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A celebration of QCD and 
exploring “Beyond QCD”



Testing the Higgs sector
LHC Measurements

• High precision 
measurements of a wide 
spectrum of observables. 


• Precise comparisons with 
theory. 


• Superb test of the Standard 
Model and powerful 
constraints on its extensions. 


• A testament to the great 
understanding of  Quantum 
Chromodynamics. 
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Why can we predict precisely?

• Asymptotic freedom 


• Infrared safety


• Factorization Theorems
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Superb measurements
• Structure of hadrons


• Couplings and masses


Advances in mathematics and computation for 
perturbation theory

T



We have computed the  contributions to Higgs boson production at hadron colliders in the infinite top-quark mass limit. These corrections 
typically increase the lowest-order prediction by about a factor of 1.5 to 2. However, the results are sensitive to the choice of renormalization scale 
and to the choice of structure functions. It does seem clear, though, that the radiative corrections increase the cross-section.

𝒪 (α3
s )

“Forced” to high orders

Altarelli, Ellis, Martinelli [Nucl. Phys. B157 (1979) 461-497 ] 

The corrections to both these cross sections coming from radiative corrections to the lowest-order 
annihilation diagram are found to be large at present values of Q2 and S when the cross section is 

expressed in terms of parton densities derived from lepton production, for all Drell-Yan processes of 
practical interest. 

Dawson [Nucl. Phys. B359 (1991) 283-300 ] 

In the above we see a good agreement between the theoretical prediction and the experimental 
result. In particular we neeed the order  corrections to explain the UA2 result. αs

Van Neerven [J. Mod. Phys. A10 (1995) 2921-2940 ] 

In conclusion, we have computed the full NNLO corrections to inclusive Higgs boson production at 
hadron colliders. We find reasonable perturbative convergence and reduced scale dependence. 

Harlander and Kilgore [Phys. Rev. Lett. 88 (2002) 201801 ] 

NLO DRELL-YAN

NLO HIGGS

NNLO DRELL-YAN

NNLO HIGGS

In line with the case of Higgs production, we find that the hadronic cross section receives corrections at the percent level, and the 
residual dependence on the perturbative scales is reduced. However, unlike in the Higgs case, we observe that the uncertainty 

band derived from scale variation is no longer contained in the band of the previous order. 

N3LO DRELL-YAN

Duhr, Dulat, Mistlberger [Phys. Rev. Lett. 125 (2020) 172001 ] 



LO 
60.88% 

NLO 
35.63% 

NNLO 
6.82% 

N3LO  -1.92% 

Perturbative contributions to the inclusive Higgs decay to gluons
N4LO  -1.42% 

Herzog, Ruijl, Ueda, Vermageren, Vogt [1707.01044] 

Stubbornly large  
perturbative corrections

Γ (H → gg)



LO 
32.87% 

NLO 
42.82% 

NNLO 
9.56% EWK 4.87% 

Quark Mass effects  -3.55% 

N3LO 3.32% 

Perturbative contributions to the inclusive Higgs gluon fusion cross-section

Stubbornly large  
perturbative corrections

σ (p + p → H + X)

IHixs: Dulat, Lazopoulos, Mistlberger [1802.00827] 
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Perturbative contributions to the inclusive Higgs gluon fusion cross-section
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Perturbative contributions to the inclusive Higgs gluon fusion cross-section
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What has been achieved for the LHC?
difficulty

pert. order
LO

NLO

NNLO

NNNLO

2

~all LHC 
processes

many 
problems 

solved

many  
problems 
unsolved

⇠ 30%

⇠ 10%

⇠ 4%
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    Mathematics

Computing

Physics

PERTURBATIVE 
COMPUTATIONS

Excellent ideas and methods!
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Computing
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PERTURBATIVE 
COMPUTATIONS



Many and Challenging
Feynman integrals

• A diagram contributing to 
Higgs production in bottom 
fusion at NNNLO.


• Gives rise to a rank-6 tensor 
integral. 


• Which, in turn, gives rise to    
scalar  integrals.


• At N3LO for the sinmplest 
type of processes, one needs 
to compute  scalar 
integrals.  

𝒪(500)

𝒪(106)

1 out of  diagrams𝒪(5000)

= Spinμ1μ2μ3μ4μ5μ6 ∫ δ (k2
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= Spinμ1… ∫ δ (k2
10 − M2

h) δ(k2
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kα1
1 … 𝒯 (uα1μ1…)
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499 
terms

 uαμ =
pα

1 pμ
2 + pα

2 pμ
1

p1 ⋅ p2
CA, Karlen, Vicini, [2308.1470] 

With 𝒯 (uα1μ1uα2μ2) = uα1μ1uα2μ2 + ηα1α2
⊥ ημ1μ2

⊥ /D⊥



Simplifying
Feynman integrals (toy example)

• Lets make a toy integral out of this diagram

∫ δ (k2
10 − M2

h) δ(k2
9)

kμ1
1 kμ2

2 kμ3
3 kμ4

4 kμ5
5 kμ6

6

k2
1k2

2k2
3k2

4k2
5k2

6k2
7k2

8
→ ∫

dDk

iπ D
2

(k2 − M2)3

[k2 − M2]10 =
Γ (7 − D

2 )
Γ(7) (M2)

D
2 −7

• Recursion:  Γ(x + 1) = x Γ(x)

= c7 = c6 = c5 = c4 = c3 = c2

c2 =
6 − D

2

6
⋅

5 − D
2

5
⋅

4 − D
2

4
⋅

3 − D
2

3
⋅

2 − D
2

3
⋅

1 − D
2

1

Master 
integral



Recursion and Reduction for general Feynman integrals

Feynman integrals are (generally uncharted) hypergeometric functions, 
i.e. infinite sums  of products/ratios of factorials (Gamma functions). 

ν1

ν2

ν3

ν4

k1

k2 k3

k4

Figure 1: The one-loop box diagram.

on we will use these general expressions to derive some results for two-loop box integrals
with one-loop insertions on the propagators.

We can rewrite Eq. (2.1) using Schwinger parameters xi, so that

ID
4

(

ν1, ν2, ν3, ν4; {Q
2
i }
)

=
∫

Dx
∫ dDk

iπD/2
exp

(

4
∑

i=1

xiAi

)

, (2.3)

where we have used the shorthand

∫

Dx = (−1)σ

(

4
∏

i=1

1

Γ(νi)

∫ ∞

0
dxix

νi−1
i

)

, (2.4)

with

σ =
4
∑

i=1

νi. (2.5)

Performing the Gaussian integral in a straightforward way we have the usual Minkowski-
space result for massless integrals

ID
4

(

ν1, ν2, ν3, ν4; {Q
2
i }
)

=
∫

Dx
1

PD/2
exp(Q/P), (2.6)

where

P = x1 + x2 + x3 + x4, (2.7)

while for box integrals with one off-shell leg (k2
4 = M2)

Q = x1x3 s + x2x4 t + x1x4 M2. (2.8)

As usual, in the physical region t < 0 and s > 0.

To evaluate the integral further, we adopt the suggestion of Halliday and Ricotta [5]
and treat the number of dimensions D as a negative integer. This is valid because the loop

integral is an analytic function of D. We follow the approach suggested by Suzuki and
Schmidt [6]–[9] and detailed in [11] by viewing Eqs. (2.3) and (2.6) as existing in negative

4

Some solutions are convergent in more than one region. For example, I{p4,q3}
4 and I{q1,q3}

4

are convergent in both regions II(a) and II(b) while I{p2,p3}
4 is convergent in both II(b) and

III(b). We also see that in region II(a), two of the solutions
(

I{p2,p4}
4 and I{p4,q3}

4

)

contain
dangerous Γ functions when ν2 = ν4. These divergences indicate the region of a logarithmic

analytic continuation and can be regulated by letting ν2 = ν4 + δ, canceling the divergence,
and then setting δ → 0. Similarly, the two divergent contributions in region II(b)

(

I{p2,q3}
4

and I{p4,q3}
4

)

also cancel in this limit.

We can perform several checks of these results.

- Analytic continuation

The solutions in the different regions are related by analytic continuations of the hy-
pergeometric functions (see for example the appendix of Ref. [11]).

- The νi = 0 limit
By pinching out one or more of the propagators (which corresponds to setting νi = 0)

we obtain results for triangle or bubble integrals (see Ref. [11]). For example, if we set
ν2 = ν3 = 0, then any term containing 1/Γ(ν2) or 1/Γ(ν3) is eliminated. In fact, only

five solutions survive, one in each group. In each case, the hypergeometric function
collapses to unity and we obtain the expected result for the massless-bubble integral

with off-shellness M2 in each of the five kinematic regions thereby spanning the whole
of phase space

ID
2

(

ν1, ν4; M
2
)

=
(

M2
)

D
2
−ν1−ν4

ΠD(ν1, ν4), (2.26)

where we have defined, for future reference,

ΠD(µ, µ′) = (−1)
D
2

Γ
(

µ + µ′ − D
2

)

Γ
(

D
2 − µ

)

Γ
(

D
2 − µ′

)

Γ (µ)Γ (µ′) Γ (D − µ − µ′)
. (2.27)

- The massless box: ID

4
(ν1, ν2, ν3, ν4; s, t, 0)

The limit M2 → 0 can be taken whenever the kinematic region allows it, that is to say,
in regions II(b) and III(b), where M2 < |s|, M2 < |t|. These two regions are related
by the symmetry (s ↔ t, ν1 ↔ ν4, ν2 ↔ ν3), so we focus only on region II(b). Only

three of the solutions survive, and we have:

if |s| < |t|

ID
4 (ν1, ν2, ν3, ν4; s, t, 0) = I{q1,q3}

4

∣

∣

∣

M2=0
+ I{p2,q3}

4

∣

∣

∣

M2=0
+ I{p4,q3}

4

∣

∣

∣

M2=0

= (−1)
D
2 t

D
2
−σ

Γ
(

σ − D
2

)

Γ
(

D
2 − ν134

)

Γ
(

D
2 − ν123

)

Γ (ν2) Γ (ν4) Γ (D − σ)

× 3F2

(

ν1, ν3, σ −
D

2
, 1 + ν134 −

D

2
, 1 + ν123 −

D

2
,−

s

t

)

10
+ (−1)

D
2 s

D
2
−ν123t−ν4

Γ
(

ν123 −
D
2

)

Γ (ν2 − ν4) Γ
(

D
2 − ν23

)

Γ
(

D
2 − ν12

)

Γ (ν1)Γ (ν2)Γ (ν3) Γ (D − σ)

× 3F2

(

ν4,
D

2
− ν12,

D

2
− ν23, 1 + ν4 − ν2, 1 +

D

2
− ν123,−

s

t

)

+ (−1)
D
2 s

D
2
−ν134t−ν2

Γ
(

ν134 −
D
2

)

Γ (ν4 − ν2) Γ
(

D
2 − ν14

)

Γ
(

D
2 − ν34

)

Γ (ν1)Γ (ν3)Γ (ν4) Γ (D − σ)

× 3F2

(

ν2,
D

2
− ν14,

D

2
− ν34, 1 − ν4 + ν2, 1 +

D

2
− ν134,−

s

t

)

. (2.28)

Similarly, taking the same M2 → 0 limit for solution (2.25) in region III(b), we find the
result valid when |s| > |t|, which is also obtained by applying the exchanges (s ↔ t,

ν1 ↔ ν4, ν2 ↔ ν3) to Eq. (2.28). Note that we could have obtained the same result
by returning to the template solution (2.11) with the system of constraints (2.12) and,
after setting q3 = 0, solved the on-shell box directly. In this case, there are two external

scales, s and t, so that there will be six summation variables (p1, . . . , p4 and q1, q2) and
five constraints yielding six solutions, three of which converge when |s| < |t|, again

yielding Eq. (2.28).

As before, there are apparent divergences in the Γ functions when ν2 = ν4 that must
be regulated. This is straightforwardly achieved for particular values of the parameters
by setting ν2 = ν4 + δ and making a Taylor expansion.

