Holographic Light-Front QCD:

A Novel Nonperturbative Approach to Color Confinement and Hadron Physics

$|p>=| u[u d]>$ quark-diquark cluster
with Guy de Tèramond, Hans Günter Dosch, Cèdric Lorcè, Alexandre Deur, and Joshua Erlich

Fifty Years 2CD
September 15, 2023 UCLA

Stan Brodsky SIL를

NATIONAL ACCELERATOR LABORATORY

Light-Front Quantization

Evolve in ordinary time

Instant Form
P.A.M Dirac, Rev. Mod. Phys. 21, 392 (1949)

Dirac's Amazing Idea:
The "Front Form"
Evolve in light-front time!
$\sigma=c t-z$

Causal, Boost Invariant!
Causal, Boost Invariant!

$$
\begin{aligned}
& x=\frac{k^{+}}{P^{+}}=\frac{k^{0}+k^{3}}{P^{0}+P^{3}} \\
& \psi_{n}\left(x_{i}, \vec{k}_{\perp_{i}}, \lambda_{i}\right) \\
& P^{+}, \vec{P}_{\perp} \\
& \text { Diracss Front Form }
\end{aligned}
$$

Diracss Front Form

Diracss Front Form

Measurements of hadron LF wavefunction are at fixed LF time

Like aflash photograph

Fixed $\tau=t+z / c$

$$
x_{b j}=x=\frac{k^{+}}{P^{+}}
$$

Invariant under boosts! Independent of P^{μ}

$$
<p+q\left|j^{+}(0)\right| p>=2 p^{+} F\left(q^{2}\right)
$$

Front Form

Drell \&Yan, West Exact LF formula!

Drell, sjb

Transverse size $\propto \frac{1}{Q}$

Exact frame-independent formulation of nonperturbative QCD!

$$
\begin{gathered}
L^{Q C D} \rightarrow H_{L F}^{Q C D} \\
H_{L F}^{Q C D}=\sum_{i}\left[\frac{m^{2}+k_{\perp}^{2}}{x}\right]_{i}+H_{L F}^{i n t} \\
H_{L F}^{i n t}: \text { Matrix in Fock Space } \\
H_{L F}^{Q C D}\left|\Psi_{h}>=\mathcal{M}_{h}^{2}\right| \Psi_{h}> \\
\left|p, J_{z}>=\sum \psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)\right| n ; x_{i}, \vec{k}_{\perp i}, \lambda_{i}>
\end{gathered}
$$

Eigenvalues and Eigensolutions give Hadronic Spectrum and LightFront wavefunctions

LFWFs: Off-shell in P - and invariant mass

Solve nPQCD by matrix diagonalization: Hornbostel, Pauli, sjb

$H_{L F}^{i n t}$

Light-Front QCD
Heisenberg Equation

$$
H_{L C}^{Q C D}\left|\Psi_{h}\right\rangle=\mathcal{M}_{h}^{2}\left|\Psi_{h}\right\rangle
$$

DLCQ: Solved $Q C D(1+1)$ for any quark mass and flavors
Hornbostel, Pauli, sjb

Minkowski space; frame-independent; no fermion doubling; no ghosts

Discretized LF Quantization

DLCQ: Diagonalize QCD Hamiltonian, periodic LF BC

BLFQ (Vary et al) Use LF Holographic Basis

Solve QCD by Matrix Diagonalization

Diagonalize the LF Hamiltonian on an Orthonormal Basis Lorentz Frame-Independent, Minkowski Causal LF Time
Compute Hadron masses, LF Wavefunctions Successful applications to QCD (I+I) Use advanced computer resources Competitive with LGTh?

Heavy Quarkonium in a Light-Front Holographic Basis

BLFQ using AdS/QCD

Yang Li, Pieter Maris Xingbo Zhao James P. Vary PLB 758, II6 (2016)

$$
H_{\text {eff }}=\underbrace{\frac{\vec{k}_{\perp}^{2}+m_{q}^{2}}{x}+\frac{\vec{k}_{\perp}^{2}+m_{\bar{q}}^{2}}{1-x}}_{\text {LF kinetic energy }}+\underbrace{\kappa^{4} \zeta_{\perp}^{2}-\frac{\kappa^{4}}{\left(m_{q}+m_{\bar{q}}\right)^{2}} \partial_{x}\left[x(1-x) \partial_{x}\right]}_{\text {confinement }}-\underbrace{\frac{C_{F} 4 \pi \alpha_{s}}{Q^{2}} \bar{u}_{s^{\prime}}\left(k^{\prime}\right) \gamma_{\mu} u_{s}(k) \bar{v}_{\bar{s}}(\bar{k}) \gamma^{\mu} v_{\bar{s}^{\prime}}\left(\bar{k}^{\prime}\right)}_{\text {one-gluon exchange }}
$$

