.877± 0.008 3.8925± 0.0030

rstr [fm] 1.9± 0.4 1.96± 0.03 1.968± 0.007 1.9689± 0.0019 1.9729± 0.0008

Qd [fm2] 0.24± 0.10 0.26± 0.01 0.282± 0.006 0.2854± 0.0017 0.2854± 0.0005

FIG. 7. (Color online) E↵ect of the uncertainty from various parametrizations of the nucleon form factors (see Fig. 4) on
the deuteron charge (upper panel) and quadrupole (lower panel) FFs. Red bands (between two solid lines) correspond to the
nucleon FFs extracted from the analysis of Ref. [78]; blue bands (between the dashed line) based on the nucleon FFs from
Ref. [80]. For remaining notation see Fig. 5.

from a recent global analysis of electron scattering data on H, 2H and 3He targets carried out in Refs. [78, 79] using
the proton charge radius from CODATA-2018 as input, see Sec. III B for details. The uncertainty from the nucleon
FFs, as given in Ref. [78], is included in the statistical uncertainty of our calculation, see Eq. (59).

To investigate the sensitivity of the results to parametrizations of the nucleon FFs, we refitted GC(Q2) and GQ(Q2)
using the nucleon FFs from the dispersive analysis of Ref. [80] (the SC approach), where constraints from unitarity
and analyticity were included. The results are shown as blue bands between dashed lines in Fig. 7. On the one hand,
the results obtained using the parametrizations of Ref. [78] and Ref. [80] are generally consistent with each other as
one may already expect from the comparison of the isoscalar nucleon FFs in Fig. 4. On the other hand, the range
where the calculated deuteron FFs appear to be especially sensitive to the details of the nucleon FFs corresponds to
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QCD effects for Weak Interactions



B → Xs γ Importance of RGE for electroweak-H  Wilson coefficients

HW = ∑
i

Ci Oi

mb ≪ mW,Z,t,H

O7 =
e

4π2
mb [s̄σμνPR b]Fμν, , …

CLO
7 = − 0.20

CLL
7 (μ = mb) = − 0.30 enhances Branching ratio by more than factor of 2!

Bertonni, Borzumati, Masiero `87
Grinstein, Springer, Wise `88

Calculated up to NNLO,  with anomalous dimensions up to 4-loops

Misiak, Asatrian, Bieri, Czakon, Czarnecki, Ewerth, Ferroglia,
  Gambino, Gorbahn, Greub, Haish, Hovhannisyan, Hurth, 
  Mitov, Poghosyan, Slusarczyk, Steinhauser `06 

FCNC

Misiak, Asatrian, Boughezal et.al. (update in `15) Figure 1: One of the O(104) calculated four-loop diagrams.

diagonal blocks A(n) and C(n) are found from (n + 1)-loop renormalization constants. Non-
vanishing contributions to the off-diagonal blocks B(n) arise at two and more loops only. Once
the normalization conventions for Q7 and Q8 are chosen as in Eq. (2.2), the blocks B(n) contain
information on (n+ 2)-loop renormalization.1

The complete matrices γ̂(0)eff and γ̂(1)eff together with the relevant references can be found
in Ref. [6]. We quote these results in Section 5. The three-loop block B(1) was confirmed
in Ref. [8]. At the NNLO, one needs to know the full 8 × 8 matrix γ̂(2)eff . The three-loop
blocks A(2) and C(2) were calculated in Refs. [9] and [10], respectively. In the present paper,
we evaluate the four-loop block B(2).

3 Bare Four-Loop Calculation

The renormalization constants contributing to the matrix B(2) are found after subloop renor-
malization from the UV-divergent parts of four-loop diagrams like the one shown in Fig. 1.
Each of the operators Q1, . . .Q6 must be considered in the effective four-quark vertex, and
the external gauge boson can be either a photon or a gluon. The overall number of relevant
four-loop diagrams turns out to be 21986, when different color and gamma matrix structures
are treated together.

In order to simplify the calculation as much as possible, an infrared (IR) rearrangement as in
Refs. [11–14] has been applied. In this approach, a Taylor expansion in the external momenta
is performed after introducing a common mass in all the propagator denominators. The order
of the expansion is determined by the dimensions of the operator insertion and the Green’s
function. In the present case, up to two derivatives have to be applied. Afterwards, the
problem is reduced to evaluation of single-scale fully massive vacuum integrals.

1 Inverse powers of coupling constants are sometimes used in the dipole operator normalization to make
γ̂
(n)eff a purely (n + 1)-loop object. Such a choice is convenient at intermediate steps (see Section 5), but the

final results for the RGEs are more compact when the normalization as in Eq. (2.2) is applied.

3
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FIG. 3. Results for |C incl
7 VtbV

⇤
ts| and m1S

b . The central fit
result is shown by the dark orange point and ellipse. The
yellow scattered points show the variation of the fit results
when varying the perturbative inputs as discussed in the text.

in Eq. (13) is obtained from the largest absolute deviation
for a given quantity (ignoring the apparent asymmetry
in the variations). The parametric uncertainty is only

relevant for b�1, for which it comes entirely from b⇢2.
Varying the residual cc̄-loop contributions in the the-

ory inputs for the fit, equivalent to the cc̄ uncertainty
in Eq. (5), changes the extracted |C incl

7 | by ±0.2% and
m

1S
b

by ±1MeV, showing that by far the dominant de-
pendence on and uncertainty from these contributions is
factorized into C

incl
7 . The uncertainty due to the numer-

ical value of bm2
c
/bm2

b
contributes most of the parametric

uncertainty of |C incl
7 | in Eq. (13).

From Eq. (5) and |VtbV
⇤
ts
| = (41.29± 0.74)⇥ 10�3 [52],

we find the SM value |C incl
7 VtbV

⇤
ts
| = (14.96±0.68)⇥10�3,

with the uncertainty dominated by |C incl
7 | in Eq. (5).

This is shown by the gray band in Fig. 3, and is in excel-
lent agreement with our extracted value.

Converting our result for m
1S
b

to the MS scheme at
three loops including charm-mass e↵ects [54], we find

mb(mb) = (4.224± 0.040± 0.013)GeV , (14)

where the first uncertainty comes from the total uncer-
tainty in m

1S
b

in Eq. (13), and the second one is the con-
version uncertainty. This result agrees with the world
average of mb(mb) = (4.18+0.03

�0.02)GeV [52].
In Fig. 4, we demonstrate the basis independence by

comparing the results for |C incl
7 | and m

1S
b

for the four
basis choices in Fig. 1. The results using these bases are
consistent within a fraction of the fit uncertainties. This
would not be the case without including an additional

FIG. 4. Comparison of the fit results for |C incl
7 VtbV

⇤
ts| andm1S

b

for four di↵erent bases. The results are consistent within a
fraction of the fit uncertainties.

coe�cient (c3) to account for the truncation uncertainty.

Conclusions We presented the first global analysis of
inclusive B ! Xs� measurements to determine |C incl

7 |
within a framework that allows a model-independent and
data-driven treatment of the nonperturbative b-quark
distribution function F(k). The value extracted from
Eq. (13), |C incl

7 | = 0.3578± 0.0199, is consistent with the
SM prediction in Eq. (5).