- The νi = 1 limit: ID

4
(1, 1, 1, 1; s, t, M2)

If we set the propagator power equal to one, then all the groups (2.21)–(2.25) give the
correct answer

ID
4 (1, 1, 1, 1; s, t, M2) =

2

ϵ2

Γ2 (1 − ϵ) Γ (1 + ϵ)

Γ (1 − 2ϵ)

1

st

[

(−t)−ϵ
2F1

(

1,−ϵ, 1 − ϵ,−
u

s

)

+(−s)−ϵ
2F1

(

1,−ϵ, 1 − ϵ,−
u

t

)

− (−M2)−ϵ
2F1

(

−ϵ, 1, 1 − ϵ,−
M2u

st

)]

,

(2.29)

where u is defined by s+ t+u = M2 and ϵ = (4−D)/2. To obtain this result we have

returned to the series representation of the hypergeometric function and manipulated
the series by repeatedly summing with respect to one summation index to obtain an

2F1 function, applied identities to change the arguments of the 2F1 and rewritten the

2F1 as a series. Then we sum with respect to the other index, and repeat if necessary.
Eventually all of the hypergeometric functions of two variables can be reduced to 2F1

functions.

11

Recursion is  intrinsic to hypergeometric functions, 
and Feynman integrals, in the form of difference 
equations. 

A reduction of classes of integrals to fewer “master”  
integrals is always possible. 

= cbox

+ cbubble,s + cbubble,t

Master 
integral

Master 
integral Master 

integral

A Gauss recurrence identity  for the common hypergeometric

A reduction to master integrals for a class of box integrals



Physical reduction 
of  amplitudes

• The Reduction of one-loop 
amplitudes to master integrals has a 
physical interpretation.  

• Masters are integrals of a simple 
scalar field theory.  

• Coefficients are Sums of Products of 
Tree Gauge Theory Amplitudes

Master 
integral= cbox

+ ctriangle + cbubble
Master 
integral

Master 
integral

𝒜1−loop

“The NLO revolution”

+ ctadp.
Master 
integral

Del Aguila, Pittau [hep-ph/0404120] 
Ossola, Papadopoulos, Pittau [hep-ph/0609007] 

Ellis, Giele, Kunszt [0708.2398] 

Giele, Kunszt, Melnikov [0801.2237] 
Berger, Bern, Dixon, Febres Cordero, Forde, 

 Ita, Kosower, Maitre [0803.4180] 

Forde [0704.1835] 

Britto, Cachazo, Feng [hep-th/0412103] 
Britto, Feng, Mastrolia [hep-ph/0602178] 

CMaster = ∑ ∏𝒜tree

• Generalisation at two-loops in amazing 
breakthroughs 

•
Ita [1510.05626] 

Abreu, Dormans, Febres Cordero, Ita, Kraus,   
Page, Pascual, Ruf, Sotnikov [2009.11957] 



IBP identities can be “diagonalised” automatically with the  
“Laporta Algorithm”, which is a optimised Gauss elimination method. 

Laporta [hep-ph/0102033] 

1 out of  scalar integrals in𝒪(500)

=

Master 
integral

…
complicated 

integrals

1 2! 3! …(nloops + nlegs)!

Simple and Powerful but Costly

Dbox(1,1,-5,1,0,1,1,1,1)=1/12*((-32*s^7-96*s^6*t-96*s^5*t^2-2332*s^4*t^3-3888*s^3*t^4+1296*s^2*t^5)*e^9+
(400*s^7+1136*s^6*t+1056*s^5*t^2+22960*s^4*t^3+48080*s^3*t^4+2592*s^2*t^5)*e^8+(-2120*s^7-5744*s^6*t-
5128*s^5*t^2-94901*s^4*t^3-236964*s^3*t^4-78956*s^2*t^5-11664*s*t^6)*e^7+
(6220*s^7+16164*s^6*t+14104*s^5*t^2+211882*s^4*t^3+603412*s^3*t^4+321008*s^2*t^5+65304*s*t^6)*e^6+
(-11036*s^7-27598*s^6*t-23664*s^5*t^2-272408*s^4*t^3-844600*s^3*t^4-547614*s^2*t^5-
115752*s*t^6+6240*t^7)*e^5+
(12100*s^7+29164*s^6*t+24524*s^5*t^2+194956*s^4*t^3+610188*s^3*t^4+374266*s^2*t^5+20508*s*t^6-
32784*t^7)*e^4+(-7980*s^7-18546*s^6*t-15212*s^5*t^2-61117*s^4*t^3-
135632*s^3*t^4+58976*s^2*t^5+164280*s*t^6+63888*t^7)*e^3+(2880*s^7+6456*s^6*t+5136*s^5*t^2-6960*s^4*t^3-
92544*s^3*t^4-228480*s^2*t^5-196224*s*t^6-57432*t^7)*e^2+(-432*s^7-936*s^6*t-
720*s^5*t^2+9720*s^4*t^3+62640*s^3*t^4+115632*s^2*t^5+87264*s*t^6+23760*t^7)*e-1800*s^4*t^3-
10656*s^3*t^4-18576*s^2*t^5-13536*s*t^6-
3600*t^7)/e^2/(-1+2*e)/(-3+2*e)^2/t^3/(-2+e)^2/(-1+e)^2/s^3*Dbox(0,0,0,1,0,1,0,0,1)+1/12*((-32*s^7-
96*s^6*t-96*s^5*t^2-2332*s^4*t^3-3888*s^3*t^4+1296*s^2*t^5)*e^9+
(400*s^7+1136*s^6*t+1056*s^5*t^2+22960*s^4*t^3+48080*s^3*t^4+2592*s^2*t^5)*e^8+(-2120*s^7-5744*s^6*t-
5128*s^5*t^2-94901*s^4*t^3-236964*s^3*t^4-78956*s^2*t^5-11664*s*t^6)*e^7+
(6220*s^7+16164*s^6*t+14104*s^5*t^2+211882*s^4*t^3+603412*s^3*t^4+321008*s^2*t^5+65304*s*t^6)*e^6+
(-11036*s^7-27598*s^6*t-23664*s^5*t^2-272408*s^4*t^3-844600*s^3*t^4-547614*s^2*t^5-
115752*s*t^6+6240*t^7)*e^5+
(12100*s^7+29164*s^6*t+24524*s^5*t^2+194956*s^4*t^3+610188*s^3*t^4+374266*s^2*t^5+20508*s*t^6-
32784*t^7)*e^4+(-7980*s^7-18546*s^6*t-15212*s^5*t^2-61117*s^4*t^3-
135632*s^3*t^4+58976*s^2*t^5+164280*s*t^6+63888*t^7)*e^3+(2880*s^7+6456*s^6*t+5136*s^5*t^2-6960*s^4*t^3-
92544*s^3*t^4-228480*s^2*t^5-196224*s*t^6-57432*t^7)*e^2+(-432*s^7-936*s^6*t-
720*s^5*t^2+9720*s^4*t^3+62640*s^3*t^4+115632*s^2*t^5+87264*s*t^6+23760*t^7)*e-1800*s^4*t^3-
10656*s^3*t^4-18576*s^2*t^5-13536*s*t^6-
3600*t^7)/e^2/(-1+2*e)/(-3+2*e)^2/t^3/(-2+e)^2/(-1+e)^2/s^3*Dbox(0,1,0,0,0,0,0,1,1)+1/12*
((-1477*s^4+47*s^3*t+194*s^2*t^2)*e^6+(7259*s^4+4258*s^3*t+733*s^2*t^2)*e^5+(-12125*s^4-13945*s^3*t-
7084*s^2*t^2-1458*s*t^3)*e^4+(7513*s^4+10932*s^3*t+6543*s^2*t^2+1458*s*t^3)*e^3+
(-498*s^4+1548*s^3*t+4374*s^2*t^2+3564*s*t^3+972*t^4)*e^2-972*(s+t)^4*e+216*(s+t)^4)/e^2/(3*e-
2)/(-3+2*e)/(-1+e)/(-2+e)/s^2*Dbox(0,1,0,1,0,0,1,0,1)+1/8*((104*s^3*t-56*s^2*t^2)*e^7+(26*s^4-
1018*s^3*t+120*s^2*t^2+56*s*t^3)*e^6+(-227*s^4+4007*s^3*t+1206*s^2*t^2+72*s*t^3)*e^5+(801*s^4-
7996*s^3*t-5848*s^2*t^2-1758*s*t^3-200*t^4)*e^4+
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When a complete physical solution is out of reach ,  
compution comes to rescue. 

Reduction identies are  
obtained simply, with integration by parts (IBP).

0 = ∫ dDk ∂μ
kμ

(k2 − M2)6 ⇝ ∫ dDk
1

(k2 − M2)7 =
D
2 − 6

6 ∫ dDk
1

(k2 − M2)6

Chetyrkin, Tkachov [Nucl. Phys. B192 (1981) 159-204] 
Tkachov [Phys. Lett. B100 (1981) 65-68] 



Reduction to master integrals
• “Inclusive” Phase-space integrations can 

also be simplified with integration by parts.  

lim
ϵ→0 ( 1

x + iϵ
−

1
x − iϵ ) = 2 π i δ(x)

As ϵ → 0+

• Kinematic constraints can also be included. 

For the rapidity distribution of the massive boson we substitute

δ

(

pV · p1
pV · p2

− u

)

→
pV · p2

pV · (p1 − up2)− i0
− (c.c.). (3.4)

The above substitution introduces a propagator with a scalar product in the numerator and

a denominator linear in the momentum of V . However, the multi-loop methods we employ

are not sensitive to such irregularities in the form of the propagators; they only require

that the propagator of Eq. (3.4) be polynomial in the momenta. Substituting Eqs.(3.3)

and (3.4) into Eq. (2.10), we obtain a forward scattering amplitude with “cut” propagators

originating from both the on-shell conditions on the final-state particles and the rapidity

constraint. Pictorially, the three different contributions can be represented by diagrams

similar to the following ones:

• Virtual-Virtual;

⇒

• Real-Virtual;

⇒

• Real-Real.

⇒

We have associated an additional “rapidity” propagator with the V boson, which we rep-

resent by a straight line just to the right of the cut from the usual wavy (cut) V boson

propagator. In the above diagrams, cut propagators represent differences of two complex

conjugate terms, propagators on different sides of the cut have different prescriptions for

their imaginary part, and the initial and final states are identical.

The three contributions are now expressed as two-loop amplitudes in which the cuts

denote differences of propagators with opposite iϵ prescriptions. These cut conditions are

accounted for at the very end of the calculation, after using generic multi-loop methods

to simplify the two-loop expressions. We generate the diagrams for the forward scattering

amplitude using QGRAF [42]. We then apply the Feynman rules, introduce the rapidity

“propagator” of Eq. (3.4), and perform color and Dirac algebra (we use conventional dimen-

sional regularization) using FORM [43]. This generates a large number of integrals with

cut propagators which we must evaluate. The evaluation of these integrals is discussed in

the next Section. Our treatment of γ5 in dimensional regularization follows the discussion

in Ref. [18], to which we refer the reader for further details.
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• Commutes with asymptotic expansions around 
simplifying limits (such as threshold production)
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top-quark is infinitely heavy and can be integrated out,
see eq. (2). Moreover, we assumed that all other quarks
have a zero Yukawa coupling. Finite quark mass e↵ects
are important, but it is su�cient that they are inlcuded
through NLO or NNLO. Indeed, finite quark-mass e↵ects
have been computed fully through NLO in QCD [30],
while subleading top-quark mass corrections have been
computed at NNLO systematically as an expansion in
the inverse top-quark mass [34]. In these references it
was observed that through NLO finite quark mass ef-
fects amount to about 8% of the K-factor. At NNLO,
the known 1

mtop
corrections a↵ect the cross-section at

the ⇠ 1% level. A potentially significant contribution
at NNLO which has not yet been computed in the lit-
erature originates from diagrams with both a top and
bottom quark Yukawa coupling. Assuming a similar per-
turbative pattern as for top-quark only diagrams in the
e↵ective theory, eq. (2), higher-order e↵ects could be of
the order of 2%. We thus conclude that the computation
of the top-bottom interference through NNLO is highly
desired in the near future.