Exclusive processes in perturbative quantum chromodynamics

G. Peter Lepage
Laboratory of Nuclear Studies, Cornell University, Ithaca, New York 14853
Stanley J. Brodsky
Stanford Linear Accelerator Center, Stanford University, Stanford, California 94305
(Received 27 May 1980)

We present a systematic analysis in perturbative quantum chromodynamics (QCD) of large-momentum-transfer
 exclusive processes. Predictions are given for the scaling behavior, angular dependence, helicity structure, and normalization of elastic and inelastic form factors and large-angle exclusive scattering amplitudes for hadrons and photons. We prove that these reactions are dominated by quark and gluon subprocesses at short distances, and thus that the dimensional-counting rules for the power-law falloff of these amplitudes with momentum transfer are rigorous predictions of QCD, modulo calculable logarithmic corrections from the behavior of the hadronic wave functions at short distances. These anomalous-dimension corrections are determined by evolution equations for process-independent meson and baryon "distribution amplitudes" $\phi\left(x_{i}, Q\right)$ which control the valence-quark distributions in high-momentum-transfer exclusive reactions. The analysis can be carried out systematically in powers of $\alpha_{s}\left(Q^{2}\right)$, the QCD running coupling constant. Although the calculations are most conveniently carried out using light-cone perturbation theory and the light-cone gauge, we also present a gauge-independent analysis and relate the distribution amplitude to a gauge-invariant Bethe-Salpeter amplitude.

Rigorous QCD analysis of exclusive reactions Hadron Distribution amplitudes ERBL Evolution

Simple properties of Hard Exclusive Processes

1973: Farrar and sjb

Scaling Laws at Large Transverse Momentum

$$
\frac{d \sigma}{d t}(A+B \rightarrow C+D)=\frac{F(t / s)}{s^{n_{t o t}-2}}
$$

$$
n_{t o t}=n_{A}+n_{B}+n_{C}+n_{D}
$$

> Counting rules
> $n=$ twist $=$ dimension-spin
e.g. $n_{t o t}-2=n_{A}+n_{B}+n_{C}+n_{D}-2=10$ for $p p \rightarrow p p$

Predict: $\quad \frac{d \sigma}{d t}(p+p \rightarrow p+p)=\frac{F\left(\theta_{C M}\right)}{s^{10}}$

Scaling of Hard Exclusive reactions: Fixed t/s

EXCLUSIVEPROCESSES IN PERTURBATIVEQUANTUM...

Cross sections for $p p \rightarrow p p$ at wide angles
The straight lines correspond to a falloff of $1 / \mathrm{s}^{10}$.

$$
\frac{d \sigma}{d t}(p+p \rightarrow p+p)=\frac{F\left(\theta_{C M}\right)}{s^{10}}
$$

Manifestation of Asymptotic Freedom

$$
K^{+} p \rightarrow K^{+} p
$$

Quark Interchange
Blankenbecler, Gunion, sjb Interactions between exchanged quarks suppressed at high momentum transfer

Quark Interchange Blankenbecler, Gunion, sjb

$M(t, u)_{\text {interchange }} \propto \frac{1}{u t^{2}}$
$\frac{d \sigma}{d t}\left(K^{+} p \rightarrow K^{+} p\right)=\frac{F(t / s)}{s^{8}}$

Non-linear Regge behavior:

$$
\alpha_{R}(t) \rightarrow-1
$$

$\mathrm{N}-2=\#$ fundamental constituents $-2=2+3+2+3-2=8$

Scaling: manifestation of asymptotically free hadronic interactions
From dimensional arguments at high energies in binary reactions:

CONSTITUENT COUNTING RULE

Brodsky and Farrar, Phys. Rev. Lett. 31 (1973) 1153 Matveev et al., Lett. Nuovo Cimento, 7 (1973) 719