In comparison, in the past, the SM prediction for
the rate in the E� > 1.6GeV region, B(B ! Xs�) =
(3.36± 0.23)⇥ 10�4 [4], was compared with its measure-
ment, B(B ! Xs�) = (3.32 ± 0.15) ⇥ 10�4 [20], which
have 6.8% and 4.5% uncertainties, respectively. The lat-
ter relies on an extrapolation to the 1.6GeV cut and on
corresponding uncertainty estimates, which entail insuf-
ficient variations of the nonperturbative shape-function
models and perturbative uncertainties that a↵ect the
spectrum. In addition, correlations in these uncertainties
in calculating and measuring the rate for E� > 1.6GeV
cannot be fully assessed. In contrast, in our approach,
C

incl
7 is reliably calculable in the SM or in models beyond

it, and the relevant hadronic physics and its uncertain-
ties are determined from the data, together with the ex-
traction of |C incl

7 |. Hence, our approach is more reliable,
as it makes optimal use of the data, uncertainties from
nonperturbative parameters and perturbative inputs are
clearly traceable, and no double counting can occur.

The uncertainty in our extracted |C incl
7 VtbV

⇤
ts
|2 from

Eq. (13) is 10.6%, about twice the uncertainty in
HFLAV’s result for the E� > 1.6GeV rate. If we neglect
the theory uncertainties as well as the truncation uncer-

SIMBA collab (Bernlochner, Lacker, Ligeti, 
       IS, Tackman, Tackman, 2007.04320)3

FIG. 1. The pre-fit �2 probability for di↵erent � correspond-
ing to di↵erent bases. See text for details.

to constrain F(k). Hence, F00(k) should already provide
a reasonable description of the data. To find such F00(k),
we perform a pre-fit to the data using three di↵erent func-
tional forms for F00(k), given in [28], over a wide range of
�. We choose the form that provides the best pre-fits. Its
�
2 probability is shown in Fig. 1 for su�ciently di↵erent

values of � such that each can be considered as a dif-
ferent basis. We choose the best � = 0.55GeV (orange)
as our default basis, and use � = 0.525, 0.575, 0.6GeV
(green, blue, yellow), which also have good pre-fits, as
alternative bases to test the basis independence.

The truncation in Eq. (8) induces a residual depen-
dence on the functional form of the basis. To ensure
that the corresponding uncertainty is small compared to
others, the truncation order N is chosen based on the
available data, by increasing N until there is no signif-
icant improvement in fit quality. This is done by con-
structing nested hypothesis tests using the di↵erence in
�
2 between fits of increasing number of coe�cients. If

the �
2 improves by more than 1 from the inclusion of an

additional coe�cient, the higher number of coe�cients is
retained. To account for the truncation uncertainty, we
include one additional coe�cient in the fit. It is in this
sense that our analysis is model independent within the
quoted uncertainties. The final truncation order is found
to be N = 3 for each considered basis. To ensure that
the entire fit procedure including the choice of the ba-
sis and truncation order is unbiased, it is validated using
pseudo-experiments generated around the best fit values,
using the full experimental covariance matrices.

Results We include four di↵erential B ! Xs� mea-
surements [16–19] in the fit. The measurements in
Ref. [16–18] include B ! Xd� contributions, which are
subtracted assuming identical shapes for B ! Xs� and
B ! Xd� and that the ratio of branching ratios is
|Vtd/Vts|2 = 0.0470 [52]. For Ref. [19], we combine the
highest six E� bins to stay insensitive to possible quark-

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0.0

0.5

1.0

1.5

2.0

FIG. 2. The fitted shape function F(k) with central result
(dark red) and fit uncertainties (dark orange lines). The yel-
low curves show the variation of the fitted shape when varying
the perturbative inputs as discussed in the text.

hadron duality violation and resonances with masses near
mK⇤ . We use the measurements of Refs. [17, 18] in the
⌥(4S) rest frame and boost the predictions accordingly.
We use the uncorrected measurement from Ref. [17] and
apply the experimental resolution matrix [53] to the pre-
dictions.
The fit results for Ns and c0�3 including their corre-

lations are given in [28]. The resulting shape function is
shown in Fig. 2, and the results for |C incl

7 | and bmb ⌘ m
1S
b

are shown in Fig. 3. We also determine the kinetic en-
ergy parameter b�1 in the invisible scheme [10], with plots
analogous to Fig. 3 given in Fig. S2 in [28]. We find the
following results:

|C incl
7 VtbV

⇤
ts
| = (14.77± 0.51fit ± 0.59theory

± 0.08param)⇥ 10�3
,

m
1S
b

= (4.750± 0.027fit ± 0.033theory

± 0.003param)GeV ,

b�1 = (�0.210± 0.046fit ± 0.040theory

± 0.056param)GeV2
. (13)

The first uncertainty with subscript “fit” is evaluated
from the ��

2 = 1 variation around the best fit point. It
incorporates the experimental uncertainties as well as the
uncertainty due to the unknown shape function, which is
simultaneously constrained in the fit. The theory and
parametric uncertainties are evaluated by repeating the
fit with di↵erent theory inputs [28]. The theory uncer-
tainties are due to unknown higher-order perturbative
corrections to the shape of the spectrum in the peak re-
gion, which are evaluated by a large set of resummation
profile scale variations. The results for all variations are
shown by the yellow lines in Fig. 2 and scatter points in
Fig. 3. To be conservative, the theory uncertainty quoted

7

1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
 [GeV]γE

0

5

10

15

20

25

30

35

 / 
50

 M
eV

]
3

Ev
en

ts
 [1

0

 = 0.55 GeVλ
0123c

Belle inclusive

E� [GeV]
Ev

ent
s[1

03 /50
Me

V]

Belle inclusive Phys. Rev. Lett. 103, 241801 (2009) 

1.6 1.8 2 2.2 2.4 2.6 2.8
 [GeV]γE

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 / 
0.

1 
G

eV
 ]

-4
) [

10
γ s

 X
→

 B
(B

 
Δ

 = 0.55 GeVλ
0123c

BABAR inclusive

E� [GeV]

��
(B

�
X s

�)[
10�4

/0.
1G

eV
] BaBar inclusive Phys. Rev. D86, 112008 (2012)

1.9 2 2.1 2.2 2.3 2.4 2.5 2.6
 [GeV]γE

0

0.2

0.4

0.6

0.8

1

 / 
0.

1 
G

eV
 ]

-4
) [

10
γ s

 X
→

 B
(B

 
Δ

 = 0.55 GeVλ
0123c

BABAR hadronic tag

��
(B

�
X s

�)[
10�4

/0.
1G

eV
]

E� [GeV]

BaBar had. tagged Phys. Rev. D77, 051103 (2008)

1.9 2 2.1 2.2 2.3 2.4 2.5 2.6
 [GeV]γE

0

0.2

0.4

0.6

0.8

1

 / 
0.

1 
G

eV
 ]

-4
) [

10
γ s

 X
→

 B
(B

 
Δ

 = 0.55 GeVλ
0123c

BABAR sum-of-exclusive

E� [GeV]

��
(B

�
X s

�)[
10�4

/0.
1G

eV
] BaBar sum over exclusive modes Phys. Rev. D86, 052012 (2012)

FIG. S1. Fit results to the measured photon energy spectra [16–19]. The orange lines are the fitted central values, and the
yellow bands correspond to the ��2 = 1 variation. We omit the first 6 bins of the Belle inclusive spectrum and the first 3 bins
of the BABAR inclusive spectrum, as these have very large uncertainties and provide no additional information.

