
  

Five amuse-bouches

To celebrate QCD’s 50th birthday 

a·muse-bouche:
/ m oz b oSH/əˌ o͞ ˈ o͞

a small savory item of food served as an appetizer before a 
meal.



  

First amuse-bouche: instantons at T ≠0

Princeton, class of ‘75: me, D. Stein, D. Haldane...

Under David, my thesis followed
Zamalodchikov & Zamalodchikov, 
exact S-matrix, 2-index O(N) tensor ‘78. 28 cit’s  

Then: instantons@1-loop order. T=0: ‘t Hooft ’76

Gross, RDP, Yaffe ‘81: T ≠ 0: constant fields A0 ≠ 0 (→ holonomous HTL’s)
 
    instanton @ 1-loop: fund. & adj. rep’s.  Result for all instanton scale size, ρ 

Carvalho ‘81: μ ≠ 0, T = 0: only for large ρ.
Nogradi, Papavassiliou, RDP: 2310.?: all ρ.

At large ρ, color E field in instantons Debye screened (J. Collins, unpub’d):



  

When does it work?

So what?  At T ≠ 0, perturbation theory fails at T ~ 100 GeV.
 

Static sector = QCD3 → pert thy an expansion not in g2, but in √g2(Linde’79)  

Using resummed Hard Thermal Loop perturbation theory @ NNLO (!) 

Haque & Strickland, 2011.06938: N2L0 HTL valid down to ~ 300 MeV 

From β-function at 1-loop, g2 ~ #/log(ρT), so topological susceptibility

λ: just from classical action & 1-loop β-fnc!     κ: from fluc’s at 1-loop order

So what?  Surely fails at T ~ 100 GeV unless one resums with NNLO HTL!  



  

Lattice!

For a dilute gas of instantons (DGI), 

Difficult computations from lattice: λ ~ DGI down to 300 MeV!

κ: lattice ~ 10 x 1-loop.  Need the full 2-loop result to compare! (meh...)

Moral: sometimes “useless”
 computations need not remain so

Right: Borsanyi+...1606.07494

Petreczky+...1606.03145

...Athenodorou+...2208.08921



  

Second amuse-bouche: at T = 0, it ain’t instantons

Veneziano & Witten ‘78: topological effects persist as N → ∞.
But g2 N held fixed → instantons vanish as exp(- # N) = exp(- 8 π2/(g2 N) N)

What if there are objects with fractional topological charge 1/N?  
    Old story: ‘t Hooft ‘81, van Baal...Gonzalez-Arroyo...Unsal, Poppitz...

Bonanno, Bonati, d’Elia 2012.14000: pure SU(N), no quarks, N = 3, 4, 6

Compute energy at nonzero θ:

Dilute gas, Q = ± 1: b2 = -1/12 ~ -.08

Dilute gas, Q = ± 1/N: b2 = - .08 1/N2

Lattice: b2 ~ -.19/N2 →
 

dense gas of frac’y chgd objects! 

Nair & RDP 2206.11284: Z(N) dyons?

Q =±1↑



  

Third amuse-bouche: the axial anomaly at nonzero spin

An old story: the η’, with spin zero, is heavy because of the axial anomaly.

               How does the axial anomaly affect mesons with higher spin?

For “heterochiral” mesons with nonzero spin, many anomalous couplings:

     F. Giacosa, A. Koenigstein,  & RDP, 1709.07454

     Only classified the possible couplings: how big are these couplings?

Values for anomalous couplings in a dilute gas of instantons (DGI):

F. Giacosa, Shahriyar Jafarzade, & RDP, 2309.00086

      Couplings in DGI are small, & decrease as J increases.  

In vacuum, T=0: yes, instantons don’t work, but we can compute; start with DGI 



  

                          Chiral symmetry
Quarks in QCD:

When mqk = 0, classically a global symmetry  of  SU(3)L x SU(3)R x  U(1)A . 

Because of the axial anomaly,

Quantum mechanically the symmetry reduces to SU(3)L x SU(3)R x  Z(3)A .
Z(3)A because of the zero modes for each flavor. 

Construct effective Lagrangians:
All terms invariant under SU(3)L x SU(3)R (+ soft breaking from mqk ≠ 0)

Most terms are invariant under U(1)A.

Anomalous terms violate U(1)A, and are invariant only under Z(3)A. 



  

  Scalars, usual linear sigma model
For spin zero, form mesons in the usual way 

JP = 0-: π, Κ, η, η´ , obviously.

Less certainty about JP = 0+: 

σ(600), a0(980) + ....; or a0(1450)f0(1370), f0(1710)?