Counting Rules:
helicity
conservation

$$
\begin{aligned}
& q(x) \sim(1-x)^{2 n_{\text {spect }}-1} \text { for } x \rightarrow 1 \\
& F\left(Q^{2}\right) \sim\left(\frac{1}{Q^{2}}\right)^{(n-1)} \\
& \frac{d \sigma}{d t}(A B \rightarrow C D) \sim \frac{F(t / s)}{s^{\left(n_{\text {participants }}-2\right)}} \\
& n_{\text {participants }}=n_{A}+n_{B}+n_{C}+n_{D} \\
& \frac{d \sigma}{d^{3} p / E}(A B \rightarrow C X) \sim F(\hat{t} / \widehat{s}) \times \frac{\left(1-x_{R}\right)^{\left(2 n_{\text {spectators }}-1\right)}}{\left(p_{T}^{2}\right)^{\left(n_{\text {participants }}-2\right)}}
\end{aligned}
$$

Farrar, Jackson; Lepage, sjb; Burkardt, Schmidt, Sjb

1979: G.P Lepage and sjb

Exclusive Processes in Perturbative Quantum Chromodynamics:

Distribution Amplitudes, ERBL Evolution Equations

Richard Feynman

R.F. to sjb:

What you said today was wrong!
R.F. You are right!

Challenge: Compute Hadron Structure, Spectroscopy, and Dynamics from QCD!

- Color Confinement
- Origin of the QCD Mass Scale
- Meson and Baryon Spectroscopy
- Exotic States: Tetraquarks, Pentaquarks, Gluonium,
- Universal Regge Slopes: n, L, Mesons and Baryons
- Almost Massless Pion: GMOR Chiral Symmetry Breaking $M_{\pi}^{2} f_{\pi}^{2}=-\frac{1}{2}\left(m_{u}+m_{d}\right)\langle\bar{u} u+\bar{d} d\rangle+\mathcal{O}\left(\left(m_{u}+m_{d}\right)^{2}\right)$
- QCD Coupling at all Scales $\alpha_{s}\left(Q^{2}\right)$
- Eliminate Scale Uncertainties and Scheme Dependence: BLM/PMC (Principle of Maximum Conformality)

BLM Renormalization Scale Setting

On the elimination of scale ambiguities in perturbative quantum chromodynamics

Stanley J. Brodsky

Institute for Advanced Study, Princeton, New Jersey 08540 and Stanford Linear Accelerator Center, Stanford University, Stanford, California 94305*

G. Peter Lepage

Institute for Advanced Study, Princeton, New Jersey 08540 and Laboratory of Nuclear Studies, Cornell University, Ithaca, New York 14853*

Paul B. Mackenzie

Fermilab, Batavia, Illinois 60510
(Received 23 November 1982)
We present a new method for resolving the scheme-scale ambiguity that has plagued perturbative analyses in quantum chromodynamics (QCD) and other gauge theories. For Abelian theories the
 method reduces to the standard criterion that only vacuum-polarization insertions contribute to the effective coupling constant. Given a scheme, our procedure automatically determines the couplingconstant scale appropriate to a particular process. This leads to a new criterion for the convergence of perturbative expansions in QCD. We examine a number of well known reactions in QCD, and find that perturbation theory converges well for all processes other than the gluonic width of the Υ. Our analysis calls into question recent determinations of the QCD coupling constant based upon Υ decay.

> All orders: PMC (Principle of Maximum Conformality) Satisfies all principles of renormalization theory Eliminates n ! renormalons Commensurate scale relations between observables Abelian limit: Standard QED Scale-Setting

Need a First Approximation to QCD

Comparable in simplicity to
Schrödinger Theory in Atomic Physics

Relativistic, Frame-Independent, Color-Confining
Origin of hadronic mass scale if $\mathbf{m}_{\mathbf{q}}=\mathbf{o}$
Semi-Classical Approximation to QCD de Téramond, Dosch, Lorcé, sjb

AdS/QCD
 Light-Front Holography

Light-Front QCD

Fixed $\tau=t+z / c$

$$
U(\zeta)=\kappa^{4} \zeta^{2}+2 \kappa^{2}(L+S-1)
$$

Sums an infinite \# diagrams
Semiclassical first approximation to QCD

AdS/QCD

 Soft-Wall ModelLight-Front Holography

$$
\left[-\frac{d^{2}}{d \zeta^{2}}-\frac{1-4 L^{2}}{4 \zeta^{2}}+U(\zeta)\right] \psi(\zeta)=M^{2} \psi(\zeta)
$$

Light-Front Schrödinger Equation
Unique

$$
U(\zeta)=\kappa^{4} \zeta^{2}+2 \kappa^{2}(L+S-1)
$$

Single variable ζ
Confinement Potential!