Finally, the computation of the hadronic cross-section
relies crucially on the knowledge of the strong coupling
constant and the parton densities. After our calculation,
the uncertainty coming from these quantities has become
dominant. Further progress in the determination of par-
ton densities must be anticipated in the next few years
due to the inclusion of LHC data in the global fits and the
impressive advances in NNLO computations, improving
the theoretical accuracy of many standard candle pro-
cesses.

To conclude, we have presented in this Letter the
computation of the gluon-fusion Higgs production cross-
section through N3LO in perturbative QCD. While a
thorough study of the impact of electroweak and quark
mass e↵ects is left for future work, we expect that the re-
maining theoretical uncertainty on the inclusive Higgs
production cross-section is expected to be reduced to
roughly half, which will bring important benefits in the
study of the properties of the Higgs boson at the LHC
Run 2. Besides its direct phenomenological impact, we
believe that our result is also a major advance in our un-
derstanding of perturbative QCD, as it opens the door to
push the theoretical predictions for large classes of inclu-
sive processes to N3LO accuracy, like Drell-Yan produc-
tion, associated Higgs production and Higgs production
via bottom fusion. Moreover, on the more technical side,
our result constitutes the first independent validation of
the gluon splitting function at NNLO [14], because the
latter is required to cancel all the infrared poles in the
inclusive cross-section. In addition, we expect that the
techniques developed throughout this work are not re-
stricted to inclusive cross-sections, but it should be pos-
sible to extend them to certain classes of di↵erential dis-
tributions, like rapidity distributions for Drell-Yan and
Higgs production, thereby paving the way to a new era
of precision QCD.

Acknowledgements: We are grateful to Elisabetta
Furlan, Thomas Gehrmann and A. Lazopoulos for our
collaboration on the many aspects of the Higgs cross-
section N3LO project which are not covered in this
Letter. We thank A. Lazopoulos in particular for an
independent implementation of our results in ihixs
and numerical comparisons. Research supported by
the Swiss National Science Foundation (SNF) under
contract 200021-143781 and the European Commission
through the ERC grants “IterQCD”, “HEPGAME” and
“MathAm”.

⇤ On leave from the “Fonds National de la Recherche Sci-
entifique” (FNRS), Belgium.

[1] G. Aad et al. [ATLAS Collaboration], Phys. Lett. B 716,
1 (2012); S. Chatrchyan et al. [CMS Collaboration], Phys.
Lett. B 716, 30 (2012).

[2] C. Anastasiou, S. Bühler, F. Herzog and A. Lazopoulos,
JHEP 1204, 004 (2012).

[3] C. Anastasiou, S. Bühler, F. Herzog and A. Lazopoulos,
JHEP 1112, 058 (2011).

[4] V. Khachatryan et al. [CMS Collaboration],
arXiv:1412.8662 [hep-ex].

[5] G. Aad et al. [ATLAS Collaboration], Phys. Rev. D 90,
no. 11, 112015 (2014) [arXiv:1408.7084 [hep-ex]].

[6] P.A. Baikov, K.G. Chetyrkin, A.V. Smirnov,
V.A. Smirnov, M. Steinhauser, Phys. Rev. Lett.
102, 212002 (2009); T. Gehrmann, E. W. N. Glover,
T. Huber, N. Ikizlerli, C. Studerus, JHEP 1006, 094

CA, Melnikov [1810.09462] 

CA, Duhr, Dulat, Herzog, Mistlberger [1503.06056] 

CA, Dixon, Melnikov, Petriello [1503.06056] 



Analytic structure of master  integrals

• Analytic structure is richer at 
two loops and beyond. 


• Number and classes of 
special functions grows. Not 
known fully. 


• Even a partial understanding 
has triggered an excellent 
progress in computing 
amplitudes. 


• But it Is hard to go further. In 
need of further ideas/
alternatives. 

𝒜1−loop ∋ Li2 + Li3 + Li4 + S22

+…  harmonic polylogaritthms

+…  multiple polylogaritthms

+…  elliptic polylogaritthms

+…  ??? 

NNLO Inclusive jet 

NNLO 
Higgs+jet, Z+jet, 

NNLO WW, ZZ, … 

NNLO top, N3LO 
Higgs inclusive, … 

𝒜1−loop = c0 + c1 log + c2 log2 + c3 Li2 . Li2(x) = − ∫
x

0
log(1 − t) d log(t)

One-loop analytic structure at one-loop is simpler (CLOSED)

[Remiddi, Vermaseren; Vollinga, Weinzierl; Goncharov, Spradlin, Vergu,  
Volovich; Duhr, Gangl, Rhodes; Duhr; Duhr, Dulat; Mistlberger; Broedel, Duhr, Dulat,  

Tancredi; Abliger, Bluemlein, Round; Duhr, Tancredi; Panzer; Brown;…]

Gehrmann, Remiddi; Kptikov; Henn;…]



How far can one go with with reductions to master integrals?  
Very far! 

Higgs Rapidity Through N3LO

• Innovative deep expansion 
around Higgs threshold 
production (with two 
kinematic variables).


• Innovative reduction to master 
integrals (reconstruction of 
coefficients from numerics). 


• High precision theoretical 
prediction. 


• Awaiting data from the LHC at 
the high luminosity phase. 
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FIG. 1: Approximate Higgs boson rapidity distribution with threshold expansion truncated at di↵erent orders. The left panel
shows the ratio of the approximate NNLO to the exact result, the right panel shows the approximate N3LO result to the best
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Rules of behaviour when crossing 
fields
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Rules of behaviour when crossing
fields of grazing livestock
Mother cows can be very dangerous for unmindful hikers.

Grazing cows, jaunty goatlings, woolly sheep - what a lovely and quaint
view, isn't it? Well sure, from a distance - please avoid any direct encounter
with the animals! Mother animals have a strong maternal instinct and may
protect their young aggressively; especially mother cows can be very
dangerous for unmindful hikers.

Therefore, always be aware of the behaviour of those animals, and observe
the following safety rules when entering the cattle fields (fenced or open):

Do not pet the young animals, do not approach them unnecessarily.
If possible, avoid hiking trails that lead through cattle fields.
Keep your dog on the short leash. If an attack is likely by a grazing
animal, let your dog off the leash immediately!
Do not position yourself between a cow and its calf.
Avoid any direct eye contact with the animals.
Do not wield your hiking or walking stick.
Do not unpack your rucksack when surrounded by the animals.
When grazing livestock approach – stay calm, do not turn your back,
and leave the field slowly.
Close any gates, so that the animals stay fenced in. Attention: Most wire
fences are electrically charged.
Pay special attention to bulls: keep a safe distance (40-60 metres) and
leave the field.

Further informationFurther information

https://en-
gadin.ch/alpweiden

T

QCD

COSMO 

The MegaMapper would be located at Las Campanas Observatory in the southern hemisphere, and
would have full access to LSST imaging for target selection.

Figure 1: Number of galaxy redshifts as a function of time for the largest cosmology surveys.
The dotted line represents an increase of survey size by a factor of 10 every decade. Fielding the
MegaMapper in ten years maintains this pace into the 2030s, and enables the Inflation and Dark
Energy measures proposed in this and other white papers.

2.2 Cosmology Science Forecasts: Inflation and Dark Energy

In [5] we have identified two samples, a more optimistic “idealized” sample based on the LSST
target density of LAEs and LBGs, and a “fiducial” sample, based on conservative redshift suc-
cess rates and assumptions about line strengths (see [5] for the sample specifications and [8] for
background about selection and sample properties).

We have found that both samples can significantly cross the theoretical threshold s( f local
NL ) . 1,

surpassing the current and future CMB bounds by an order of magnitude. In particular, we find
s( f local

NL ) = 0.11 and 0.073 for the fiducial and idealized samples respectively when including both
the power spectrum and bispectrum. Improvements by a factor of two or larger over the current
bounds are also expected for the equilateral and orthogonal shapes [5]. Particular care should be
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𝒫(p) = + + + …

Solution of 
linearised equations.  

Depends on cosmological 
parameters, e.g. Hubble 

constant

Small non-linearities as loop 
corrections. Cosmological parameters enter 

implicitly, through the propagator lines. 

𝒫 (p) ≡ ∫
d3 ⃗r

(2π)3
ei ⃗p⋅ ⃗r ⟨( δρ

ρ ) ( ⃗x) ( δρ
ρ ) ( ⃗x + ⃗r)⟩

Baummann, Nicolis, Senatore, Zaldarriaga [1004.2488] 
Carrasco, Hertzberg,, Senatore [1206.2926]

Porto, Senatore, Zaldarriaga [1311.2168]
Senatore, Zaldarriaga [1404.5954]



Loops in EFT of Large Scale Structure
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residuals of the fit su�cient, as we will show. We are interested only in using Pfit to make

predictions for the EFTofLSS. Therefore, any mismatch in the UV, i.e. k & 0.5hMpc�1 , can

be absorbed in the counterterms, and, if the di↵erence is just O(1), the order of magnitude

of the counterterms is not a↵ected by this. Additionally, we only use Pfit inside the loop

integrals, and Plin outside the integrals. Therefore only momenta comparable to the external

ones strongly a↵ect the result. Since loops are quantitatively irrelevant at low wavenumbers,

and modes much longer than the ones of interest do not contribute due to IR safety [95, 96],

we do not need an accurate fit for k . 0.001hMpc�1 (and in fact this is even more than what

is really needed in the IR). On top of this, the e↵ect of residuals that are highly oscillating

tends to be suppressed upon integration. Therefore, despite the residuals being greater than

1%, the error of the integrals will be much smaller, as we will show.
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Figure 1: Comparison of Plin with Pfit, from k = 10�3
hMpc�1 to k = 1hMpc�1 . Note that

even if the fit is only performed up to 0.6hMpc�1 , the error is within 5% up to 1hMpc�1 .

Each one of our fitting functions f in Eq. (2.2) can itself be expressed as a sum of QFT

propagator-like functions by decomposing the denominator in the following way
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The last term is indeed a sum of two propagators with complex masses. We can then proceed

iteratively to decompose the right hand side (r.h.s.) of Eq. (2.6). Therefore each f gets
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axis from below to above, the result should be infinitesimally small. But using our formula

(5.23) for the indefinite integral we would get 2⇡i. Given that we cross the branch-cut always

from below to above, Eq. (5.23) can be made to take into account branch cut crossings by

modifying it as
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and H(x) is the Heaviside step function extended at x = 0 so that H(0) = 0.

Masses with opposite imaginary part sign Let us focus now on the case where the two

masses have a di↵erent sign in the imaginary part. For concreteness, we assume ImM1 > 0

and ImM2 < 0.

In this case we need non-zero ✏ insertions with Eqs. (5.14) and (5.15) since we would

develop poles without them. We now need to write
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where S = (1+i✏1)s1�(1�i✏2)s2 ⌘ s1�s2+i✏, where similarly to before we have redefined ✏.

Notice that without ✏ insertions, S ! 0 for s1 = s2. Thus we retain ✏ insertions to shift the

pole. The q integral will be convergent for ✏ > 0. Doing the momentum integral and taking
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where for the second equality in R2, R1, and R0 we have used the fact that y is either 1 or 0

(so we eliminate terms that vanish in both cases). Notice that, before eliminating terms that

vanish for y = 0 and y = 1, one has Î = R2x
2 + R1x + R0. Note also that the integrand in

Eq. (5.78) contains
p
Î, and so does not cross any branch cut in each integration region as

sign(Im(Î)) is constant as sign Im(Ĩ) is constant. So, to calculate the y integral for a general

x in each region, it su�ces to take the di↵erence in the y antiderivative.