SUPPLEMENTAL MATERIAL

A. Additional fit results

The full expression of Eq. (11) used in the fit including the non-77 terms is given by

d�

dE�

= Ns

NX

m,n=0

cm cn
d�77,mn

dE�

+
p

Ns

X

ij=27,78

Nij

NX

m,n=0

cm cn
d�ij,mn

dE�

+
X

ij=22,28,88

Nij

NX

m,n=0

cm cn
d�ij,mn

dE�

+
p

Ns N27

b�2

bm2
b

2X

n=0

dn
d�g27,n

dE�

,

N27 = �2
⇣
C2 �

C1
6

⌘
|VtbV

⇤
ts
| bmb , N78 = �2C8 |VtbV

⇤
ts
| bmb ,

N22 =
⇣
C2 �

C1
6

⌘2
|VtbV

⇤
ts
|2 bm2

b
, N28 = 2

⇣
C2 �

C1
6

⌘
C8 |VtbV

⇤
ts
|2 bm2

b
, N88 = C2

8 |VtbV
⇤
ts
|2 bm2

b
, (S1)

where the normalization Ns is defined by

Ns = |C incl
7 VtbV

⇤
ts
|2 bm2

b
. (S2)

7

1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
 [GeV]γE

0

5

10

15

20

25

30

35

 / 
50

 M
eV

]
3

Ev
en

ts
 [1

0

 = 0.55 GeVλ
0123c

Belle inclusive

E� [GeV]
Ev

ent
s[1

03 /50
Me

V]

Belle inclusive Phys. Rev. Lett. 103, 241801 (2009) 

1.6 1.8 2 2.2 2.4 2.6 2.8
 [GeV]γE

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 / 
0.

1 
G

eV
 ]

-4
) [

10
γ s

 X
→

 B
(B

 
Δ

 = 0.55 GeVλ
0123c

BABAR inclusive

E� [GeV]

��
(B

�
X s

�)[
10�4

/0.
1G

eV
] BaBar inclusive Phys. Rev. D86, 112008 (2012)

1.9 2 2.1 2.2 2.3 2.4 2.5 2.6
 [GeV]γE

0

0.2

0.4

0.6

0.8

1

 / 
0.

1 
G

eV
 ]

-4
) [

10
γ s

 X
→

 B
(B

 
Δ

 = 0.55 GeVλ
0123c

BABAR hadronic tag

��
(B

�
X s

�)[
10�4

/0.
1G

eV
]

E� [GeV]

BaBar had. tagged Phys. Rev. D77, 051103 (2008)

1.9 2 2.1 2.2 2.3 2.4 2.5 2.6
 [GeV]γE

0

0.2

0.4

0.6

0.8

1

 / 
0.

1 
G

eV
 ]

-4
) [

10
γ s

 X
→

 B
(B

 
Δ

 = 0.55 GeVλ
0123c

BABAR sum-of-exclusive

E� [GeV]

��
(B

�
X s

�)[
10�4

/0.
1G

eV
] BaBar sum over exclusive modes Phys. Rev. D86, 052012 (2012)
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yellow bands correspond to the ��2 = 1 variation. We omit the first 6 bins of the Belle inclusive spectrum and the first 3 bins
of the BABAR inclusive spectrum, as these have very large uncertainties and provide no additional information.

SUPPLEMENTAL MATERIAL

A. Additional fit results

The full expression of Eq. (11) used in the fit including the non-77 terms is given by
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where the normalization Ns is defined by

Ns = |C incl
7 VtbV

⇤
ts
|2 bm2
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. (S2)

…

B → Xs γ Importance of RGE for electroweak-H  Wilson coefficients

HW = ∑
i

Ci Oi

mb ≪ mW,Z,t,H
O7 =

e
4π2

mb [s̄σμνPR b]Fμν, , …

Global Fit to Data
 

from norm |C7 |

b-quark PDF from shapeℱ =
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HQET

pμ
Q = mQvμ + kμ

Eichten, Hill, Isgur, Wise,
Chay, Georgi, Grinstein, 
Shifman, Vainshtein, Voloshin, 
Neubert, Luke, Uraltsev, …

U(4) Heavy Quark Spin-Flavor symmetry (b & c)

ℒHQET = h̄v iv ⋅ D hv + ℒq,g
QCD + 𝒪( 1

mQ
)

 velocity:vμ

kμ ∼ ΛQCD ≪ mQ = mb,c

b

brown muck 
= light quarks, gluons

heavy quark is static color source

B → D(*)ℓν̄ single leading “Isgur-Wise” form factor •
Pheno:

no  corrections at zero-recoil𝒪(1/mQ)

dedicated program for form factors on lattice

! Vcb
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Heavy Meson Mass Splittings in MSR

The MS OPE for the mass-splitting of heavy mesons,
∆m2

H = m2
H∗ − m2

H for H = B,D, is ∆m2
H =

C̄G(mQ, µ)µ2
G(µ) +

∑

i C̄i(mQ, µ) 2ρ3i (µ)/(3mQ) +
O(Λ3

QCD/m
2
Q), where mQ = mb or mc. Here

µ2
G = −〈Bv|h̄vgσµνGµνhv|Bv〉/3 is the matrix ele-

ment of the chromomagnetic operator, and ρ3i for
i = πG,A,LS, Λ̄G are O(Λ3

QCD) matrix elements [7],
with ρ3

Λ̄G
(µ) = (3/2)Λ̄µ2

G(µ). At the order of our
analysis tree level values for the C̄i suffice, so with
Σ̄ρ(µ) = (2/3)

[

ρ3πG(µ) + ρ3A(µ)− ρ3LS(µ) + ρ3
Λ̄G

(µ)
]

,

∆m2
H = C̄G(mQ, µ)µ

2
G(µ) + Σ̄ρ(µ)/mQ + . . . . (14)

Taking the ratio of mass splittings r = ∆m2
B/∆m2

D gives

r =
C̄G(mb, µ)

C̄G(mc, µ)
+

Σ̄ρ(µ)

µ2
G(µ)

( 1

mb
−

1

mc

)

+ . . . . (15)

The first term in this OPE gives a purely perturba-
tive prediction for r. C̄G is known to suffer from an
O(ΛQCD/mQ) infrared renormalon ambiguity [7], with
a corresponding ambiguity in Σ̄ρ(µ). The three-loop
computation of Ref. [8] yields, r = 1 − 0.1113|αs −
0.0780|α2

s
− 0.0755|α3

s
at fixed order with µ = mc, and

r = (0.8517)LL + (−0.0696)∆NLL + (−0.0908)∆NNLL in
RGE-improved perturbation theory, with no sign of con-
vergence in either case. In MS these leading predictions
are unstable due to the p = 1 renormalon in C̄G.
Lets examine the analogous result in the MSR scheme

∆m2
H = CG(mQ, R, µ)µ2

G(µ) +
Σρ(R, µ)

mQ
+ . . . . (16)

Since p = 1 the MSR definition in Eq. (9) gives

CG(mQ, R, µ) ≡ C̄G(mQ, µ)[C̄G(R, µ)]−R/mQ , (17)

where C̄G(m,µ) is obtained from Ref. [8] and we expand
in αs(µ). The OPE in MSR at a scale R0

>∼ ΛQCD gives

r =
CG(mb, R0, R0)

CG(mc, R0, R0)
+

Σρ(R0, R0)

µ2
G(R0)

( 1

mb
−

1

mc

)

. (18)

Large logs in CG(mQ, R0, R0) can be summed with the R-
RGE in Eqs. (11–13). For simplicity we integrate out the
b and c-quarks simultaneously at a scale R1 & √

mbmc (
R0 & ΛQCD. This scale for R1 keeps ln(R1/mb,c) small.
With R-evolution and UR from Eq. (12) we have

r =
CG(mb, R1, R1)UR(mb, R1, R0)

CG(mc, R1, R1)UR(mc, R1, R0)
(19)

+
Σρ(R0, R0)

µ2
G(R0)

( 1

mb
−

1

mc

)

.