Conformal Symmetry of the AdS action

Confinement scale:

$$
\kappa \simeq 0.5 \mathrm{GeV}
$$

- de Alfaro, Fubini, Furlan:

Scale can appear in Hamiltonian and EQM

- Fubini, Rabinovici: without affecting conformal invariance of AdS action! GeV units external to QCD: Ratios of Masses Determined

Superconformal Quantum Mechanics Light-Front Holography
de Téramond, Dosch, Lorcé, sjb
$M^{2}\left(n, L_{B}\right)=4 \kappa^{2}\left(n+L_{B}+1\right) N \frac{7^{-}}{2}$

Same slope

Light-Front Holography

Dilaton-Modified AdS

$$
d s^{2}=e^{\varphi(z)} \frac{R^{2}}{z^{2}}\left(\eta_{\mu \nu} x^{\mu} x^{\nu}-d z^{2}\right)
$$

- Soft-wall dilaton profile breaks

$$
e^{\varphi(z)}=e^{+\kappa^{2} z^{2}}
$$

- Color Confinement in z
- Introduces confinement scale K
- Uses AdS $_{5}$ as template for conformal theory

AdS/CFT

D. Gross: duality of QCD with string theory

Introduce "Dilaton" to simulate confinement analytically

- Nonconformal metric dual to a confining gauge theory

$$
d s^{2}=\frac{R^{2}}{z^{2}} e^{\varphi(z)}\left(\eta_{\mu \nu} d x^{\mu} d x^{\nu}-d z^{2}\right)
$$

where $\varphi(z) \longrightarrow 0$ at small z for geometries which are asymptotically AdS_{5}

- Gravitational potential energy for object of mass m

$$
V=m c^{2} \sqrt{g_{00}}=m c^{2} R \frac{e^{\varphi(z) / 2}}{z}
$$

- Consider warp factor $\exp \left(\pm \kappa^{2} z^{2}\right)$
- Plus solution: $V(z)$ increases exponentially confining any object in modified AdS metrics to distances $\langle z\rangle \sim 1 / \kappa$

Klebanov and Maldacena

$$
e^{\varphi(z)}=e^{+\kappa^{2} z^{2}}
$$

Positive-sign dilaton

- de Teramond, sjb

Bosonic Solutions: Hard Wall Model

- Conformal metric: $d s^{2}=g_{\ell m} d x^{\ell} d x^{m} . x^{\ell}=\left(x^{\mu}, z\right), g_{\ell m} \rightarrow\left(R^{2} / z^{2}\right) \eta_{\ell m}$.
- Action for massive scalar modes on AdS_{d+1} :

$$
S[\Phi]=\frac{1}{2} \int d^{d+1} x \sqrt{g} \frac{1}{2}\left[g^{\ell m} \partial_{\ell} \Phi \partial_{m} \Phi-\mu^{2} \Phi^{2}\right], \quad \sqrt{g} \rightarrow(R / z)^{d+1}
$$

- Equation of motion

$$
\frac{1}{\sqrt{g}} \frac{\partial}{\partial x^{\ell}}\left(\sqrt{g} g^{\ell m} \frac{\partial}{\partial x^{m}} \Phi\right)+\mu^{2} \Phi=0
$$

- Factor out dependence along x^{μ}-coordinates, $\Phi_{P}(x, z)=e^{-i P \cdot x} \Phi(z), P_{\mu} P^{\mu}=\mathcal{M}^{2}$:

$$
\left[z^{2} \partial_{z}^{2}-(d-1) z \partial_{z}+z^{2} \mathcal{M}^{2}-(\mu R)^{2}\right] \Phi(z)=0
$$

- Solution: $\Phi(z) \rightarrow z^{\Delta}$ as $z \rightarrow 0$,

$$
\begin{array}{rcc}
\Phi(z)=C z^{d / 2} J_{\Delta-d / 2}(z \mathcal{M}) & \Delta=\frac{1}{2}\left(d+\sqrt{d^{2}+4 \mu^{2} R^{2}}\right) . \\
\Delta=2+L \quad d=4 & (\mu R)^{2}=L^{2}-4
\end{array}
$$

$$
e^{\varphi(z)}=e^{+\kappa^{2} z^{2}} \quad \text { Positive-sign dilaton } \quad \text { • de Teramond, sjb }
$$

AdS Soft-Wall Schrödinger Equation for bound state of two scalar constituents:

$$
\begin{gathered}
{\left[-\frac{d^{2}}{d z^{2}}-\frac{1-4 L^{2}}{4 z^{2}}+U(z)\right] \Phi(z)=\mathcal{M}^{2} \Phi(z)} \\
U(z)=\kappa^{4} z^{2}+2 \kappa^{2}(L+S-1)
\end{gathered}
$$

Derived from variation of Action for Dilaton-Modified AdS $_{5}$
Identical to Single-Variable Light-Front Bound State Equation in ζ !

$$
z<\zeta=\sqrt{x(1-x) \vec{b}_{\perp}^{2}}
$$

Ligbt-Aront Holograpphy

$$
<p+q\left|j^{+}(0)\right| p>=2 p^{+} F\left(q^{2}\right)
$$

Front Form

Drell \&Yan, West Exact LF formula!