Before integrating T we can put it in a simplified form, by factoring the second order

polynomials:

Tmaster =

p
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0
dx
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(5.80)

where z± = �
R1
2R2

±

p
R2

1�4R0R2

2R2
, x± = �

S1
2S2

±

p
S2
1�4S0S2

2S2
, c1 = N0+N1x+

S2(x+�x�) , and c2 =

�
N0+N1x�
S2(x+�x�) . We define Fint as

Fint(R2, z+, z�, x0) =

p
⇡

2

Z 1

0
dx

1p
R2(x� z+)(x� z�)(x� x0)

, (5.81)

where x0 can take on x±. We can then write Tmaster as

Tmaster = [c1Fint(R2, z+, z�, x+) + c2Fint(R2, z+, z�, x�)]
y=1
y=0 . (5.82)

Note that this approach is only valid for S2 6= 0. The case S2 = 0 corresponds to totally

flat triangles satisfying |k3| = |k1| ± |k2|, which are observationally uninteresting because any

binning will force the evaluation of non-flat triangles (19). The evaluation of Fint is discussed

in Section 5.4.2.

5.4.2 Derivation of Fint

We now derive a closed form expression for the function Fint defined in Eq. (5.81), that we

rewrite here for convenience:

Fint(R2, z+, z�, x0) =

p
⇡

2

Z 1

0
dx

1p
R2(x� z+)(x� z�)(x� x0)

, (5.83)

19In the code that we publicly release with this paper, the case of flat triangles is in practice included by

adding 0.00001hMpc�1 to k3.
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where R2 is a negative real, z+, z�, and x0 are in general complex numbers.

This integral only makes sense if the square root in the integrand does not cross any

branch cut. Thus, we will separate the square root using our formula.

Fint(R2, z+, z�, x0) =

p
⇡

2

Z 1

0
dx

s(z+ � x, x� z�)p
|R2|

p
(z+ � x)

p
(x� z�)(x� x0)

. (5.84)

Under our parametrization of the masses, s(z+ � x, x� z�) is constant which means we can

take s(z+�x, x�z�) = s(z+,�z�). This can be seen the following way: on the one hand, since

ReMi > 0, we have Re(R2(x� z+)(x� z�)) > 0 if 0 < x < 1 both for y = 0 and y = 1. This

means that
p

R2(x� z+)(x� z�) cannot cross any branch cut. On the other hand, for fixed

y (and so fixed z±), both (z+�x) and (x�z�) have a constant imaginary part sign and so do

not cross any branch cut. Since
p

(z+ � x)(x� z�) = s(z+�x, x�z�)
p

(z+ � x)
p

(x� z�),

these observations imply that s(z+ � x, x� z�) is constant 20. Integrating yields:

Fint(R2, z+, z�, x0) = s(z+,�z�)

p
⇡p
|R2|
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⇣p

z+�x
p
x0�z�p
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� discontinuities ,

(5.86)

where we remind that the definition of ‘�discontinuities’ is given below Eq. (5.23). This would

be the final result if arctan did not have any branch cuts, and if Fint had no indeterminacies.

We now outline how to incorporate possible branch cut crossings, and later how to incorporate

possible indeterminate results in Eq. (5.86).

5.4.3 Branch cut crossings

Let us start by analyzing the branch cuts of arctan. There are two of them, both in the

imaginary axis. The first goes from i to +i1 and the second goes from �i to �i1. The

discontinuity works as follows:

lim
✏!0

arctan(x i)� arctan(x i� ✏) = ⇡ , |x| > 1 ,

lim
✏!0

arctan(x i+ ✏)� arctan(x i� ✏) =
⇡

2
, |x| = 1 ,

(5.87)

20Noticing that R2(x� z�)(x� z+) = Î, we have that

Re(R2(x� z�)(x� z+)) = Re(M1x+M3(1� y)(1� x) + k2
3(1� x)(1� y)x

+M2y(1� x) + (1� x)y(k2
1x+ k2

2(1� x)(1� y))) > 0 . (5.85)

Remembering that we are using masses that have a positive real part, each term in the equation above is

positive for 0 < x < 1 and 0 < y < 1. Thus,
p

R2(x� z�)(x� z+) cannot cross any branch cut in the region

0 < x < 1 and 0 < y < 1. Since
p

R2(x� z�)(x� z+) =
p

|R2|
p

(z+ � x)(x� z�), also
p

(z+ � x)(x� z�)

has no branch cut crossing. Now, since there are no branch cut crossing for any 0 < y < 1, for the purpose of

evaluating the function s(, ), we can fix y such that z± is fixed. If z± is fixed, the imaginary part of z+�x and

x�z� are also fixed. Hence, since s(, ) only depends on the imaginary parts of the arguments, s(z+�x, x�z�)

is also constant.
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Generic  N-point correlators in 
EFT of LSS. 

it's I Fz Fg

My
t.gl

= ∑
n

C(n)
H,Ω,…ℐ(Np)

n

ℐ(Np)
n =

it's I Fz Fg

My
t.gl

it's I Fz Fg

My
t.gl

it's I Fz Fg

My
t.gl

dtadp.
n + dbubble

n + dtrian.
n

No box, pentagon, hexagon,…  master integrals in three dimensions 
Van Neerven, Vermaseren [Phys.Lett.B 137 (1984) 241-244] 

• At one-loop, in , all loop integrals are free of  poles.


• Reduction to master integrals, with memoization in arbitrary 
arithmetic precision, numerically (setting D=3 exactly)


• Fast evaluation of integrals, permitting an efficient inference of 
cosmological parameters comparing with data. 

D = 3 − 2ϵ 1/ϵ
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Figure 1: Triangle plots, best-fit values, and relative 68%-credible intervals of base cosmological parameters
measured from the analysis of BOSS power spectrum multipoles P`, ` = 0, 2, at one-loop, bispectrum monopole
B0 at tree or one-loop level, and bispectrum quadrupole B2 at tree-level. Planck ⌫⇤CDM results are shown
for comparison.

A note of warning: We end this section of the main results with a final note of warning. It
should be emphasized that in performing this analysis, as well as the preceding ones using the
EFTofLSS by our group [4, 6, 11, 17, 13, 7, 21], we have assumed that the observational data
are not affected by any unknown systematic error or undetected foregrounds. In other words,
we have simply analyzed the publicly available data: the two- and three-point functions of
the galaxy density in redshift space as measured from the public galaxy catalogues. Given the
additional cosmological information that the theoretical modeling by the EFTofLSS allows

5

D’ Amico, Donath, Lewandowski, Senatore, Zhang [2206.08327] 



Two-loop power spectrum in EFT  of 
Large Scale Structure  

∑
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Two-loop master integrals are  (I believe…) 
intractable analytically.  On the contrary,  

they are especially simple with a direct integration in three-momentum space. 

CA, Favorito, Senatore, Mistlberger, Zheng, in progress 



Partial results from numerical 
integration at two loops 

(preliminary) Andrea Favorito, et al

The 2 Loops diagrams are:



Back to future collider physics

[source: Tourist Information, Engadin, Switzerland]
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Experimental advances
“Rare” LHC processes

• ATLAS and CMS observed  
1. triple weak gauge boson 
production  
2. Higgs production associated with 
top pairs. 


• These processes are valuable for 
testing the electroweak sector of the 
Standard Model. 


• With 10 times more data until the 
end of the LHC physics programme, 
they will be measure precisely. 


• Can we make predictions for such 
processes? 
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Figure 2: Distribution of reconstructed primary top quark mass versus reconstructed Higgs boson mass in the data
events. The right panels show the projections onto the Higgs boson mass and primary top quark mass axes. In
the upper panel, the fitted continuum background (blue), the total background including non-tt̄H/tH Higgs boson
production (green), and the total fitted signal plus background (red) are shown. The error bars on data are statistical.

modifiers � and g are measured in the Run 2 Higgs boson coupling combination [75]. This combination
includes the first 80 fb�1 of data used in this paper, and tt̄H and tH analyses from other decay channels.
The combination analysis is repeated without the tt̄H and tH inputs and this result is used to constrain
g and �. The impact on g and � of removing input tt̄H and tH analyses from the combination is
small. Correlation of the systematic uncertainties between the Higgs boson coupling combination and
this analysis is neglected. The correlation has a small impact on ↵, and a similar e�ect on t as on signal
strength reported in Ref. [75]. This analysis is insensitive to the potential modifications of ggF kinematics
due to CP-mixing, which is therefore neglected. The results of the fit for t cos(↵) and t sin(↵) are shown
as contours in Figure 3. A limit on ↵ is set without prior constraint on t in the fit: |↵ | > 43� is excluded at
95% CL. The expected exclusion is |↵ | > 63� under the CP-even hypothesis. A value of ↵ = 90 (180)� is
excluded at 3.9� (2.5�). A comparable study from the CMS experiment excluded ↵ = 90� at 3.2� [3].
If � and g are parameterized using ↵ and t [11], the observed (expected) exclusion is |↵ | > 43 (56)�
without prior constraint on t in the fit. The impact of the systematic uncertainties is negligible.

In summary, the production rate of the Higgs boson in association with top quarks is measured and the
CP property of the top Yukawa coupling is studied. The no-tt̄H hypothesis is rejected with a significance
of 5.2�, and the measured �t t̄H ⇥ B�� is 1.64 +0.38

�0.36 (stat.) +0.17
�0.14 (sys.) fb. The measured rate for tt̄H is

1.43 +0.33
�0.31 (stat.) +0.21

�0.15 (sys.) times the SM expectation. The tH process is not observed and an upper limit
of 12 times the SM expectation is set on its rate at 95% CL. All measurements are consistent with the SM
expectations and the possibility of CP-odd couplings between the Higgs boson and top quark is severely
constrained. A pure CP-odd coupling is excluded at 3.9�, and |↵ | > 43� is excluded at 95% CL.

We thank CERN for the very successful operation of the LHC, as well as the support sta� from our
institutions without whom ATLAS could not be operated e�ciently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW
and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and
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σ [pp → ttH ( → γγ)]

4

with a nonprompt lepton is evaluated using a sample of events in which one lepton satisfies
loose identification criteria but fails the tight criteria. The number of events in this region de-
termines the estimate of the nonprompt background in the signal region using a transfer factor
computed with a separate event sample rich in nonprompt leptons. This transfer factor is the
ratio of the number of events that pass the tight selection criteria to those that pass the loose
criteria. For the 5` channel, a sample of events with three prompt leptons and one nonprompt
lepton is dominated by WZ production and used to verify the prediction of background con-
tributions with nonprompt leptons. Nonprompt leptons are a minor background for all other
channels.
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Figure 1: Comparison of the observed numbers of events to the predicted yields after fitting.
For the WWW and WWZ channels, the results from the BDT-based selections are used. The
VVV signal is shown stacked on top of the total background. The points represent the data
and the error bars show the statistical uncertainties. The expected significance L in the middle
panel represents the number of standard deviations (sd) with which the null hypothesis (no
signal) is rejected; it is calculated for the fit for µcomb. The lower panel shows the pulls for the
fit result.

The signal strength µ, defined as the measured production cross section times branching frac-
tion divided by the expected SM value, is determined through simultaneous fits to all twenty-
one signal regions. In one version of the fit, four independent signal strengths (µWWW, µWWZ,
µWZZ, and µZZZ) are used. In the other version, a common signal strength µcomb is used for all
four processes.

The most important sources of systematic uncertainty involve the estimation of background
contributions; the uncertainties range from 5 to 25% and come mainly from limited statis-
tical precision in the control regions. The uncertainties in the nonprompt background esti-
mates from control samples in data also contribute significantly at 50%. Uncertainties related
to trigger efficiencies, lepton identification and energy resolution, jet energy scale, and b-jet
tagging efficiency range from 1 to 9%. A 2.3–2.5% uncertainty in the integrated luminosity is
assessed [58–60]. Uncertainties due to limitations of the theory include missing higher-order
corrections (2–14%), PDF uncertainties (2–7%), and the strong coupling aS (1%). Theoretical
and experimental uncertainties are correlated across different channels. Statistical uncertain-

σ [pp → VVV] V = W, Z

Measurements of triboson production at colliders directly probe the strength of gauge boson self-interactions
within the standard model (SM) via triple gauge couplings and quartic gauge couplings [1, 2]. Any
significant deviations from the SM predictions would provide evidence of new physics at a higher energy
scale than is presently accessible [3–8]. Triboson final states are among the least-understood SM processes
due to their small production cross sections. In particular, searches for the production of three W bosons
(,,,) have been performed by both the ATLAS [9, 10] and CMS [11, 12] Collaborations. Using
proton-proton (??) collisions at a center-of-mass energy (

p
B) of 13 TeV delivered by the Large Hadron

Collider (LHC) [13], the ATLAS Collaboration analyzed 80 fb≠1 of data and provided evidence for both
,,, and ,,//,// production [10], and the CMS Collaboration analyzed 137 fb≠1 of data and
observed the combined production of three massive vector bosons (,,, , ,,/ , ,// and ///) [12].