This expression is independent of R1 and R0. Order-by-
order, varying R1 about

√
mbmc yields an estimate of

higher order perturbative uncertainties, much like vary-
ing µ in MS. For R0 the dependence cancels between the

0.7� 0.8� 0.9� 1.0� 1.1� 1.2�

0.8

0.9

1.0

r
LLMSRLO MS and

exptr (q=u,d)

exptr (q=s)

NLOMS

NNLOMS

LOMS
3�N�

NLLMSR

NNLLMSR

LL3�N� MSR

0.7

R0(GeV)

FIG. 1: Perturbative predictions at leading order in 1/mQ for
the ratio r of the B-B∗ and D-D∗ mass splittings in the MSR-
scheme (solid) versus MS (dashed). The R0 dependence of the
solid red curve provides an estimate for the power correction,
independent of the comparison with the experimental data.
Neither R1 nor µ variation is shown in the figure.

first term in r and the Σρ power correction. In MSR the
term Σρ(R0, R0) is ∼ Λ3

QCD and can be positive or neg-
ative. One may expect that there is a value of R0 where
Σρ(R0, R0) vanishes. Thus keeping only the first term
in Eq. (19) and varying R0

>∼ ΛQCD yields an estimate
for the size of this power correction. This technique goes
beyond the dimensional analysis estimates used in MS.
Fig. 1 gives perturbative predictions for r at differ-

ent orders using the first terms in Eqs. (15,19) with
mb = 4.7 GeV, mc = 1.6 GeV, αs(

√
mbmc) = 0.2627

and the 4-loop β-function. The solid lines are from the
MSR scheme, plotted as functions of R0. The dashed
lines are the fixed order MS results with µ =

√
mbmc.

The MSR results exhibit a dramatic improvement in
convergence over MS for a wide range of R0 values.
Varying R1 =

√
mbmc/2 to 2

√
mbmc at N3LL(MSR)

gives ∆r & ±0.008, which is a significant improve-
ment over µ variation in the same range for N3LO(MS)
where ∆r & ±0.068. The MSR results converge to an
R0 dependent curve, whose dependence cancels against
Σρ(R0, R0), so the residual R0 dependence provides a
method to estimate the size of this power correction. The
range R0 = 0.7GeV to 1.2GeV keeps R0 below mc and
above ΛQCD and yields

r = 0.860± (0.065)Σρ ± (0.008)pert. . (20)

This estimate for the Σρ power correction in MSR is in

good agreement with experiment, rexpt = 0.886 (D(∗)
u,d,

B(∗)
u,d) and 0.854 (D(∗)

s , B(∗)
s ). MSR achieves a conver-

gent perturbative prediction for r at leading order in the
OPE, and a 1/mQ power correction of moderate size,
∼ 0.065, significantly smaller than the dimensional anal-
ysis estimate of ΛQCD(1/mc − 1/mb) ∼ 0.2 in MS.

Ellis-Jaffe sum rule in MSR

In MS the Ellis-Jaffe sum rule [9] for the pro-
ton in DIS with momentum transfer Q is M1(Q) =
[

C̄B(Q,µ) θB + C̄0(Q,µ)â0/9
]

+ θ̄1(µ)/Q2. C̄B,0 are

r =
m2

B* − m2
B

m2
D* − m2

D
=

CG(mb, μ)
CG(mc, μ)

Pheno:

• universal non-pert. corrections:  kinetic energy 
and chromomagnetic term  

⟨Qv | h̄v D2
T hv |Qv⟩

μ2
G = − ⟨Qv | h̄vgσμνGμνhv |Qv⟩/3

+
Σp

μ2
G

( 1
mb

−
1

mc
) + …

calculable!
: Grozin`08𝒪(α3

s )

Hoang, Jain, Scimemi, IS `09

eg.  Same matrix elements appear in 
      inclusive  OPE 
      and in Hadron masses

B → Xcℓν̄
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Soft Collinear Effective Theory 

EFT for hard interactions which produce 
  energetic (collinear) and soft particles. 

Jet Physics
Jet Substructure

Higgs production, DY, …

Quarkonia Production

B-Decays and CP violation

Infrared Structure of Gauge Theory 

High Energy Limit / Regge phenomena

Gauge theory at Subleading Power

Subtractions for Fixed Order QCD

TMDs / Nuclear Physics

(Heavy Ion collisions)

Higher order Resummation
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(CSS factorization, exclusive fact, …)

For guide to SCET literature see my 
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µJ , µB

µH
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E

µS � psoft
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Perturbative Factorization:

µH � Q

µB µH µJ µS

hard jet pert. soft beam 

�̂fact = IaIb �H �
�

iJi � S
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for multi-scale problems with fixed # jets

SCET,
pQCD
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µJ , µB

µH

µp

E

Perturbative Factorization:

Perturbative Universality

• H determined by hard process, independent of jet radius, etc.  

• Ji , Ia,b splitting and virtual effects for parton i,  
encode jet dynamics, independent of H

• S soft radiation, all partons contribute, eikonal Feynman rules

Scale dependence          RGE sums up logarithms

µJ µS

hard jet pert. soft beam 

�̂fact = IaIb �H �
�

iJi � S

�

µB µH

for multi-scale problems with fixed # jets

µS

universal 
collinear 
dynamics

universal soft dynamics

SCET,
pQCD

log
�µH

µS

�
,…
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Perturbative QCD Results:

�̂ = �0

�
1 + �s + �2

s + . . .
�

ln �̂(y) =
�

k

L(�sL)k +
�

k

(�sL)k +
�

k

�s(�sL)k +
�

k

�2
s(�sL)k + . . .

= LO + NLO + NNLO + . . .

= LL + NLL + NNLL + N3LL + . . .

fixed order:

resummation of large (double) logs L = log(...)
log

��QCD

Q

�

log
�pT

Q

�
,
, …

SCET anomalous dimensions:
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Fields for various Modes:

�S , Aµ
S

dominant contributions from isolated 
regions of momentum space

•

�na , Aµ
na

�nb , A
µ
nb

�n3 , A
µ
n3

�n2 , A
µ
n2

�n1 , A
µ
n1

Soft Collinear Effective Theory 
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Key Simplifying Principle is to Exploit the Hierarchy 
   of Scales 

µS

µJ , µB

µH

µp

E

SCET

QCD

µp

µB

µJ

µS

J1

2

3

−

+

J

J

p

p

µH

Wilson coefficients
+ operators at

L =
�

i

CiOi

d� =
�

(phase space)
����
�

i

Ci�Oi�
����
2

=
�

j

Hj � (longer distance dynamics)j
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Hard-collinear factorization

Operators are built of building block fields:

O = (Bna�)(Bnb�)(Bn1�)(�̄n2)(�n3)

“quark jet”

“gluon jet”

�n = (W †
n⇠n)

Bµ
n? =

1

g
[W †

niD
µ
?Wn] BAµ

n? =
1

g

1

n̄ · @n
n̄⌫G

B⌫µ
n WBA

nor
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SCET Lagrangian

Glauber gluon exchange 
(only factorization 

violating term)

Dynamics of infrared 
modes

Hard Scattering 
operators 

(typically once)

L
(0)
hard =

X

i

C(0)
i O

(0)
i

L(0)
dyn =

X

n

L(0)
n + L(0)

soft

•

•

Leading operators for a given process

Collinear and Soft dynamics
(Factorizes after soft-collinear decoupling)

Often the leading power physics Factorizes.
            Copies of QCD* give dynamics in different sectors, with 
                hard operators providing the only connection between sectors

L(0)
G

L =
X

p�0

L(p)
dyn +

X

p

L(p)
hard + L(0)

G
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dd

usoft particles

n-collinear 
       jet

n-collinear 
       jet

Examples:
• Dijet production e

+
e
−

→ 2 jets

= �0H(Q,µ) Q

�
d� d�� JT

�
Q2� �Q�, µ

�
ST (�� ��, µ)F (��)

hard
function

jet functions
(combined)

perturbative
soft function

non-perturbative
soft function

d�

d�

� � 1thrust

1

σ

dσ

dτ
i

total
nonsingular singular

singular
subt. nonsingular

subt.