Drell, sjb

Transverse size $\propto \frac{1}{Q}$

Holographic Mapping of AdS Modes to QCD LFWFs

Drell-Yan-West: Form Factors are

- Integrate Soper formula over angles: Convolution of LFWFs

$$
F\left(q^{2}\right)=2 \pi \int_{0}^{1} d x \frac{(1-x)}{x} \int \zeta d \zeta J_{0}\left(\zeta q \sqrt{\frac{1-x}{x}}\right) \tilde{\rho}(x, \zeta)
$$

with $\widetilde{\rho}(x, \zeta)$ QCD effective transverse charge density.

- Transversality variable

$$
\zeta=\sqrt{x(1-x) \vec{b}_{\perp}^{2}}
$$

- Compare AdS and QCD expressions of FFs for arbitrary Q using identity:

$$
\int_{0}^{1} d x J_{0}\left(\zeta Q \sqrt{\frac{1-x}{x}}\right)=\zeta Q K_{1}(\zeta Q)
$$

the solution for $J(Q, \zeta)=\zeta Q K_{1}(\zeta Q)$!
Identical to Polchinski-Strassler Convolution of AdS Amplitudes

$$
L F(3+1) \longleftrightarrow A d S_{5}
$$

Light-Front Holograpboic Dictionary

$$
\psi\left(x, \vec{b}_{\perp}\right) \longleftrightarrow \phi(z)
$$

$$
\zeta=\sqrt{x(1-x) \vec{b}_{\perp}^{2}}
$$

$$
\begin{gathered}
\psi(x, \zeta)=\sqrt{x(1-x)} \zeta^{-1 / 2} \phi(\zeta) \\
(\mu R)^{2}=L^{2}-(J-2)^{2}
\end{gathered}
$$

Light-Front Holography: Unique mapping derived from equality of LF and AdS formula for EM and gravitational current matrix elements and identical equations of motion

AdS/QCD Soft-Wall Model

$e^{\varphi(z)}=e^{+\kappa^{2} z^{2}}$
Light-Front Holography

$$
\left[-\frac{d^{2}}{d \zeta^{2}}-\frac{1-4 L^{2}}{4 \zeta^{2}}+U(\zeta)\right] \psi(\zeta)=M^{2} \psi(\zeta)
$$

Light-Front Schrödinger Equation

Unique

$$
U(\zeta)=\kappa^{4} \zeta^{2}+2 \kappa^{2}(L+S-1)
$$

Single variable ζ
Confinement Potential!

Conformal Symmetry of the action

Confinement scale:

- de Alfaro, Fubini, Furlan:
- Fubini, Rabinovici:
$\kappa \simeq 0.5 \mathrm{GeV}$
Scale can appear in Hamiltonian and EQM without affecting conformal invariance of action!

$$
\begin{gathered}
\left(-\partial_{\zeta}^{2}+\kappa^{4} \zeta^{2}+2 \kappa^{2}\left(L_{B}+1\right)+\frac{4 L_{B}^{2}-1}{4 \zeta^{2}}\right) \psi_{J}^{+}=M^{2} \psi_{J}^{+} \\
\left(-\partial_{\zeta}^{2}+\kappa^{4} \zeta^{2}+2 \kappa^{2} L_{B}+\frac{4\left(L_{B}+1\right)^{2}-1}{4 \zeta^{2}}\right) \psi_{J}^{-}=M^{2} \psi_{J}^{-} \\
M^{2}\left(n, L_{B}\right)=4 \kappa^{2}\left(n+L_{B}+1\right) \quad \quad \mathbf{s}=1 / 2, \mathbf{P}=+
\end{gathered}
$$

Meson Equation

$$
\lambda=\kappa^{2}
$$

$$
\left(-\partial_{\zeta}^{2}+\kappa^{4} \zeta^{2}+2 \kappa^{2}(J-1)+\frac{4 L_{M}^{2}-1}{4 \zeta^{2}}\right) \phi_{J}=M^{2} \phi_{J}
$$

$$
M^{2}\left(n, L_{M}\right)=4 \kappa^{2}\left(n+L_{M}\right)
$$

Same
$S=0, I=\|$ Meson is superpartner of $S=|/ 2, I=|$ Baryon Meson-Baryon Degeneracy for $L_{M}=L_{B}+1$