This Letter reports the observation of ,,, production and a measurement of its cross section using
139 fb≠1 of data at

p
B = 13 TeV [14] taken with the ATLAS detector. At leading order (LO) in QCD,

,,, production can proceed via the radiation of each , boson from a fermion, via a , boson produced
in association with an intermediate Z/W⇤ or Higgs boson that decays via the ,,

⇤ intermediate state, or via
a quartic gauge coupling vertex. Representative Feynman diagrams are shown in Figure 1. The analysis
selection is sensitive to processes with both on-shell and o�-shell , bosons decays. For simplicity all
these processes (including ,� ! ,,,

⇤) are generically referred to as ,,, throughout this Letter.
Two decay channels, ,,, ! ✓

±
a✓

±
a@@ and ,,, ! ✓

±
a✓

±
a✓

⌥
a with ✓ = 4 or `, are considered and

are hereafter referred to as 2✓ and 3✓, respectively. Events with electrons and muons produced through g

leptons are also included. The experimental signature of the 2✓ channel consists of two same-sign charged
leptons, missing transverse momentum, and two jets, while the signature of the 3✓ channel consists of three
charged leptons and missing transverse momentum.

Figure 1: Representative Feynman diagrams at LO for the production of three massive , bosons, including diagrams
sensitive to triple and quartic gauge couplings.

The ATLAS detector [15] is a multipurpose particle physics detector with cylindrical geometry.1 It consists
of an inner tracker (ID) surrounded by a superconducting solenoid, sampling electromagnetic (EM) and
hadronic calorimeters, and a muon spectrometer (MS) with three toroidal superconducting magnets. A
two-level trigger system is used to select events for storage. Events used in this analysis were selected
online by single-electron or single-muon triggers [16–18]. An extensive software suite [19] is used in the
reconstruction and analysis of real and simulated data, in detector operations, and in the trigger and data
acquisition systems of the experiment.

1 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the center of the detector
and the I-axis along the beam pipe. The G-axis points from the IP to the center of the LHC ring, and the H-axis points
upwards. Cylindrical coordinates (A, q) are used in the transverse plane, q being the azimuthal angle around the I-axis. The
pseudorapidity is defined in terms of the polar angle \ as [ = � ln tan(\/2). Momentum in the transverse plane is denoted by
?
)

.
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1. triple weak gauge boson 
production  
2. Higgs production associated with 
top pairs. 


• These processes are valuable for 
testing the electroweak sector of the 
Standard Model. 


• With 10 times more data until the 
end of the LHC physics programme, 
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Figure 2: Distribution of reconstructed primary top quark mass versus reconstructed Higgs boson mass in the data
events. The right panels show the projections onto the Higgs boson mass and primary top quark mass axes. In
the upper panel, the fitted continuum background (blue), the total background including non-tt̄H/tH Higgs boson
production (green), and the total fitted signal plus background (red) are shown. The error bars on data are statistical.

modifiers � and g are measured in the Run 2 Higgs boson coupling combination [75]. This combination
includes the first 80 fb�1 of data used in this paper, and tt̄H and tH analyses from other decay channels.
The combination analysis is repeated without the tt̄H and tH inputs and this result is used to constrain
g and �. The impact on g and � of removing input tt̄H and tH analyses from the combination is
small. Correlation of the systematic uncertainties between the Higgs boson coupling combination and
this analysis is neglected. The correlation has a small impact on ↵, and a similar e�ect on t as on signal
strength reported in Ref. [75]. This analysis is insensitive to the potential modifications of ggF kinematics
due to CP-mixing, which is therefore neglected. The results of the fit for t cos(↵) and t sin(↵) are shown
as contours in Figure 3. A limit on ↵ is set without prior constraint on t in the fit: |↵ | > 43� is excluded at
95% CL. The expected exclusion is |↵ | > 63� under the CP-even hypothesis. A value of ↵ = 90 (180)� is
excluded at 3.9� (2.5�). A comparable study from the CMS experiment excluded ↵ = 90� at 3.2� [3].
If � and g are parameterized using ↵ and t [11], the observed (expected) exclusion is |↵ | > 43 (56)�
without prior constraint on t in the fit. The impact of the systematic uncertainties is negligible.

In summary, the production rate of the Higgs boson in association with top quarks is measured and the
CP property of the top Yukawa coupling is studied. The no-tt̄H hypothesis is rejected with a significance
of 5.2�, and the measured �t t̄H ⇥ B�� is 1.64 +0.38

�0.36 (stat.) +0.17
�0.14 (sys.) fb. The measured rate for tt̄H is

1.43 +0.33
�0.31 (stat.) +0.21

�0.15 (sys.) times the SM expectation. The tH process is not observed and an upper limit
of 12 times the SM expectation is set on its rate at 95% CL. All measurements are consistent with the SM
expectations and the possibility of CP-odd couplings between the Higgs boson and top quark is severely
constrained. A pure CP-odd coupling is excluded at 3.9�, and |↵ | > 43� is excluded at 95% CL.

We thank CERN for the very successful operation of the LHC, as well as the support sta� from our
institutions without whom ATLAS could not be operated e�ciently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW
and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and
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with a nonprompt lepton is evaluated using a sample of events in which one lepton satisfies
loose identification criteria but fails the tight criteria. The number of events in this region de-
termines the estimate of the nonprompt background in the signal region using a transfer factor
computed with a separate event sample rich in nonprompt leptons. This transfer factor is the
ratio of the number of events that pass the tight selection criteria to those that pass the loose
criteria. For the 5` channel, a sample of events with three prompt leptons and one nonprompt
lepton is dominated by WZ production and used to verify the prediction of background con-
tributions with nonprompt leptons. Nonprompt leptons are a minor background for all other
channels.
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Figure 1: Comparison of the observed numbers of events to the predicted yields after fitting.
For the WWW and WWZ channels, the results from the BDT-based selections are used. The
VVV signal is shown stacked on top of the total background. The points represent the data
and the error bars show the statistical uncertainties. The expected significance L in the middle
panel represents the number of standard deviations (sd) with which the null hypothesis (no
signal) is rejected; it is calculated for the fit for µcomb. The lower panel shows the pulls for the
fit result.

The signal strength µ, defined as the measured production cross section times branching frac-
tion divided by the expected SM value, is determined through simultaneous fits to all twenty-
one signal regions. In one version of the fit, four independent signal strengths (µWWW, µWWZ,
µWZZ, and µZZZ) are used. In the other version, a common signal strength µcomb is used for all
four processes.

The most important sources of systematic uncertainty involve the estimation of background
contributions; the uncertainties range from 5 to 25% and come mainly from limited statis-
tical precision in the control regions. The uncertainties in the nonprompt background esti-
mates from control samples in data also contribute significantly at 50%. Uncertainties related
to trigger efficiencies, lepton identification and energy resolution, jet energy scale, and b-jet
tagging efficiency range from 1 to 9%. A 2.3–2.5% uncertainty in the integrated luminosity is
assessed [58–60]. Uncertainties due to limitations of the theory include missing higher-order
corrections (2–14%), PDF uncertainties (2–7%), and the strong coupling aS (1%). Theoretical
and experimental uncertainties are correlated across different channels. Statistical uncertain-

σ [pp → VVV] V = W, Z

Measurements of triboson production at colliders directly probe the strength of gauge boson self-interactions
within the standard model (SM) via triple gauge couplings and quartic gauge couplings [1, 2]. Any
significant deviations from the SM predictions would provide evidence of new physics at a higher energy
scale than is presently accessible [3–8]. Triboson final states are among the least-understood SM processes
due to their small production cross sections. In particular, searches for the production of three W bosons
(,,,) have been performed by both the ATLAS [9, 10] and CMS [11, 12] Collaborations. Using
proton-proton (??) collisions at a center-of-mass energy (

p
B) of 13 TeV delivered by the Large Hadron

Collider (LHC) [13], the ATLAS Collaboration analyzed 80 fb≠1 of data and provided evidence for both
,,, and ,,//,// production [10], and the CMS Collaboration analyzed 137 fb≠1 of data and
observed the combined production of three massive vector bosons (,,, , ,,/ , ,// and ///) [12].

This Letter reports the observation of ,,, production and a measurement of its cross section using
139 fb≠1 of data at

p
B = 13 TeV [14] taken with the ATLAS detector. At leading order (LO) in QCD,

,,, production can proceed via the radiation of each , boson from a fermion, via a , boson produced
in association with an intermediate Z/W⇤ or Higgs boson that decays via the ,,

⇤ intermediate state, or via
a quartic gauge coupling vertex. Representative Feynman diagrams are shown in Figure 1. The analysis
selection is sensitive to processes with both on-shell and o�-shell , bosons decays. For simplicity all
these processes (including ,� ! ,,,

⇤) are generically referred to as ,,, throughout this Letter.
Two decay channels, ,,, ! ✓

±
a✓

±
a@@ and ,,, ! ✓

±
a✓

±
a✓

⌥
a with ✓ = 4 or `, are considered and

are hereafter referred to as 2✓ and 3✓, respectively. Events with electrons and muons produced through g

leptons are also included. The experimental signature of the 2✓ channel consists of two same-sign charged
leptons, missing transverse momentum, and two jets, while the signature of the 3✓ channel consists of three
charged leptons and missing transverse momentum.

Figure 1: Representative Feynman diagrams at LO for the production of three massive , bosons, including diagrams
sensitive to triple and quartic gauge couplings.

The ATLAS detector [15] is a multipurpose particle physics detector with cylindrical geometry.1 It consists
of an inner tracker (ID) surrounded by a superconducting solenoid, sampling electromagnetic (EM) and
hadronic calorimeters, and a muon spectrometer (MS) with three toroidal superconducting magnets. A
two-level trigger system is used to select events for storage. Events used in this analysis were selected
online by single-electron or single-muon triggers [16–18]. An extensive software suite [19] is used in the
reconstruction and analysis of real and simulated data, in detector operations, and in the trigger and data
acquisition systems of the experiment.

1 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the center of the detector
and the I-axis along the beam pipe. The G-axis points from the IP to the center of the LHC ring, and the H-axis points
upwards. Cylindrical coordinates (A, q) are used in the transverse plane, q being the azimuthal angle around the I-axis. The
pseudorapidity is defined in terms of the polar angle \ as [ = � ln tan(\/2). Momentum in the transverse plane is denoted by
?
)

.

2

Two loop amplitudes are intractable analytically. 

Challenging! New ideas?



Two loop amplitudes with direct 
integration

• Two-loop amplitudes with direct   
integration over loop momenta?


• Number of integrals is SIX. 


• … for all two-loop amplitudes 
and kinematic configurations. 


• Understand fully the singular 
structure of QCD amplitudes at 
two loops.     

A2 ({pexti}, {Mi})

d ⟶ 4 ?
Singularities

= ∫ ddk ∫ ddl 𝒜2 (k, l, {pexti}, {Mi})
Monte-Carlo Integration?



Singularities of Feynman diagrams 
and scattering amplitudes

• The poles can lie inside 
the domain of 
integration. 


• If we can deform the 
path of integration away 
from the poles, then 
they lead to no 
singularities

∫
∞

−∞
dE…

⋯
E2 − ω2 + iδ

= ∫
∞

−∞
dE…

⋯
ω ( 1

E − ω + iδ
−

1
E + ω − iδ )

ω → ω − iδ with δ → 0

ReE

ImE

−ω
+ω



Integrable Singularities

• The poles can lie inside 
the domain of 
integration. 