τ 0.50.0 0.1 0.2 0.3 0.4

1

10

0.1

0.01

10-3

10-4

+
dσnonsingular

dτ

τ = 1 − T
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�s(mZ) from Thrust Abbate, Fickinger,
Hoang, Mateu, I.S. `10

Becher, Schwartz `09
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Gehrmann et al. 

& Weinzierl

𝒪(α3
s )• O(�3

s) + + power 
correction +

full treatment of 
{peak, tail, multijet}+

renormalon 
subtractions, 

R-RGE

+ QED
effects + b-mass

effects + global fit, 
various Q’s 

�1

Q�

factorize pert. & nonperturbative soft effects: S = Spert � Smod

N3LL

Aim at 1%
precisione+e� � jets
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FIG. 9: Theory scan for errors in pure QCD with massless quarks. The panels are a) fixed-order, b) resummation with no
nonperturbative function, c) resummation with a nonperturbative function using the MS scheme for Ω̄1 without renormalon
subtraction, d) resummation with a nonperturbative function using the R-gap scheme for Ω1 with renormalon subtraction.

caption of Tab. II. Furthermore, we always consider five
active flavors in the running and do not implement bot-
tom threshold corrections, since our lowest scale in the
profile functions (the soft scale µS) is never smaller than
6 GeV in the tail where we perform our fit.

In Fig. 9 we display the normalized thrust distribution
in the tail thrust range 0.15 < τ < 0.30 at the differ-
ent orders taking αs(mZ) = 0.114 and Ω1(R∆, µ∆) =
0.35 GeV as reference values, and neglectingmb and QED
corrections. We display the case Q = mZ where the
experimental measurements from LEP-I have the small-
est statistical uncertainties. The qualitative behavior of
the results agrees with other c.m. energies. The colored
bands represent the theoretical errors of the predictions
at the respective orders, which have been determined by
the scan method described in Sec. VI.

In Fig. 9a we show the O(αs) (light/yellow), O(α2
s)

(medium/purple) and O(α3
s) (dark/red) fixed-order

thrust distributions without summation of large loga-
rithms. The common renormalization scale is chosen
to be the hard scale µH . In the fixed-order results the
higher order corrections are quite large and our error es-
timation obviously underestimates the theoretical uncer-
tainty of the fixed-order predictions. This panel including
the error bands is very similar to the analogous figures
in Refs. [4] and [6]. This emphasizes the importance of
summing large logarithms.

In Fig. 9b the fully resummed thrust distributions at
NLL′ (yellow), NNLL (green), NNLL′ (purple), N3LL
(blue) and N3LL′ (red) order are shown, but without
implementing the soft nonperturbative function Smod

τ or
the renormalon subtractions related to the R-gap scheme.
The yellow NLL′ error band is mostly covered by the
green NNLL order band, and similarly the purple NNLL′
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�s(mZ) from Thrust

• O(�3
s) + + power 

correction +

full treatment of 
{peak, tail, multijet}+

renormalon 
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R-RGE

+ QED
effects + b-mass

effects + global fit, 
various Q’s 

�1

Q�N3LL

26

order Ω̄1 (MS) Ω1 (R-gap)

NLL′ 0.264 ± 0.213 0.293 ± 0.203

NNLL 0.256 ± 0.197 0.276 ± 0.155

NNLL′ 0.283 ± 0.097 0.316 ± 0.072

N3LL 0.274 ± 0.098 0.313 ± 0.071

N3LL′ (full) 0.252 ± 0.069 0.323± 0.045

N3LL′
(QCD+mb) 0.238 ± 0.070 0.310 ± 0.049

N3LL′
(pure QCD) 0.254 ± 0.070 0.332 ± 0.045

TABLE V: Theory errors from the parameter scan and cen-
tral values for Ω1 defined at the reference scales R∆ = µ∆ =
2 GeV in units of GeV at various orders. The N3LL′ value
above the horizontal line is our final scan result, while the
N3LL′ values below the horizontal line show the effect of leav-
ing out the QED corrections, and leaving out both the b-mass
and QED respectively. The central values are the average of
the maximal and minimal values reached from the scan.

τ
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L3

SLD

for & �

FIG. 13: Thrust distribution at N3LL′ order and Q = mZ

including QED and mb corrections using the best fit values
for αs(mZ) and Ω1 in the R-gap scheme given in Eq. (66). The
pink band represents the perturbative error determined from
the scan method described in Sec. VI. Data from DELPHI,
ALEPH, OPAL, L3, and SLD are also shown.

method. The fit result is shown in comparison with data
from DELPHI, ALEPH, OPAL, L3, and SLD, and agrees
very well. (Note that the theory values displayed are
actually binned according to the ALEPH data set and
then joined by a smooth interpolation.)

Band Method

It is useful to compare our scan method to determine the
perturbative errors with the error band method [26] that
was employed in the analyses of Refs. [20, 22, 25]. In the
error band method first each theory parameter is varied
separately in the respective ranges specified in Tab. III
while the rest are kept fixed at their default values. The
resulting envelope of all these separate variations with
the fit parameters αs(mZ) and Ω1 held at their best fit

Band Band Our scan
method 1 method 2 method

N3LL′ with ΩRgap
1 0.0004 0.0008 0.0009

N3LL′ with Ω̄MS
1 0.0016 0.0019 0.0021

N3LL′ without Smod
τ 0.0018 0.0021 0.0034

O(α3
s) fixed-order 0.0018 0.0026 0.0046

TABLE VI: Theoretical uncertainties for αs(mZ) obtained at
N3LL′ order from two versions of the error band method, and
from our theory scan method. The uncertainties in the R-gap
scheme (first line) include renormalon subtractions, while the
ones in the MS scheme (second line) do not and are therefore
larger. The same uncertainties are obtained in the analysis
without nonperturbative function (third line). Larger uncer-
tainties are obtained from a pure O(α3

s) fixed-order analysis
(lowest line). Our theory scan method is more conservative
than the error band method.

values determines the error bands for the thrust distri-
bution at the different Q values. Then, the perturbative
error is determined by varying αs(mZ) keeping all the-
ory parameters to their default values and the value of
the moment Ω1 to its best fit value. The resulting per-
turbative errors of αs(mZ) for our full N3LL′ analysis in
the R-gap scheme are given in the first line of Tab. VI.
In the second line the corresponding errors for αs(mZ)
in the MS scheme for Ω̄1 are displayed. The left column
gives the error when the band method is applied such
that the αs(mZ) variation leads to curves strictly inside
the error bands for all Q values. For this method it turns
out that the band for the highest Q value is the most
restrictive and sets the size of the error. The resulting
error for the N3LL′ analysis in the R-gap scheme is more
than a factor of two smaller than the error obtained from
our theory scan method, which is shown in the right col-
umn. Since the high Q data has a much lower statistical
weight than the data from Q = mZ , we do not consider
this method to be sufficiently conservative and conclude
that it should not be used. The middle column gives the
perturbative error when the band method is applied such
that the αs(mZ) variation minimizes a χ2 function which
puts equal weight to all Q and thrust values. This sec-
ond band method is more conservative, and for the N3LL′

analyses in the R-gap and the MS schemes the resulting
errors are only 10% smaller than in the scan method that
we have adopted. The advantage of the scan method we
use is that the fit takes into account theory uncertainties
including correlations.