Superconformal Quantum Mechanics Light-Front Holography
de Téramond, Dosch, Lorcé, sjb
$M^{2}\left(n, L_{B}\right)=4 \kappa^{2}\left(n+L_{B}+1\right) N \frac{7^{-}}{2}$

Same slope

Meson Spectrum in Soft Wall Model

Massless pion!

$$
m_{\pi}=0 \text { if } m_{q}=0
$$

Pion: Negative term for $\mathrm{J}=0$ cancels positive terms from LFKE and potential

- Effective potential: $U\left(\zeta^{2}\right)=\kappa^{4} \zeta^{2}+2 \kappa^{2}(J-1)$
- LF WE

$$
\left(-\frac{d^{2}}{d \zeta^{2}}-\frac{1-4 L^{2}}{4 \zeta^{2}}+\kappa^{4} \zeta^{2}+2 \kappa^{2}(J-1)\right) \phi_{J}(\zeta)=M^{2} \phi_{J}(\zeta)
$$

- Normalized eigenfunctions $\langle\phi \mid \phi\rangle=\int d \zeta \phi^{2}(z)^{2}=1$

$$
\phi_{n, L}(\zeta)=\kappa^{1+L} \sqrt{\frac{2 n!}{(n+L)!}} 1^{1 / 2+L} e^{-\kappa^{2} \zeta^{2} / 2} L_{n}^{L}\left(\kappa^{2} \zeta^{2}\right)
$$

- Eigenvalues

$$
\mathcal{M}_{n, J, L}^{2}=4 \kappa^{2}\left(n+\frac{J+L}{2}\right)
$$

$$
\vec{\zeta}^{2}=\vec{b}_{\perp}^{2} x(1-x)
$$

G. de Teramond, H. G. Dosch, sjb

Superconformal Algebra

Four-Plet Representations

Bosons, Fermions with Equal Mass!

Proton: lu[ud]> Quark + Scalar Diquark Equal Weight: L=0, L=1

Superconformal Quantum Mechanics Light-Front Holography
de Téramond, Dosch, Lorcé, sjb
$M^{2}\left(n, L_{B}\right)=4 \kappa^{2}\left(n+L_{B}+1\right) N \frac{7^{-}}{2}$

Same slope

Meson Spectrum in Soft Wall Model

Massless pion!

$$
m_{\pi}=0 \text { if } m_{q}=0
$$

Pion: Negative term for $\mathrm{J}=0$ cancels positive terms from LFKE and potential

- Effective potential: $U\left(\zeta^{2}\right)=\kappa^{4} \zeta^{2}+2 \kappa^{2}(J-1)$
- LF WE

$$
\left(-\frac{d^{2}}{d \zeta^{2}}-\frac{1-4 L^{2}}{4 \zeta^{2}}+\kappa^{4} \zeta^{2}+2 \kappa^{2}(J-1)\right) \phi_{J}(\zeta)=M^{2} \phi_{J}(\zeta)
$$

- Normalized eigenfunctions $\langle\phi \mid \phi\rangle=\int d \zeta \phi^{2}(z)^{2}=1$

$$
\phi_{n, L}(\zeta)=\kappa^{1+L} \sqrt{\frac{2 n!}{(n+L)!}} 1^{1 / 2+L} e^{-\kappa^{2} \zeta^{2} / 2} L_{n}^{L}\left(\kappa^{2} \zeta^{2}\right)
$$

- Eigenvalues

$$
\mathcal{M}_{n, J, L}^{2}=4 \kappa^{2}\left(n+\frac{J+L}{2}\right)
$$

$$
\vec{\zeta}^{2}=\vec{b}_{\perp}^{2} x(1-x)
$$

G. de Teramond, H. G. Dosch, sjb

Superconformal Algebra

Four-Plet Representations

Bosons, Fermions with Equal Mass!