• If we can deform the 
path of integration away 
from the poles, then 
they lead to no 
singularities

∫
∞

−∞
dE…

⋯
E2 − ω2 + iδ

= ∫
∞

−∞
dE…

⋯
ω ( 1

E − ω + iδ
−

1
E + ω − iδ )

ω → ω − iδ with δ → 0

ReE

ImE

−ω
+ω



Soft massless particles

ReE

ImE

∫
∞

−∞
dE…

⋯
(E + iδ) (E − iδ)

• Poles due to soft 
massless particles. 

• These singularities 
pinch the integration 
path from both sides.  

• Condition for a TRUE 
INFINITY



Collinear massless 
particles

ReE

ImE

particle 1

particle 2

p
(1 − x) ⋅ p

x ⋅ p• A second source of infinities 
due to massless collinear 
particles.  

• A singularity of one particle in 
the lower half-plane lines up 
with the singularity of a collinear 
particle in the higher half-pane. 

• The singularities pinch the 
integration path from both 
sides.  

• We cannot deform the path, a 
condition for a TRUE INFINITY!



Infrared amplitude factorization
• UV Renormalized scattering 
amplitudes  for well-separated final-
states take a simple factorized form 
                     

  

  - “soft” and “jet”  functions contain 
all divergences. 


•These are  universal functions. For 
any new process we should need to 
compute only the “hard” function. 


•So far, we do not have a way to 
compute the “hard” function directly. 


•But, what if we did?   
 
                         
                     

Amplitude = hard ⋅ soft ⋅ ∏
i

Jeti .
HARD

Jet

JetJet

Jet

Soft

Ma;  
Erdogan, Sterman; 
Schwartz;  
Collins



How could we imagine 
using  factorisation?

𝒜

1/Jet

1/Jet1/J
et

1/J
et

1/Soft

HARD =

An inverted factorization  theorem



How could we imagine 
using factorization?

A = ∫ [dk] 𝒜(k) = ∫ 𝒮∏
i

𝒥i ⋅ ∫ [dk] 𝒜(k) ⋅ 𝒮−1(k) ⋅ ∏
i

𝒥−1
i (k)

Analytic Integration in ,  
known  to at least three-loops

D = 4 − 2ϵ Numerical integration in  

exactly D = 4.
Universal

From factorisation we could identify, remove and integrate separately the singular parts of 
amplitudes order by order in perturbation theory:

Hard

This procedure is universal…could be applied to any process, irrespectively of the complexity 
of its final state.

ℋ(0) = 𝒜(0) ℋ(1) = 𝒜(1) − 𝒥(1)ℋ(0) − 𝒮(1)ℋ(0) ℋ(2) = 𝒜(2) − 𝒥(1)ℋ(1) − 𝒮(1)ℋ(1) − 𝒥(2)ℋ(0) − 𝒮(2)ℋ(0) + 𝒥(1)𝒮(1)ℋ(0) …

Divergent Finite

Process dependent

soft/collinear
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Factorisation and locality  
Is it an obstacle for a meaningful invertion of the factorization theorem?
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• In the integral expression of the 
process dependent “HARD” function, 
we need singularities to be cancelled 
locally, AT THE INTEGRAND. 


• A naive construction leads to non-
local cancellations.  


• Integrands with non-local 
cancellations cannot be integrated 
numerically.  


• To enable Monte-Carlo integration 
methods, can we ensure that ALL 
soft, collinear and ultraviolet 
singularities cancel  point by point in 
the integrand? 


• A challenge!                                 
  

Non-local cancellations Local cancellations 
Numerically integrable



Ingredients of factorization

• Collinear gluons acquire 
longitudinal (non-
physical) polarisations. 


• Gauge symmetry and 
the Ward identities 
derived from it, 
guarantee that 
contributions from 
unphysical gluons 
almost cancel…


• … leaving a factored 
correction to external 
legs                               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Collinear limit is a  
self-energy correction  
to an external state.  
Factorized. 



Ingredients of factorization 
are “almost” local!

• Collinear gluons off 
one-loop vertices 
acquire random 
polarisations. 


• Ward identities 
generate non-local 
zeros.

it

k → x p

l ∼ hard

…kμ + …lμ

k2(k + p)2l2(l + p)2(k + l + p)2
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Loop  
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Factorization at the integrand
Amplitude construction

• Assign correlated 
momentum flows to all 
diagrams. 


• Cure “loop polarizations” 
with additional vertices at 
external legs. 


• Cure non-local remnants of 
Ward identities with  “shift 
counterterms” which 
integrate to zero


• Locally subtract ultraviolet 
singularities respecting 
Ward identities and the 
above integrand 
modifications. 

loop and Hµ tree in Fig. 3) occur only in these diagrams and from regions (1k,Hl),

while (Hk, 1l) corresponds to a one-loop hard scattering subdiagram (J µ tree and

Hµ one-loop in Fig. 3) . As above, J µ is always a single-particle irreducible diagram.

We discuss both regions because we will need to modify the integrands of certain

diagrams to deal with loop polarizations, and we must check that these modifications

do not a↵ect other regions. We begin our discussion with what we will refer to as the

“QED triangle”, the vertex diagram in Fig. 4 with three quark-gluon vertices. We

then go on to the “QCD triangle”, with a three-gluon vertex, and finally the relevant

self-energy (Type S) diagrams.

To anticipate, in this and subsequent sections, we will detail the three ingredients

of our construction of a locally finite integrand for our amplitudes. First, we will

modify Feynman graphs or subgraphs in order to make infrared factorization man-

ifest locally. Then we will introduce IR counterterms, and finally we will introduce

ultraviolet counterterms.

4.1 Loop polarizations in type V diagrams I: the QED triangle

A Type V QED-type correction is a vertex adjacent to the incoming quark line,

corresponding to integrand factors of the form
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V µ (k, l) u (p1) , (4.1)

where T (q)

c is the color generator in fundamental representation. Adopting the con-

vention of Eq. (2.2), the factors of (2⇡)�D associated with loop momenta are al-

ready accounted for. A direct application of Feynman rules in the conventions of

Refs. [171, 172] yields

V µ (k, l) =
�⌫(/k + /l + /p

1
)�µ(/l + /p

1
)�⌫

l2 (l + p1)
2 (k + l + p1)

2
. (4.2)

We will study singularities that arise when terms that result from this subdiagram

are inserted into any of the two-loop diagrams in the class under study (quark-

antiquark annihilation to color-neutral final states). Our goal is to identify terms

associated with loop polarizations, which factorize after integration, but for which

tree-level Ward identities do not immediately result in factorized singular integrands

that cancel in the subtracted amplitude, Eq. (2.3).

To begin this analysis, we write V µ as an sum of two terms with di↵ering struc-

ture of the collinear singularities,

V µ (k, l) = V µ

k
(k, l) + V µ

l
(k, l) . (4.3)

– 12 –

which can be proved using changes of variables, l0 = �(l + k + p1) and l0 = �(l +

k+ 2p1), respectively, for D less than four dimensions. Using these results below, in

four dimensions, it will be possible to introduce ultraviolet counterterms to ensure

that the resulting integrals remain convergent, while again leaving the results of the

integrals unchanged. Using these identities, we will cancel loop polarizations locally.

4.2 Loop polarizations in type V diagrams II: the QCD triangle

We identify loop polarizations in the QCD triangle in a similar fashion. The vertex

takes the form
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The momentum dependence of the integrand in the truncated QCD triangle diagram

in Fig. 4 will be written as

W µ(k, l) = W µ

scalar
(k, l) + Oµ(k, l) , (4.11)

where, as for the QED vertex, it is convenient to isolate terms on the basis of their

behavior in di↵erent regions. As we will describe, the vectors W µ

scalar
and Oµ have

di↵erent behavior in region (1k,Hl). They also give, respectively, self-energy and

ghost contributions to the Ward identity for external gluon k, which we will also

review below.

The first vector is generated from the “scalar” term of the three-gluon vertex,

and is given by

W µ

scalar
(k, l) =

(2l � k)µ �↵
⇣
/l + /p

1

⌘
�↵

l2 (l + p1)2 (k � l)2
. (4.12)

Acting on the Dirac spinor, this simplifies in D = 4� 2✏ dimensions to

W µ

scalar
(k, l) u(p1) = � 2 (1� ✏) (2l � k)µ/l

l2 (l + p1)2 (k � l)2
u(p1) , (4.13)

and we see explicit loop polarizations. As in the QED vertex in Eq. (4.8), we isolate

loop polarizations that are singular in region (1k,Hl) by expanding the vector lµ in

l/, in terms of its components in the p1, ⌘1 and perpendicular directions. Then, using

– 15 –

integrates to factorizable form. This contribution is entirely avoided, however, if we

use symmetric integration to reduce the quark self-energy to a scalar integral. To be

specific, we introduce the factors

NS�q(k, l) =
(1� ✏)

l2 (l + k + p1)
2
, (4.17)

and

NS�q̄(k, l) =
(1� ✏)

l2 (l + k � p2)
2
, (4.18)

for quark and antiquark, respectively. We then perform the replacements
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Ps

Yickd
⇥ ig2

s
CF NS�q(k, l)

= g3
s
CF NS�q(k, l)T

(q)

c
�µ u(p1) (4.19)

and, for a self-energy diagram on the incoming antiquark,

THE
pkamob

e Pa
Pa

=
THE

pkamob
e Pa

Pa

⇥ ig2
s
CF NS�q̄(k, l)

= g3
s
CF NS�q̄(k, l)T

(q)

c
v̄(p2) �

µ . (4.20)

The above modifications do not alter the integrated value of the amplitude.

In summary, after symmetric integration for type S diagrams, the remaining

singular loop polarization terms are found in Eqs. (4.8) and (4.14). Having identified

these terms, we are now ready to show how to rewrite the corresponding contributions

to the integrands in a manner that explicitly removes all singular loop polarizations

at the local level. As we will see, it is possible to do this without changing the results

of integration, by the addition of counterterms, based on the identities in Eq. (4.9).

The modified integrands will satisfy the Ward identities of Fig. 3 locally, making

possible the local cancellation of these regions in the subtracted amplitudes of Eq.

(2.3). We emphasize, that as for the QED amplitudes studied in Ref. [146], these

counterterms are added to both the electroweak amplitude in question and to the

form factor that defines its subtractions.

– 17 –

∫=

+ +

loop and Hµ tree in Fig. 3) occur only in these diagrams and from regions (1k,Hl),

while (Hk, 1l) corresponds to a one-loop hard scattering subdiagram (J µ tree and

Hµ one-loop in Fig. 3) . As above, J µ is always a single-particle irreducible diagram.

We discuss both regions because we will need to modify the integrands of certain

diagrams to deal with loop polarizations, and we must check that these modifications

do not a↵ect other regions. We begin our discussion with what we will refer to as the

“QED triangle”, the vertex diagram in Fig. 4 with three quark-gluon vertices. We

then go on to the “QCD triangle”, with a three-gluon vertex, and finally the relevant

self-energy (Type S) diagrams.

To anticipate, in this and subsequent sections, we will detail the three ingredients

of our construction of a locally finite integrand for our amplitudes. First, we will

modify Feynman graphs or subgraphs in order to make infrared factorization man-

ifest locally. Then we will introduce IR counterterms, and finally we will introduce

ultraviolet counterterms.

4.1 Loop polarizations in type V diagrams I: the QED triangle

A Type V QED-type correction is a vertex adjacent to the incoming quark line,

corresponding to integrand factors of the form
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where T (q)

c is the color generator in fundamental representation. Adopting the con-

vention of Eq. (2.2), the factors of (2⇡)�D associated with loop momenta are al-

ready accounted for. A direct application of Feynman rules in the conventions of

Refs. [171, 172] yields

V µ (k, l) =
�⌫(/k + /l + /p

1
)�µ(/l + /p

1
)�⌫

l2 (l + p1)
2 (k + l + p1)

2
. (4.2)

We will study singularities that arise when terms that result from this subdiagram

are inserted into any of the two-loop diagrams in the class under study (quark-

antiquark annihilation to color-neutral final states). Our goal is to identify terms

associated with loop polarizations, which factorize after integration, but for which

tree-level Ward identities do not immediately result in factorized singular integrands

that cancel in the subtracted amplitude, Eq. (2.3).