Effects of QED and the bottom mass

Given the high-precision we can achieve at N3LL′ or-
der in the R-gap scheme for Ω1, it is a useful exercise
to examine also the numerical impact of the corrections
arising from the nonzero bottom quark mass and the
QED corrections. In Fig. 14 the distributions of the best
fit points in the αs-2Ω1 plane at N3LL′ in the R-gap
scheme is displayed for pure massless QCD (light green
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C. E↵ects of QED and the b-mass

The experimental correction procedures applied to the
AMY, JADE, SLC, DELPHI and OPAL data sets were
typically designed to eliminate initial state photon radi-
ation, while those of the TASSO, L3 and ALEPH collab-
orations eliminated initial and final state photon radia-
tion. It is straightforward to test for the e↵ect of these
di↵erences in the fits by using our theory code with QED
e↵ects turned on or o↵ depending on the data set. Using
our N3LL order code in the Rgap scheme we obtain the
central values ↵s(mZ) = 0.1143 and ⌦1 = 0.376 GeV.
Comparing to our default results given in Tabs. I and II,
which are based on the theory code were QED e↵ects are
included for all data sets, we see that the central value
for ↵s is larger by 0.0003 and the one for ⌦1 is smaller
by 0.001 GeV. This shift is substantially smaller than
our perturbative uncertainty. Hence our choice to use
the theory code with QED e↵ects included everywhere
as the default for our analysis does not cause an observ-
able bias regarding experiments which remove final state
photons.

By comparing the N3LL (pure massless QCD) and
N3LL (QCD+mb) entries in Tabs. I and II we see that in-
cluding finite b-mass corrections causes a very mild shift
of ' +0.0004 to ↵s(mZ), and a somewhat larger shift
of ' �0.033GeV to ⌦1. In both cases these shifts are
within the 1-� theory uncertainties. In the N3LL (pure
massless QCD) analysis the b-quark is treated as a mass-
less flavor, hence this analysis di↵ers from that done by
JADE [23] where primary b quarks were removed using
MC generators.

D. Final Results

As our final result for ↵s(mZ) and ⌦1, obtained at
N3LL order in the Rgap scheme for ⌦1(R�, µ�), includ-
ing bottom quark mass and QED corrections we obtain

↵s(mZ) = 0.1140 ± (0.0004)exp (34)

± (0.0013)hadr ± (0.0007)pert,

⌦1(R�, µ�) = 0.377 ± (0.013)exp

± (0.042)↵s(mZ) ± (0.039)pert GeV,

where R� = µ� = 2 GeV and we quote individual 1-�
uncertainties for each parameter. Here �2/dof = 1.33.
Eq. (34) is the main result of this work.

In Fig. 8 we show the first moment of the thrust dis-
tribution as a function of the center of mass energy Q,
including QED andmb corrections. We use here the best-
fit values given in Eq. (34). The band displays the theo-
retical uncertainty and has been determined with a scan
on the parameters included in our theory, as explained in
App. A. The fit result is shown in comparison with data
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0.11

Q HGeVL

M1HQL

Fit at N3LL for asHmZL and W1
theory scan error

ALEPH
OPAL
L3
DELPHI
JADE
AMY
TASSO

FIG. 8: First moment of the thrust distribution as a func-
tion of the center of mass energy Q, using the best-fit values
for ↵s(mZ) and ⌦1 in the Rgap scheme as given in Eq. (34).
The blue band represents the perturbative uncertainty deter-
mined by our theory scan. Data is from ALEPH, OPAL, L3,
DELPHI, JADE, AMY and TASSO.
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FIG. 9: Comparison of ↵s(mZ) and ⌦1 determinations from
thrust first moment data (red upper right ellipses) and thrust
tail data (blue lower left ellipses). The plot corresponds to
fits with N3LL accuracy and in the Rgap scheme. The tail
fits are performed with our improved code which uses a new
nonsingular two-loop function, and the now known two-loop
soft function. Dashed lines correspond to theory uncertain-
ties, solid lines correspond to ��2 = 1 combined theoretical
and experimental error ellipses, and wide-dashed lines corre-
spond to ��2 = 2.3 combined error ellipses (corresponding
to 1-� uncertainty in two dimensions).

from ALEPH, OPAL, L3, DELPHI, JADE, AMY and
TASSO. Good agreement is observed for all Q values.
It is interesting to compare the result of this analysis

Cross Check with fits for First Moment

Cross check with C-parameter fit (also confirms universality of )Ω1

Recent cross check by predicting EEC without a fit (agree with OPAL data)

Hoang et.al `15

Schindler, IS, Sun `23
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Motivation

• Measure �ducial & di�erential Higgs cross sections at the LHC

I Most basic thing to do after discovering the Higgs
I Most model-independent way we have to search for BSM in the Higgs sector

• Total �ducial cross section measures deviations from SM gluon-fusion rate:

t

g

g

H
+

g

g

H
=

⇣
↵s

12⇡v
Ct +

v

⇤2
CHG

⌘
H G

a

µ⌫
G

a,µ⌫

�/��

Goals of this talk

Consider gg ! H ! �� with ATLAS �ducial cuts:

p
�1

T
� 0.35mH , p

�2

T
� 0.25mH , |⌘

�
|  2.37 , |⌘

�
| /2 [1.37, 1.52]

Goal
• Compute �ducial spectrum in qT ⌘ p

H

T = p
��

T
at N3LL0�N3LO

• Compute total �ducial cross section at N3LO, and improved by resummation

�/��

Exploring Two Axes at Colliders: From Precision to Novel Observables

The Higgs pT Spectrum and Total Cross Section
with Fiducial Cuts at N3LL0�N3LO

based on
[����.�����]

in collaboration with
G. Billis, B. Dehnadi, M. Ebert, F. Tackmann

Billis, Dehnadi, Ebert, 

Michel, Tackmann


[2102.08039]

Fiducial cross section measures deviation from SM gluon-fusion: 

�fid =

Z
dqT dY A(qT , Y ;⇥)W (qT , Y ) A=acceptance

Acceptance causes a need for resummation to obtain Fiducial cross section

Resummation e�ects in the total cross section

Key point
Fiducial power corrections induce resummation e�ects in the total cross section

Two ways to understand this:
�. Acceptance acts as a weight in the qT integral
�. We’re cutting on the resummation-sensitive photon pT
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I Leaves behind logarithms of pL
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=
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T � mH/2
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= 0.15
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cutting on photon pT 

induces large logs
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Leading-power factorization & resummation to N3LL0