Doesn’t really matter for us.

Potential terms invariant under SU(3)L x SU(3)R  x U(1)A :



  

  Anomalous couplings

Anomalous terms only invariant under SU(3)L x SU(3)R  x Z(3)A

The anomalous term of lowest order is (‘t Hooft ‘76 +...)

Zero modes of a single instanton, Qtopological = ±1, generate  κ0 &  κ0’ , Z(3)A inv.

The term ~  κ0’’ is Z(6)A invariant, generated by Qtopological = ±2
             

RDP & F. Rennecke, 1910.14052; F. Rennecke, 2003.13876
 
For now just the anomalous terms of lowest mass dimension, ~ κ0.

Z(3)A invariant terms of higher order include 



  

                    Soft breaking of chiral symmetry
Add  

When Φ = ϕ0  0,  

With the anomaly,  π, K, & η light; η´ heavy, GB’s eigenstates of SU(3)V 
η mainly octet, η´  mainly singlet

N.B.: without the anomaly, GB’s eigenstates of flavor, not SU(3)V:

            Gross, Wilczek & Treiman ‘78; RDP & Wilczek, ‘82

The anomaly makes the η´ heavy, and prevents massive isospin violation



  

                          Vectors, JPC = 1-+.

As γμ flips chirality, can only pair LL and RR, neutral under U(1)A: 

Obvious mixing and mass terms, invariant under U(1)A: 

Anomalous terms start with 3rd order in ’s,  Wess-Zumino-Novikov-Witten term

JP = 1-: Vμ = Lμ + Rμ , (770), ω(782), K*(892) & ϕ(1020)ϱ

Anomaly does not contribute to mass terms, so , ω, & ϕ areϱ  flavor eigenstates:



  

Classify multiplets according to the unbroken SU(3)L x SU(3)R x Z(3)A .

As usual, form mesons by inserting some Γ, ~ γ’s and D’s, between q and q-bar.

Heterochiral:

                              Higher spin

Z(3)A inv.→ anomalous terms: affect mixing of higher spin analogies of η & η’.  
And many new terms, new decays...

Homochiral: 

Invariant under U(1)A , so no anomalous mass terms.
Masses close to eigenstates of flavor, as in the usual quark model. 
Anomalous terms ~ Wess-Zumino-Novikov-Witten, ignore.



  

            Generalized anomalous interactions

Since all Φμν… transform the same,
 
Consider:

Type of generalized determinant, obviously SU(3)L x SU(3)R x  Z(3)A  invariant 

As all indices are summed over, invariant under SU(3)L x SU(3)R, 

With three Φ’s, invariant under Z(3)A , and not U(1)A. 

For a single matrix, the determinant is (i,j,k = SU(3)L  ; i’ j’k’ = SU(3)R indices)



  

                           Instantons
Instanton density as function of scale size ρ with           regularization:
Boccaletti & D. Nogradi, 2001.03383 

Instanton density is peaked at relatively small size: Schaefer & Shuryak, 9610451

Of course the 
 density blows up at
 larger ρ. 

Vacuum is not
 a Dilute Gas of
  Instantons!

But we can compute...



  

                        Anomalous interactions
Compute in chiral limit, so all instanton zero modes enter, not suppressed  
     ‘t Hooft ‘76, Grossman ‘77, Jackiw & Rebbi ‘77, Atiyah, Hitchin, Singer ’77

At large distances, match mesonic 
to free quark operators.  
Assuming all mesonic operators 
have mass dimension = 1, 
need phenomenological 
constants MJ:

We assume M0 ~ M1 ~ M2.

Need not be true, testable.



  

                 Anomalous interactions: spin zero

 In terms of quarks, zero modes generate the anomalous interaction (‘t Hooft ‘76)

 In a Dilute Gas of Instantons (DGI),  with

 Fitting to a linear sigma model & the η-η’ mixing angle,  θPV = - 43.4o gives

 Which is reasonable.

In terms of mesons,



  

                 Details of η-η’ mixing

 Start with SU(3)V flavor basis:

 Rotation to SU(3)V basis

 In terms of the model parameters,

Smaller κ0 gives smaller β0.



  

           Spin one heterochiral, h1(1170) & h1(1415)

Φμ = Sμ+ i Pμ: 
                                             
Pμ : JPC = 1+- : b1(1235), K1,B, h1 (1170), h1(1415)   2S+1LJ = 1S1        h1’s like η & η’ 

Sμ: JPC = 1--, ϱ(1700), K*(1680), ω(1650),  ϕ(?) 2S+1LJ = 1P1.  

Anomalous term:                           

Versus k0, extra factor of ρ2 in k1 because of the Dμ in Φμ.   