To begin this analysis, we write V µ as an sum of two terms with di↵ering struc-

ture of the collinear singularities,

V µ (k, l) = V µ

k
(k, l) + V µ

l
(k, l) . (4.3)
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which can be proved using changes of variables, l0 = �(l + k + p1) and l0 = �(l +

k+ 2p1), respectively, for D less than four dimensions. Using these results below, in

four dimensions, it will be possible to introduce ultraviolet counterterms to ensure

that the resulting integrals remain convergent, while again leaving the results of the

integrals unchanged. Using these identities, we will cancel loop polarizations locally.

4.2 Loop polarizations in type V diagrams II: the QCD triangle

We identify loop polarizations in the QCD triangle in a similar fashion. The vertex

takes the form
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The momentum dependence of the integrand in the truncated QCD triangle diagram

in Fig. 4 will be written as

W µ(k, l) = W µ

scalar
(k, l) + Oµ(k, l) , (4.11)

where, as for the QED vertex, it is convenient to isolate terms on the basis of their

behavior in di↵erent regions. As we will describe, the vectors W µ

scalar
and Oµ have

di↵erent behavior in region (1k,Hl). They also give, respectively, self-energy and

ghost contributions to the Ward identity for external gluon k, which we will also

review below.

The first vector is generated from the “scalar” term of the three-gluon vertex,

and is given by

W µ

scalar
(k, l) =

(2l � k)µ �↵
⇣
/l + /p

1

⌘
�↵

l2 (l + p1)2 (k � l)2
. (4.12)

Acting on the Dirac spinor, this simplifies in D = 4� 2✏ dimensions to

W µ

scalar
(k, l) u(p1) = � 2 (1� ✏) (2l � k)µ/l

l2 (l + p1)2 (k � l)2
u(p1) , (4.13)

and we see explicit loop polarizations. As in the QED vertex in Eq. (4.8), we isolate

loop polarizations that are singular in region (1k,Hl) by expanding the vector lµ in

l/, in terms of its components in the p1, ⌘1 and perpendicular directions. Then, using
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integrates to factorizable form. This contribution is entirely avoided, however, if we

use symmetric integration to reduce the quark self-energy to a scalar integral. To be

specific, we introduce the factors

NS�q(k, l) =
(1� ✏)

l2 (l + k + p1)
2
, (4.17)

and

NS�q̄(k, l) =
(1� ✏)

l2 (l + k � p2)
2
, (4.18)

for quark and antiquark, respectively. We then perform the replacements
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and, for a self-energy diagram on the incoming antiquark,
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s
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The above modifications do not alter the integrated value of the amplitude.

In summary, after symmetric integration for type S diagrams, the remaining

singular loop polarization terms are found in Eqs. (4.8) and (4.14). Having identified

these terms, we are now ready to show how to rewrite the corresponding contributions

to the integrands in a manner that explicitly removes all singular loop polarizations

at the local level. As we will see, it is possible to do this without changing the results

of integration, by the addition of counterterms, based on the identities in Eq. (4.9).

The modified integrands will satisfy the Ward identities of Fig. 3 locally, making

possible the local cancellation of these regions in the subtracted amplitudes of Eq.

(2.3). We emphasize, that as for the QED amplitudes studied in Ref. [146], these

counterterms are added to both the electroweak amplitude in question and to the

form factor that defines its subtractions.
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+

The term J µ

c,canonical
(k, l) is naturally produced in a conventional generation of the

Feynman diagrams for the electroweak process, in which S-type diagrams are treated

as in Eq. (4.19),

J µ

c,canonical
(k, l) ⌘ g3

s
T (q)

c

"
CF �µNS�q(k, l) +

✓
CA

2
� CF

◆
V µ(k, l) +

CA

2
W µ(k, l)

#
.

)(4.37)

The counterterm in Eq. (4.36) is then

�1J µ

c
(k, l) ⌘
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CA

2
{V µ

k
(k,�l � p1)� V µ

k
(k, l)}

�CA �J µ(k,�l � p1)� CF �J µ(k, l)

#
. (4.38)

This term can be thought of as an additional Feynman rule.

We eliminate loop polarizations from the jet function of the incoming antiquark

by introducing an analogous additive term, obtained directly from Eq. (4.38) by

exchanging the momenta labels, k $ l, by substituting p1 ! �p2 (as noted after Eq.

(4.21)), and defining an appropriate auxiliary vector ⌘1 ! ⌘2 with p2 · ⌘2 6= 0. The

result is,

�2J µ

c
(l, k) ⌘
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Pa

j
Pa

= �1J µ

c
(l, k)

����� ⌘1!⌘2
p1!�p2

. (4.39)

4.5 Single-collinear region (2k,Hl) and its Ward identity

To confirm the arguments after Eq. (4.29) concerning the finiteness in the (2k,Hl) of

the modified jet diagrams, we examine the subtracted integrands explicitly, acting

on (p1). We start by combining terms that appear with explicit coe�cient CA/2 in

the first form of Eq. (4.35),

[J µ

kA
(k, l)� 2 �J µ(k,�l � p1)] u(p1) =

2 (1� ✏)

l2 (l + p1)
2 (k � l)2

⇥
(
l2�µ

?(p1,⌘1)
+ (k � 4l)µ/l?(p1,⌘1)

� l · p1
p1 · ⌘1

kµ
/⌘
1

)
u(p1) . (4.40)
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• Integrates to zero


• Eliminates loop 
polarizations

𝒜(2) → 𝒜(2) + f(k, l)  with ∫ ddkddl f(k, l) = 0.

f (k, l) =

In closing this subsection, we observe that the same procedure that demonstrates

factorization of the shift counterterms in double collinear limits (1k, 1l) and (2k, 2l)

for the form factor applies to the general electroweak amplitudes discussed here. The

only di↵erence is to apply the identity of Eq. (5.2) repeatedly, first to the outer gluon,

and then to the resulting vertex into which both (collinear) gluon momenta flow.
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Figure 12: Shift term �planar, Eq. (5.8), for uncrossed gluonic loops. All diagrams

are assigned color factor CFCA/2. Each pair of diagrams integrates to zero in loop

momentum l, but enables local factorization in region (1k, Hl).

5.3 Local factorization for ghost terms

In the foregoing, we have split the treatment of diagrams with three-gluon vertices

into “scalar” and “ghost” components. For V type diagrams discussed in Sec. 4,

these were the scalar term W µ

scalar
and the ghost term Oµ(k, l), given in Eqs. (4.11)

and (4.15), respectively. The Oµ term for the three-gluon QCD vertex on the quark

line, in particular, is just one of the diagrams that contributes singularities in the

single-collinear region (2k,Hl), where we expect a factorization of the type shown in

Fig. 3. We have set aside contributions of this type until now, and we must still show

that their factorization requires no shifts of loop momentum, and hence no additional

counterterm. That is, we will verify that the factorization of the ghost contributions

is already local at the order to which we work. The contributions we have set aside

are all in the diagrams of Fig. 11c for the region (2k,Hl), with a three-gluon vertex

connecting a collinear gluon to the hard scattering. Precisely analogous arguments

apply to (1k,Hl).

This decomposition into scalar and ghost terms for the diagrams of Fig. 11c

originates with the contraction of a tree triple-gluon vertex with a longitudinal po-
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• Integrates to zero


• Removes non-local  
remnants of Ward Identities



Locally finite integrands for a  class of 
two-loop QCD amplitudes (gluon fusion) 

g + g → V1 + V2 + …Vn , Vi = Higgs, W, Z, γ*

 CA, Julia Karlen, George Sterman, Ani Venkata ( to appear )

SUMMARY AND CONCLUSION

• With the introduced loop momentum routing for scalar decomposed diagrams, all IR
singularities of the multiple Higgs production two-loop amplitude are removed by the shifted
form factor counterterm:

M
(2)
n,IR-finite = M

(2)
n �

1

2
F

(1)
ss

⇣
fM(1)

n (l) + fM(1)
n (l+ k)

⌘
.

• IR finiteness ofM(2)
n,IR-finite checked numerically up to 3 Higgs.

• Local UV counterterms are constructed using the R-operation forest formula (BPHZ) (Bogoliubov
and Parasiuk 1957; Hepp 1966; Zimmermann 1969) �! fully finite amplitude on the integrand level ready for
numerical integration in D = 4:

M
(2)
n,finite = M

(2)
n, UV-finite �

1

2
F

(1)
ss, UV-finite

⇣
fM(1)

n, finite(l) + fM(1)
n, finite(l+ k)

⌘
,

with e.g. M(2)
n, UV-finite = R(M(2)

n ).

• Next challenges:

• numerical integration in D = 4
• extend method to colorful final states
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Locally finite integrands for a  class of 
two-loop QCD amplitudes (quark fusion) 

q + q̄ → V1 + V2 + …Vn , Vi = W, Z, γ*

ℋ1−loop(k) = 𝒜1−loop − ℱ(1) [𝒜0]

ℋ2−loop(k, l) = 𝒜2−loop − ℱ(2) [𝒜0] − ℱ(1) [ℋ1−loop]

 CA, George Sterman



Numerical integration

• Can such IR subtractions be used 
for evaluating loop amplitudes 
numerically? 


• They are an important ingredient! 
They remove “pinch” singularities.  


• Other singularities which can be 
avoided with appropriate contour-
deformations are equally 
important.


• Breakthroughs and excellent 
ideas. 
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Numerical integration of  𝒜1−loop
qq̄→γγγ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0 0.1 0.2 0.3 0.4 0.5

0.6 0.7 0.8
0.9 1

1e-6
1e-5
1e-4
1e-3
1e-2
1e-1
1e0

Scan dd̄ ! ���

s45/s12

✓/⇡

|R
e(
A

ML
5)

|

1e-4
1e-3
1e-2
1e-1
1e0

(a) Real part of the amplitude

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0 0.1 0.2 0.3 0.4 0.5

0.6 0.7 0.8
0.9 1

1e-6
1e-5
1e-4
1e-3
1e-2
1e-1
1e0

Scan dd̄ ! ���

s45/s12

✓/⇡

|Im
(A

ML
5)

|

1e-4
1e-3
1e-2
1e-1
1e0

(b) Imaginary part of the amplitude.
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(c) Real part of the regulated amplitude.
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(d) Imaginary part of the regulated amplitude.
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(e) Accuracy and precision of the real part of the
LTD integration.
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the LTD integration.

Figure 23: A scan for dd̄ ! �1�2�3. The results are absolute values plotted on a log scale.
The first row (a – b) shows the real and the imaginary part of the amplitude computed with
ML5. The second row (c – d) shows the relative difference between the analytic expression
and the integrated counterterms. The last row (e – f) shows the LTD integration. They are
a combination of two plots: the surface above shows the relative error of the central value
compared with the analytic expression, the flat surface below shows the Monte Carlo error
for the point right above.
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Vs

New ideas and schemes for 
numerical integration

ImE
Exposing the threshold structure of loop integrals

Zeno Capatti⇤

Institute for Theoretical Physics, ETH Zürich,
Wolfgang-Pauli-Str. 27, 8093, Zürich

(Dated: November 18, 2022)

The understanding of the physical laws determining the infrared behaviour of amplitudes is a
longstanding and topical problem. In this paper, we show that energy conservation alone implies
strong constraints on the threshold singularity structure of Feynman diagrams. In particular, we
show that it implies a representation of loop integrals in terms of Fourier transforms of non-simplicial
convex cones. We then engineer a triangulation that has a direct diagrammatic interpretation
in terms of a straightforward edge-contraction operation. We use it to develop an algorithmic
procedure that performs the Fourier integrations in closed form, yielding the novel Cross-Free Family
three-dimensional representation of loop integrals. Contrary to the TOPT and LTD representations,
its singularity structure is entirely and elegantly expressed in terms of the graph-theoretic notions of
connectedness and crossing. These results can be used to classify infrared-finite scattering theories,
numerically evaluate loop integrals and to simplify threshold regularisation procedures.