At leading power in qT ⌧ mH , the hadronic dynamics factorize as:

W
(0)

(qT , Y ) = H(m
2

H , µ)

Z
d
2~ka d

2~kb d
2~ks �

�
qT � |~ka + ~kb + ~ks|

�

⇥ B
µ⌫

g (xa,
~ka, µ, ⌫)Bg µ⌫(xb,

~kb, µ, ⌫)S(~ks, µ, ⌫)

To reach N3LL0 forW (0), implemented in SCETlib:
• Three-loop soft and hard function . . . includes in particular the three-loop virtual form factor

[Li, Zhu, ’��] [Baikov et al. ’��; Lee et al. ’��; Gehrmann et al. ’��]

• Three-loop unpolarized and two-loop polarized beam functions
[Ebert, Mistlberger, Vita ’��; Luo, Yang, Zhu, Zhu ’��]
[Luo, Yang, Zhu, Zhu ’��; Gutierrez-Reyes, Leal-Gomez, Scimemi, Vladimirov ’��]

• Four-loop cusp, three-loop noncusp anomalous dimensions
[Brüser, Grozin, Henn, Stahlhofen ’��; Henn, Korchemsky, Mistlberger ’��; v. Manteu�el, Panzer,
Schabinger ’��] [Li, Zhu, ’��; Moch, Vermaseren, Vogt ’��; Idilbi, Ma, Yuan ’��; Vladimirov ’��]

• N3LL solutions to virtuality/rapidity RGEs in bT space
• Hybrid pro�le scales for �xed-order matching

[Lustermans, JM, Tackmann, Waalewijn ’��]
��/��

Resummation Inputs

Fixed Order Inputs (for non-singular, not discussed here)

Setup

So we dealt with this . . .

d�
sing

dqT

=

Z
dY A(qT , Y ;⇥)W

(0)
(qT , Y ) =

d�
(0)

dqT

+
d�

fpc

dqT

To match to FO and be able to integrate to the total cross section, we still need:

d�
nons

FO

dqT

=

Z
dY A(qT , Y ;⇥)

h
W

(2)

FO
(qT , Y ) + · · ·

i
=


d�FO1

dqT

�
d�

sing

FO

dqT

�

qT >0

Fixed-order inputs:
• NLO contribution toW (qT , Y ) at qT > 0 is easy
• At NNLO, renormalize & implement bare analytic results forW (qT , Y )

[Dulat, Lionetti, Mistlberger, Pelloni, Specchia ’��]

• At N3LO, use existing binned NNLO1 results from NNLOjet
[Chen, Cruz-Martinez, Gehrmann, Glover, Jaquier ’��-��; as used in Chen et al. ’��; Bizo� et al. ’��]

• Use N3LO total inclusive cross section as additional �t constraint on under�ow
[Mistlberger ’��]

��/��Implemented in C++ Library “SCETlib”

48



The �ducial qT spectrum at N3LL0�N3LO
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• Total uncertainty is�tot = �qT � �' � �match � �FO � �nons

[See also Ebert, JM, Stewart, Tackmann, ����.����� for details]

• Observe excellent perturbative convergence & uncertainty coverage
• Crucial to consider every variation to probe all parts of the prediction
• Three-loop beam function has noticeable e�fect on central value and band

• DivideH ! �� branching ratio B�� out of data [LHC Higgs Cross Section WG, ����.�����]
• Data are corrected for other production channels, photon isolation e�ciency

[ATLAS, ����.�����] ��/��

The �ducial qT spectrum at N3LL0�N3LO

• Total uncertainty is�tot = �qT � �' � �match � �FO � �nons

[See also Ebert, JM, Stewart, Tackmann, ����.����� for details]

• Observe excellent perturbative convergence & uncertainty coverage
• Crucial to consider every variation to probe all parts of the prediction
• Three-loop beam function has noticeable e�fect on central value and band

• DivideH ! �� branching ratio B�� out of data [LHC Higgs Cross Section WG, ����.�����]
• Data are corrected for other production channels, photon isolation e�ciency

[ATLAS, ����.�����] ��/��

Results

The total �ducial cross section at N3LO and N3LL0�N3LO

I Large N3LO correction to �ducial cross section (worse than inclusive)
I Caused by �ducial power corrections, not captured by rescaling

I Resummation restores convergence
I Needs both qT and timelike resummation (di�erent e�ects, neither is su�cient)

Interesting: Infrared sensitivity observed e.g. in�⌘�� spectrum at N3LO
[Chen, Gehrmann, Glover, Huss, Mistlberger, ����.�����]

, Precisely the �ducial p.c.’s we can deal with and resum
��/��

(SM)

4

III. THE TOTAL FIDUCIAL CROSS SECTION

If (and only if) the singular distributional structure of
d�(0)

/dqT is known, the qT spectrum can be integrated
to obtain the total cross section. This is the basis of qT
subtractions [44],

� = �
sub(qo↵

T
)+

Z
dqT


d�

dqT
�

d�sub

dqT
✓(qT  q

o↵

T
)

�
. (14)

Here, d�sub = d�(0)[1+O(qT /mH)] contains the singular
terms, with �

sub(qo↵
T

) its distributional integral over qT 

q
o↵

T
, while the term in brackets is numerically integrable.

Taking �
sub

⌘ �
sing, we get

� = �
sing(qo↵

T
) +

Z
q
off
T

0

dqT
d�nons

dqT
+

Z

q
off
T

dqT
d�

dqT
, (15)

which is exactly the integral of Eq. (13). The subtrac-
tions here are di↵erential in qT , where qo↵T ⇠ 10�100GeV
determines the range over which they act and exactly
cancels between all terms.

To integrate d�nons
/dqT in Eq. (15) down to qT = 0,

we parametrize the fixed-order coe�cients in Eq. (12) by
their leading behavior,

qT
d�nons

FO

dqT

����
↵n

s

=
q
2

T

m
2

H

2n�1X

k=0

ak ln
k q

2

T

m
2

H

+ · · · , (16)

and perform a fit to this parameterization, which we then
integrate analytically. To obtain reliable, unbiased fit re-
sults, we must account for the uncertainties in the pa-
rameterization from yet higher-power corrections. We
do so by including additional higher-power coe�cients
as nuisance parameters. In the fiducial case, we include
all O(q3

T
/m

3

H
) coe�cients. The fit procedure is an ex-

tension of the one described in Refs. [103, 104]. It has
been validated extensively, and more details will be given
elsewhere. As a benchmark, we correctly reproduce the
↵s (↵2

s
) coe�cients of the total inclusive cross section to

better than 10�5 (10�4) relative precision.
At N3LO, we use existing NNLOjet results [41, 42] to

get nonsingular data for 0.74GeV (4GeV)  qT  q
o↵

T

for inclusive log bins (for inclusive and fiducial linear
bins). While these data are not yet precise enough to-
wards small qT to give a stable fit on their own, we ex-
ploit that in the inclusive case, the known ↵

3
s
coe�cient

of the total inclusive cross section [25, 105] provides a
su�ciently strong additional constraint to obtain a reli-
able fit. In the fiducial case, we exploit that the inclusive
and fiducial ak arise from the same Y -dependent coef-
ficient functions integrated either inclusively or against
A(0, Y ;⇥). At NLO and NNLO, their ratios are between
0.4 to 0.55. At N3LO, we thus perform a simultaneous
fit to inclusive and fiducial data, using this range as a
1� constraint on the ratio of fiducial and inclusive ak.