  

               Spin one heterochiral: mixing angle

In terms of mesonic fields:    

 Calculate mixing angle between h1(1170) & h1(1415), like between η & η’ 

Assuming M1 = M0, β1 is small and positive.  



  

               Spin one mixing angle vs experiment
 Mixing angle β1 = 0.75o is small if M1 = M0.  

But the anomalous coupling a1 ~ M1
6, and so very sensitive to M1 vs M0.:

For M1 = 270 Mev, β1 = 10o

Experimentally, mass of h1(1415) uncertain; width ~ 90 MeV

Also lattice, LQCD
Dudek+… 1102.4299

Experiment 
& LQCD 
can measure M1.



  

         Spin two heterochiral: η(1645) & η(1870)

Φμν = Sμν+ iPμν
 :

 
Pμν : JPC = 2-+ : π2(1670), K2(1670), η2(1645) , η2(1870); η2‘s like η & η’ 

Sμν: JPC = 2++, a2, K2*, f2, f2’ ;  2S+1LJ = 1P1.    Not clear exp.’y

Anomalous term:



  

                   Spin two heterochiral: mixing

In terms of mesonic fields:    

The mixing angle between the η2(1645) & η2(1870):  



  

       Why do the mixing angles, βJ, decrease with J?

Two reasons: the quark anomalous coupling is ~ ρ2J in kJ‘s, from Dμ‘s in Φμν....     

The instanton density peaks at small ρΛMS ~ 0.5.   Thus the aJ’s decrease with J: 

  This may be an artifact from assuming a DGI’s, and/or assuming M2 = M1 = M0.

Second, tan(βJ) ~ 1/(difference meson mass(J))2

For J=0, pseudo GB’s are much ligher than “ordinary” mesons, with J=1 & 2,
 So |β0| ≫ |β2| ≫ |β2|:



  

                           New anomalous decays

Fun with effective Lagrangians!  Couple spin zero, one, & two, all heterochiral:

Coupling two spin zero particles to one spin two, all heterochiral:

Generate rare decays: from first term,  

Generate rare decays: from second term,

Width φ(2170)~83 MeV; width f2~149 MeV.  Useful (but hard) to measure exp.y! 



  

Fourth amuse-bouche: 

WHAT the **** is going on with 

the chiral phase transition?

Or: how,sometimes, being “wrong” can be right...



  

                 The anomaly for two flavors

 The spin zero fields are 

The U(1)A invariant mass term is

Without the anomaly, symmetry = SU(2)L x SU(2)R x U(1)A = O(4) x O(2)

(The U(1)A invariant mass is invariant under O(8),  
but U(1)A invariant quartic terms reduce this to O(4) x O(2))

With the anomaly, SU(2)L x SU(2)R x Z(2)A = O(4) x O(2) ~ O(4)

The anomaly makes the η meson heavy & helps the σ to condense

For three flavors, the anomaly only contributes to the η’ mass when <σ>≠0. 

For two flavors, the determinent 
is also a mass term,



  

                Chiral phase transition: two flavors

Two flavors: the determinant from the anomaly is a mass term.  

If m2(Tχ)=0 & κ0 (Tχ)≠0, (χ trans.=2nd order) universality class = O(4).

If m2(Tχ)=0 and κ0 (Tχ)=0 (!), universality class = O(4)xO(2).

RDP & D. Stein ‘81: transition at T ≠ 0 ~ theory in 3 dimensions.

      To leading order in ε about 4 - ε dimensions, (RDP & D. Stein, PRB ‘81), 

there is no infrared stable fixed point →  first order transition, when Nf > √2

fluctuation induced first order (= Coleman-Weinberg).  But  ε = 1!

Expect κ0 (Tχ) ≠ 0, so if 2nd order, the universality class is that of O(4)

RDP & Wilczek ‘84: consider the chiral phase transition at a temperature Tχ. 



  

                Chiral phase transition: three flavors

If κ0 (Tχ)≠0, then the potential has a cubic term, and cannot be “flat”

→ for massless quarks, the chiral transition must be first order.

If κ0 (Tχ)=0 (!), the universality class is SU(3) x SU(3) x U(1)

To leading order in ε in 4 - ε dimensions, fluctuation ind’d 1st order

For four flavors, to leading order in ε, fluc ind’d 1st order (neglecting κ0).  

For > four flavors, the det term irrelevant; ~ O(ε), fluctuation induced 1st order

For three flavors, consider just the potential as a function of σ:  



  

  A little history

‘80’s: expected a first order deconfining transition dominates quarks, 

chiral transition completely irrelevant.