I. INTRODUCTION

The study of the threshold singularity structure of Feyn-
man diagrams and scattering amplitudes is an enduring
e↵ort that has, throughout the years, lead to incredible
developments that have shed light on the infrared physics
of quantum scattering phenomena (see [1] for a review
and [1–49] for a historical selection of works on the topic).
Three-dimensional representations of Feynman dia-

grams, obtained via Time-Ordered Perturbation Theory
(TOPT) (see [50, 51] for a review), via Flow-Oriented
Perturbation Theory (FOPT) [52] or through the Loop-
Tree Duality (LTD) formalism [53–58], are famously apt
to performing a systematic singularity analysis of Feyn-
man integrals. Indeed, the interplay of energy conser-
vation and residue theorem involved in their derivation
makes their singularities directly interpretable in terms of
cuts [2]. This in turn allows to leverage a host of graph-
theoretical knowledge to perform a diagrammatic study
of the structure of physical thresholds. Even then, these
three-dimensional representations are plagued by spuri-
ous divergences, corresponding to cuts that divide the
graph in more than two connected components (TOPT)
or cuts containing particles that have both positive and
negative on-shell energy (LTD). Even improved LTD for-
malisms [59–67] that remove spurious singularities by
relying on algebraic manipulations of the integrand or
direct ansatzes are either inadequate for wider generalisa-
tions or lack first-principle justification.
In this paper, we derive the precise relationship be-

tween the singularity structure of a Feynman integral and
the graph-theoretic notions of crossing and connected-
ness [61, 63, 68–77], by explicitly constructing a three-
dimensional representation of loop integrals that manifests
such properties.
We do so by exploiting methods that pertain to a re-

cently growing branch of literature that applies methods

⇤ zeno.ca@gmail.com

of convex geometry, and more precisely the geometry of
polytopes [17, 70, 74–76, 78–89] and their Fourier trans-
form [52], to problems in high-energy physics. In particu-
lar, we will relate Feynman diagrams to Fourier transforms
of (non-simplicial) convex cones. We will then perform
the Fourier integration analytically using an identity with
a digrammatic interpretation in terms of a straightforward
edge-contraction procedure.

We provide an algorithm based on the recursive appli-
cation of edge contraction, resulting in the surprisingly
compact and elegant Cross-Free Family (CFF) representa-
tion of loop integrals. Each denominator is identified with
a cross-free family of connected subgraphs of the starting
graph. Such representation can be cast in factorised form
and is especially suited for the numerical evaluation of
loop integrals. We provide in the mathematica package
cLTD.m [90] a generic implementation of the algorithm
presented in this paper.
We finally describe the factorisation properties of the

Fourier transform which, as a result, provide a necessary
condition for the non-integrability of the intersection of
any number of threshold singularities for QCD diagrams.
The CFF representation, together with the factorisation
argument, de facto provide a classification of the threshold
singularity structure of Feynman diagrams in terms of
crossing and connectedness, a fundamental step in the
long-standing quest for the understanding of the infrared
behaviour of Feynman diagrams and amplitudes.

II. ENERGY CONSERVATION

Consider a bridgeless digraph G = (V, E) with under-
lying undirected graph Gu, given as a tuple of a set of
vertices V and a set of ordered pairs of vertices E . To each
edge e 2 E of the graph is associated a weight xe 2 R,
collected in a vector x = (xe)e2E 2 R|E|. The standard
scalar product of two weight vectors x and y is defined as
x · y =

P
e2E xeye. The component-wise multiplication

of two vectors � and x is denoted as x� � = (�exe)e2E .
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Numerical integration of loop integrals through
local cancellation of threshold singularities

D. Kermanschah

ETH Zürich,
Rämistrasse 101, 8092 Zürich, Switzerland

E-mail: d.kermanschah@gmail.com

Abstract: We propose a new approach that allows for the separate numerical calculation
of the real and imaginary parts of finite loop integrals. We find that at one-loop the real
part is given by the Loop-Tree Duality integral supplemented with suitable counterterms
and the imaginary part is a sum of two-body phase space integrals, constituting a locally
finite representation of the generalised optical theorem. These expressions are integrals in
momentum space, whose integrands were specially designed to feature local cancellations of
threshold singularities. Such a representation is well suited for Monte Carlo integration and
avoids the drawbacks of a numerical contour deformation around remaining singularities.
Our method is directly applicable to a range integrals with certain geometric properties but
not yet fully generalised for arbitrary one-loop integrals. We demonstrate the computational
performance with examples of one-loop integrals with various kinematic configurations,
which gives promising prospects for an extension to multi-loop integrals.
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(a) Two intersections at ~k = r
±
i�j��

(k̂)k̂ in some
reference frame K. Along the direction k̂(�),
both solutions are positive, r+i�j��

> r
�
i�j��

> 0.

+

-

ϕ

(b) The intersections at ~k = ±|~q
0
1|k̂ (see

eq. (3.16)) in the rest frame K
0 of pij . Along the

direction k̂(�), we find a positive and a negative
solution r

±
i�j��

= ±|~q
0
1|.

Figure 3: An E-surface E
�

ij
in two different reference frames K and K

0 in the spatial loop
momentum space of (a) ~k = ~qi and (b) ~k = ~q

0
i
, where K

0 is the rest frame of pij . Note
that in general, the origin ~qi = ~0 does not lie within the ellipse. However, a Lorentz boost
transforms the ellipse into a circle with center at ~q 0

i
= ~q

0
j
= ~0. As a consequence, the general

solutions r
±
i�j��

(k̂) may both be positive or may not even be real for all directions k̂.

As a next step, we go back to the loop momentum frame by expressing the energy
component of q0

i
= ⇤~�ij

(k+pi) with both on-shell conditions k0+p
0
i
= �

q
(~k + pi) +m

2
i
� i✏

and eq. (3.16), such that

�E
0
i = �ij

✓q
(~k + ~pi)2 +m

2
i
� i� � ~�ij · (~k + ~pi)

◆
, (3.17)

where �ij = 1/
q
1� ~�

2
ij

. After appropriate squaring of eq. (3.17) we find a quadratic
equation in r with coefficients

2aij(k̂) = 1�
⇣
�ij · k̂

⌘2
, (3.18)

b
�

ij(k̂) = k̂ ·

✓
~pi �

~�ij

✓
�E

0
i

�ij
+ ~�ij · ~pi

◆◆
, (3.19)

2c�ij = |~pi|
2 +m

2
i � i✏�

✓
�E

0
i

�ij
+ ~�ij · ~pi

◆2

, (3.20)

resulting in the E-surface parameterisation

r
±
i�j��

(k̂) :=
�b

�

ij
(k̂)±

q
��

ij
(k̂)

2aij(k̂)
, ��

ij(k̂) := b
�

ij(k̂)
2
� 4aij(k̂)c

�

ij , (3.21)

where we require that the discriminant (for vanishing ✏) is positive, ��

ij
(k̂) � 0. If the

E-surface E
�

ij
satisfies the existence condition in eq. (3.13), we are guaranteed to find a

direction k̂ 2 H
2 in the unit hemisphere for which the discriminant is positive.
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FIG. 1. Graphical depiction of the recursion on the graph, with edges labelled e1 = {v1, v5}, e2 = {v1, v2}, e3 = {v1, v3}, e4 =
{v2, v5}, e5 = {v2, v3}, e6 = {v5, v4}, e7 = {v3, v4}. The cross-free families generated for this acyclic graph are FG = {F1, F2}
with F1 = {{v1}, {v3}, {v1, v5}, {v1, v5, v4}} and F2 = {{v1}, {v3}, {v1, v5}, {v1, v2, v5}}. At the first step, we choose the source
v1, and obtain three graphs obtained by contracting the edges adjacent to v1. The second equality is obtained by observing that
two of the graphs have directed cycles (highlighted in blue), so the Fourier transform of their associated cone evaluates to zero.
The third equality is obtained by now choosing the sink v3, which yields three graphs, of which two are acyclic. Observe that we
contract all parallel edges that connect two vertices. The fourth equality is obtained by choosing the source v15 for the two
acyclic graphs. Each yields two contracted graphs, for a total of two acyclic graphs. The final equality is obtained by choosing
the sources v154 and v125 for the two acyclic graphs obtained at the previous step.

a1) Si is connected

a2) V \ Si is connected

b) Fout is a laminar family, that is for any two sets
S, S0 2 Fout of the family, either S and S0 are con-
tained one in the other, or S \ S0 = ;.

c) Fout is obstruction-free, that is no element of the
family can be written as a union of sets contained
within it.

Given the set FG, we are able to evaluate the Fourier
transform of the cone KG. The algorithm presented above
e↵ectively performs diagrammatically the triangulation of
the cone KG in |FG| simplicial cones, with each cross-free
family F 2 FG representing a simplicial cone. Using it,
one can evaluate all Fourier integrations and obtain the
CFF representation

IGu =
X

G2dag(Gu)

X

F2FG

iL(
Q

e2E 2Ee)�1NG(E)
Q

S2F (p
0
G �E) · 1�(S)

, (19)

which provides a proof by construction of the representa-
tion conjectured in [61]. We provide in the mathematica
package cLTD.m [93] a generic implementation of this
algorithmic procedure, resulting in a ready-to-evaluate
integrand.

B. Diagram-level factorisation and iterated
connectedness

Factorisation formulas for Fourier transforms of cones
and polytopes can be used to e↵ectively study the lead-
ing behaviour of the integrand in singular limits [52]. In

particular, the Fourier transform 1̂KG satisfies a factori-
sation formula. Let us consider a connected cut S with
connected complement and such that �(S) = �+(S), let
(E�p0

G) ·1�(S) = ✏ and consider the leading contribution
to 1̂KG({p0v}v2V) in the expansion in ✏, which is

1̂KG =
1̂KG1

({pG1
v }v2V1)1̂KG2

({pG2
v }v2V2)

✏
+ o(1). (20)

pGi
v , v 2 Vi, i = 1, 2, are the capacities for the graphs

G1 = (V1 = S, E1) and G2 = (V2 = V \ S, E2), obtained
from G by deleting the edges in �(S). The external
energies for the two graphs are defined as follows: if, for a

given edge e, we let v(1)e be its departing vertex and v(2)e

its arriving one, then

pGi
v =

(
p0v + (�1)i(Ee � p0e) if v = v(i)e , e 2 �(S)

p0v otherwise
.

(21)
Eq. (20) is readily obtained by direct evaluation of the
integrals in the variables ⌧e, e 2 �(S) at leading order
in ✏. Importantly, if the cut S is disconnected or has
disconnected complement, then 1KG = o(1).
Given eq. (20), we now iterate the argument. The

singularities of the two graphs G1 and G2 correspond
to connected cuts such that the complement is also con-
nected. Furthermore, these singularities must correspond
to singularities of the original graph G, evaluated at
(E � p0

G) · 1�(S) = 0. Thus, let us consider a cross-free
family F of cuts, and let (E� p0

G) · 1�(S) = o(✏), for all
S 2 F , and (E�p0

G)·1�(S) = o(1) for S /2 F . By iterating
the factorisation argument, we obtain that a necessary
and su�cient condition for

1̂KG(E, {p0v}v2V) =
w(E, {p0v}v2V)

✏|F | + o(✏�|F |+1) (22)

Integrates out the energy  
component of the loop momenta. An 

alternative to Time Ordered 
Perturbation Theory or Loop Tree 

Duality. Avoiding the introduction of 
spurious singularities 

Devises counterterms  to subtract 
integrable  

singularities from cuts/thresholds.  
A shift of paradigm away from “contour 

deformation”.



Numerical integration of  𝒜2−loop,Nf
qq̄→γγγ

Kermanshah, Lazopoulos, Vicini

With a novel threshold 
subtraction methodVery Very Preliminary!!!

Subtracted (finite) two−loop Nf amplitude for e+ e− → γ γ γ
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Conclusions
• We have witnessed rapid progress in perturbative QCD, 

matching the precision of the LHC experiments. 


• Perturbative QCD methods find application to other areas of 
physics. 


• New formalism, utilising perturbative QCD methods,  for 
computing correlators in the EFT of Large Scale Structure. 


• Can we keep up improving precision? A need to keep reinventing 
our field and understanding perturbation theory at deeper levels. 


• Infrared Factorization can turn into a new computational method 
for next generation problems in precision collider physics. 