FIG. 2. Fiducial and nonsingular power corrections integrated
up to qT  q

cut
T . The yellow band shows �nons from the fit.
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FIG. 3. Total fiducial gg ! H ! �� cross section at fixed or-
der and including resummation, where �resum ⌘ �qT ��' �
�match, compared to preliminary ATLAS measurements [26].

This yields a stable fit, with an acceptable ⇠ 0.1 pb un-
certainty for the fiducial nonsingular integral (�nons).

The often-used qT slicing approach amounts to taking
q
o↵

T
! q

cut

T
⇠ 1GeV and simply dropping the power cor-

rections below q
cut

T
. The nonsingular and fiducial power

corrections are shown in Fig. 2. The latter are huge at
↵
3
s
, and even at ↵

2
s
only become really negligible below

q
cut

T
<
⇠ 10�2 GeV. This is why it is critical for us to

include them in the subtractions (and to resum them).
The remaining nonsingular corrections at ↵

3
s
are about

ten times larger than at ↵
2
s
, and at q

cut

T
= 1 � 5GeV

still contribute 5 � 10% of the total ↵3
s
coe�cient. To-

gether with the current precision of the nonsingular data,
this makes the above di↵erential subtraction procedure
essential to our results.

Evaluating Eq. (15) either at fixed order or including
resummation, we obtain our final results for the total
fiducial cross section presented in Fig. 3. The poor con-
vergence at fixed order is largely due to the fiducial power

Precision and 
convergence improved 

Billis, Dehnadi, Ebert, 

Michel, Tackmann


[2102.08039]
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Subleading Power SCET enables a systematic study of 
power corrections in various observables

50

�
d�

d�
=

�

i,j

c(0)
i,j �i

s lnj� +
�

i,j

c(1)
i,j �i

s � lnj� + . . .

Leading Power Next to Leading Power

logs generated by power 
corrections to
soft and collinear limits

Interesting:

• Formal questions:  Factorization?  Universality of functions? 
                           Universality of anomalous dimensions?

Sudakov suppression at subleading power?

•
Improve Fixed Order Calculations (subtractions)

Examples where subleading power is needed (high precision, B’s)

•
•

50
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Subleading Power in SCETSubleading Power SCET

• Subleading Power in SCET:

LSCET = Lhard + Ldyn =
X

i�0

L
(i)
hard +

X

i�0

L
(i)

Subleading LagrangiansSubleading Hard Scattering Operators
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systematic power expansion
about soft & collinear limits �� 1 O(�i)



Sudakov suppression at subleading power?•

involving an insertion of gauge invariant gluon field along the lightcone. More details on this

can be found in Section 6.2.2 of [46].

For category 2, i.e. the quark corrections, we have one contribution from a radiative soft

function

Soft Quark Correctionz }| {

������

������

2

·

Z
dr+

2
dr+

3
⌦ ⌦

=
��C(0)

��2
Z

dr+

2
dr+

3
J (2)

n (r
+

2
, r+

3
) ⌦ J (0)

q,n̄ ⌦ S(2)

 (r+

2
, r+

3
) + n $ n̄ , (B.8)

and one from the product of two O(�) hard scattering operators

Collinear Quark Correctionz }| {

Z
d!1d!2

������

������

2

⌦ ⌦ ⌦

=

Z
d!1!2

���C(1)

��n(!1)C
(1)

��n(!2)
���J (2)

�� (!1, !2) ⌦ J (0)

g,n̄ ⌦ S(0)

q + n $ n̄ . (B.9)

Here J (2)

�� is a four quark subleading power jet function arising from the hard scattering

operators O
(1)

��n, whose Wilson coe�cient C
(1)

��n(!) is quoted in Table 3, and shows a singular

end point behavior as ! ! 0. Note that this operator and Wilson coe�cient are the same

that appear in Eq. (2.22) and that, in full QCD, the corresponding contributions give rise

to the endpoint behavior discussed in Sec. 2.4. The definitions of the radiative functions

Jn , S are given in Table 4 and the interested reader can find a detailed derivation of these

contributions in Section 6.2.1 of [46].
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��n(!) is quoted in Table 3, and shows a singular

end point behavior as ! ! 0. Note that this operator and Wilson coe�cient are the same

that appear in Eq. (2.22) and that, in full QCD, the corresponding contributions give rise

to the endpoint behavior discussed in Sec. 2.4. The definitions of the radiative functions
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Eg. in Thrust

It will be interesting to derive this result (or prove that it is incorrect) from an operator level

renormalization and factorization analysis in the future.

We arrive at our conjecture for the LL Sudakov in QCD by assuming that the radiative

corrections to the squared amplitude exponentiate (at least for the highest order poles in ✏).

Namely, that

P (2,n)

ij (z, ✏) = P (2,0)

ij (z)
K(z, ✏)n

n!
+ O(1/✏2n�1) , (4.1)

where K(z, ✏) describes the leading infrared poles in ✏

K(z, ✏) =
↵s

4⇡
µ2✏

h
4T1 · T2

[(1 � z)Q2]�✏

✏2
+ 4T1 · T3

s�✏

✏2
+ 4T2 · T3

[zQ2]�✏

✏2
(4.2)

+ 4T1 · T3

✓
[Q2]�✏

✏2
�

[z(1 � z)Q2]�✏

✏2

◆
� 4T1 · T3

✓
s�✏

✏2
�

[z(1 � z)s]�✏

✏2

◆ i
.

This result was illustrated in Sec. 2 for di↵erent partonic channels. Note that we have ex-

plicitly checked this for n = 1, 2 by direct calculation, and we know from our factorization

and renormalization analysis that it holds for the cusp contributions, but we do not strictly

speaking know that it holds for the endpoint contributions. This exponentiated conjecture

for the splitting function can then be integrated against the measurement function, as was

done in [1] to derive the result for a physical observable using the consistency equations in

Sec. 2.1.

One of the reasons we make a conjecture for the result, is that under this assumption for

the exponentiation of the splitting function, we find after integration, as we show in App. A,

that the color structure at any order is given by

Cn
A + Cn�1

A CF + · · · CACn�1

F + Cn
F . (4.3)

This is not at all apparent before integration. Intriguingly, identical color structures have

appeared in the x ! 1 resummation of the o↵ diagonal splitting functions [54–57]. We believe

that this is not a coincidence, and we believe that it provides some non-trivial evidence for

our conjecture. Alternatively, if one can argue for the color structure Eq. (4.3), as was done

in [54–57] for the o↵-diagonal splitting functions, then one can extend the result in N = 1,

where it can be proven to the case of QCD by adding terms proportional to (CA � CF )n.

Using either line of reasoning, both of which are conjectural, we can make an ansatz for

the full result for the subleading power leading logarithmic result for thrust in e+e� in full

QCD

1

�0

d�(2),e+e�

LL

d⌧
=

⇣↵s
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⌘
8CF log(⌧)e�4CF (↵s

4⇡ ) log
2
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+
CF

(CF � CA) log(⌧)

⇣
e�4CF (↵s

4⇡ ) log
2
(⌧)

� e�4CA(↵s
4⇡ ) log

2
(⌧)

⌘

| {z }
Soft Quark Sudakov

. (4.4)
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Endpoint singularities!•

∫0

dx
x

Conjecture• Proof (refactorization)•
Moult, IS, Vita, Zhu `19

Beneke, Garny, Jaskiewicz, Strohm, 

Szafron, Vernazza, Wang `22
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The End
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