‘90’s: Lattice QCD with dynamical quarks: the deconfining transition weakened, 

chiral symmetry matters more.

”Columbia” phase diagram, as a function of mu = md and ms.

‘23: Lattice: consensus, QCD is crossover, Tχ = 156 ± 2 MeV

What is the order of the chiral transition for massless quarks?



  

 Lattice: “Columbia” phase diagram for 3 flavors

Surely κ0 (Tχ) ≠ 0, chiral transition 1st order in the chiral limit
Lattice QCD: Columbia group, Brown + … PRL 65, 2491 (1990)



  

 Lattice: “Frankfurt” phase diagram for 3 flavors

Cuteri, Philipsen, Sciarra: 2107.12739:  chiral transition 2nd order in χ limit!

If true, absolutely astonishing.

I assume instead that 

So the 1st order region is much 
 smaller than expected. 

Bielefeld: 2111.12599: no sign of a 1st order transition for mπ > 80 MeV.
 
JLQCD: Aoki+… 2103.05954; 2212.10021; Lattice ‘23: Pasztor, Fukaya



  

Lattice: anomaly and two flavors

Lattice: chiral transition for two flavors is 2nd order in the chiral limit, O(4)

Mass splitting between the σ and the η directly measure κ0.; easier to measure
a0 – π splitting, Δm = ma0 - mπ .

Brandt+…1904.02384:  Δm(Tχ) -  Δm(0) = 500 MeV.  Strongly suggests

Also JLQCD: Aoki+… 2011.01499; 2103.05954



  

                  What is the lattice telling us?

The general effective Lagrangian is a sum of U(1)A invariant terms

Mean field theory: if only temperature is varied, one only tunes one

parameter in the effective Lagrangian, usually the mass:

Tuning m2(Tχ)=0 and κ0(Tχ)=0 is unnatural. 

Include all anomalous terms to dimension four for two flavors, and 
 six to three flavors:



  

                              A possible solution

RDP, Rennecke,Skokov,2309.?: in mean field theory, 1st order for mπ < 150 MeV

Contradicts lattice.  So let σ0 (T) = <σ>(T).  The effective coupling for det Φ is

 Work in mean field theory, all κ0, κ0’, κ0’’ independent of T, and assume

At T=0, the effective coupling κ0
eff is large, because κ0’ & κ0’’ are large

But at Tχ, κ0
eff is small because then only the small κ0 enters.

Clearly unnatural: 1st order transition eventually arises for some  mπ < 80 MeV  
                  Testable on the lattice with effort (3-point function)  

If so, the restoration of  χ symmetry drives the approximate restoration of
         U(1)A in the entire plane of T and μ, including T=0 for cold, dense quarks!



  

What if U(1)A is exactly restored at Tχ?

If so, a profound and very interesting miracle.  

For SU(Nf)xSU(Nf)xU(1), in 4-ε dim’s to ~O(ε), fluct ind’d 1st order for Nf > √2.

Recently, evidence for a new fixed point at ε=1!

Nf = 2, O(4) x O(2): 1st order: Sorokin, 2105.00072; 2205.07199.  Monte Carlo

      2nd order: Calabrese, Parruccini, 0403140; pert thy in 3 dim’s 

2nd order: conformal bootstrap, Nakayama & Ohtsuki, 1407.6195; 
                Henriksson, Kousvos, Stergiou, 2004.14388 

Nf = 3, SU(3)xSU(3)xU(1): 

2nd order: Kousvos, Stergiou, 2209.02837: conformal bootstrap

Adzhemyan + …, 2104.12195: ε-expansion to six loop order! 

Possibly new fixed points for SU(Nf)xSU(Nf)xU(1); 
       Or: “pseudocritical” = weakly 1st order, Gorbenko+...1807.11512



  

The future of QCD
Today, five amuse-bouche

At T ≠ 0, μ ≤ T, numerical simulations of lattice QCD are the bedrock for

our understanding of heavy ion collisions at very high energy.

At T and μ ≠ 0, especially T = 0, “all” we need to do is solve the sign problem.

Surely requires quantum computers.  Can start today with toy models

   e.g., “QZD”, Z(3) in 1+1 dim.’s with 3 massive flavors, RDP 2101.05813 +…

        A. Florio, RDP, S. Valgushev, A. Weichselbaum, 2310.? + S. Economou+….

Solving the sign problem, including in QCD, is one of the major problems
          for theoretical physics in the 21 st century.

Happy 50th birthday to QCD!

QCD will undoubtedly remain cutting edge for its 75th and 100th birthdays!



  

Last amuse-bouche:

A confession…
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