Proton: lu[ud]> Quark + Scalar Diquark Equal Weight: L=0, L=1

Universal Hadronic Decomposition

$\frac{\mathcal{M}_{H}^{2}}{\kappa^{2}}=(1+2 n+L)+(1+2 n+L)+(2 L+4 S+2 B-2)$

- Universal quark light-front kinetic energy

Equal: $\rightarrow \Delta \mathcal{M}_{L F K E}^{2}=\kappa^{2}(1+2 n+L)$ Virial
Theorem - Universal quark light-front potential energy

$$
\Delta \mathcal{M}_{L F P E}^{2}=\kappa^{2}(1+2 n+L)
$$

- Universal Constant Contribution from AdS and Superconformal Quantum Mechanics

$$
\Delta \mathcal{M}_{s p i n}^{2}=2 \kappa^{2}(L+\underset{\star}{2 S}+B-1)
$$

hyperfine spin-spin

Supersymmetry in QCD

- A hidden symmetry of Color $\operatorname{SU}(3) \mathbf{c}$ in hadron physics:
- Relates meson and baryon spectroscopy
- QCD: No squarks or gluinos!
- Emerges from Light-Front Holography and Super-Conformal Algebra
- Color Confinement
de Téramond, Dosch, Lorcé, sjb
Input: one fundamental mass scale

$$
\kappa=\sqrt{\lambda}=0.523 \pm 0.024 \mathrm{GeV}
$$

Remarkable Features of Light-Front Schrödinger Equation

- Relativistic, frame-independent

Dynamics + Spectroscopy!

- QCD scale appears - unique LF potential
- Reproduces spectroscopy and dynamics of light-quark hadrons with one parameter
- Zero-mass pion for zero mass quarks!
- Regge slope same for n and L-- not usual HO
- Splitting in L persists to high mass -- contradicts conventional wisdom based on breakdown of chiral symmetry
- Phenomenology: LFWFs, Form factors, electroproduction
- Extension to heavy quarks

$$
U(\zeta)=\kappa^{4} \zeta^{2}+2 \kappa^{2}(L+S-1)
$$

LFHQCD: Underlying Principles

- Poincarè Invariance: Independent of the observer's Lorentz frame: Quantization at Fixed Light-Front Time \boldsymbol{T}
- Causality: Information within causal horizon: Light-Front
- Light-Front Holography: AdS $_{5}=\operatorname{LF}(3+I)$

$$
z \leftrightarrow \zeta \text { where } \zeta^{2}=b_{\perp}^{2} x(1-x)
$$

- Introduce Mass Scale \boldsymbol{K} while retaining the Conformal Invariance of the AdS Action (dAFF)
- Unique Dilaton in $\mathrm{AdS}_{5}: \quad e^{+\kappa^{2} z^{2}}$
- Unique color-confining LF Potential $U\left(\zeta^{2}\right)=\kappa^{4} \zeta^{2}$
- Superconformal Algebra: Mass Degenerate 4-Plet:

$$
\text { Meson } q \bar{q} \leftrightarrow \text { Baryon } q[q q] \leftrightarrow \text { Tetraquark }[q q][\bar{q} \bar{q}]
$$

Prediction from AdS/QCD: Meson LFWF

$$
\begin{aligned}
& \text { massless quarks } \\
& \psi_{M}\left(x, k_{\perp}\right)=\frac{4 \pi}{\kappa \sqrt{x(1-x)}} e^{-\frac{k_{\perp}^{2}}{2 \kappa^{2} x(1-x)}} \quad \phi_{\pi}(x)=\frac{4}{\sqrt{3} \pi} f_{\pi} \sqrt{x(1-x)} \\
& \begin{aligned}
f_{\pi}= & \sqrt{P_{q \bar{q}}} \frac{\sqrt{3}}{8} \kappa=92.4 \mathrm{MeV} \quad \text { Same as DSE! c. } \\
& \text { Provides Connection of Confinement to Hadron Structure }
\end{aligned}
\end{aligned}
$$

AdS/QCD Holographic Wave Function for the ρ Meson

 and Diffractive ρ Meson Electroproduction

- Light Front Wavefunctions:
$\Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)$

off-shell in P^{-}and invariant mass $\mathcal{M}_{q \bar{q}}^{2}$

$k_{\perp}(\mathrm{GeV})$
"Hadronization at the Amplitude Level"

$$
M^{2}(n, L, S)=4 \kappa^{2}(n+L+S / 2)
$$

Soft Wall Mode
Fig: Orbital and radial AdS modes in the soft wall model for $\kappa=0.6 \mathrm{GeV}$. Same slope in n and L!

Light meson orbital (a) and radial (b) spectrum for $\kappa=0.6 \mathrm{GeV}$.

Universal Regge Slope in L and n

$$
\kappa=\sqrt{\lambda}=0.523 \pm 0.024
$$

- How universal is the semiclassical approximation based on superconformal LFHQCD ?

Best fit for hadronic scale $\sqrt{\lambda}$ from different light hadron sectors including radial and orbital excitations

- Color Confinement, Analytic form of confinement potential de Téramond, Dosch, Lorcé, sjb
- Retains underlying conformal properties of QCD despite mass scale (DeAlfaro-FubiniFurlan Principle)
- Massless quark-antiquark pion bound state in chiral limit, GMOR
- QCD coupling at all scales
- Connection of perturbative and nonperturbative mass scales
- Poincarè Invariant
- Hadron Spectroscopy-Regge Trajectories with universal slopes in n, L
- Supersymmetric 4-Plet: Meson-Baryon -Tetraquark Symmetry
- Light-Front Wavefunctions
\bullet Form Factors, Structure Functions, Hadronic Observables
- OPE: Constituent Counting Rules
- Hadronization at the Amplitude Level: Many Phenomenological Tests
- Systematically improvable: Basis LF Quantization (BLFQ)

> Supersymmetric Features of Hadron Physics
> from Superconformal Algebra
> and Light-Front Holography

Supersymmetry across the light and heavy-light spectrum

Supersymmetry across the light and heavy-light spectrum

Superconformal Algebra

Four-Plet Representations

Bosons, Fermions with Equal Mass!

Proton: lu[ud]> Quark + Scalar Diquark Equal Weight: L=0, L=1

Superconformal Algebra 4-Plet

$$
\begin{gathered}
R_{\lambda}^{\dagger} \underset{(q)}{\bar{q} \rightarrow(q)} \overline{\overline{3}}_{C}
\end{gathered}
$$

Vector ()+ Scalar [] Diquarks

Meson			Baryon			Tetraquark		
q-cont	$J^{P(C)}$	Name	q-cont	J^{P}	Name	q-cont	$J^{P(C)}$	Name
$\bar{q} q$	0^{-+}	π (140)	-	-	-	-	-	-
$\bar{q} q$	1^{+-}	b_{1} (1235)	$[u d] q$	$(1 / 2)^{+}$	$N(940)$	$[u d][\bar{u} d]$	0^{++}	$f_{0}(980)$
$\bar{q} q$	2^{-+}	$\pi_{2}(1670)$	$[u d] q$	(1/2) ${ }^{-}$	$N_{\frac{1}{2}}$-(1535)	$[u d][\bar{u} d]$	1^{-+}	$\pi_{1}(1400)$
				(3/2) ${ }^{-}$	$N_{\frac{3}{2}}^{\frac{1}{2}}$ (1520)			$\pi_{1}(1600)$
$\bar{q} q$	1--	S(770) w ω (780)						
$\bar{q} q$	2^{++}	$a_{2}(1320), f_{2}(1270)$	$[q q] q$	$(3 / 2)^{+}$	Δ (1232)	$[q q][\bar{u} d]$	1^{++}	$a_{1}(1260)$
$\bar{q} q$	3^{--}	$\rho_{3}(1690), \omega_{3}(1670)$	[qq] q	(1/2) ${ }^{-}$	$\Delta_{\frac{1}{2}}$-(1620)	[qq] [̄]d]	2^{--}	$\rho_{2}(\sim 1700) ?$
				$(3 / 2)^{-}$	$\Delta_{\frac{3}{2}}-(1700)$			
$\bar{q} q$	4^{++}	$a_{4}(2040), f_{4}(2050)$	$[q q] q$	$(7 / 2)^{+}$	$\Delta_{\underline{z}+}$ (1950)	$[q q][\bar{u} d]$	3^{++}	$a_{3}(\sim 2070) ?$
$\bar{q} s$	$0^{-(+)}$	K(495)	-	-	-	-	-	-
$\bar{q} s$	$1^{+(-)}$	$\bar{K}_{1}(1270)$	$[u d] s$	$(1 / 2)^{+}$	$\Lambda(1115)$	$[u d][\bar{s} \bar{q}]$	$0^{+(+)}$	$K_{0}^{*}(1430)$
$\bar{q} s$	$2^{-(+)}$	$K_{2}(1770)$	$[u d] s$	(1/2) ${ }^{-}$	$\Lambda(1405)$	$[u d][\bar{s} \bar{q}]$	$1^{-(+)}$	$K_{1}^{\prime}(\sim 1700) ?$
				(3/2) ${ }^{-}$	$\Lambda(1520)$			
$\bar{s} q$	$0^{-(+)}$	K(495)	-	-	-	-	-	-
$\bar{s} q$	$1^{+(-)}$	$K_{1}(1270)$	$[s q] q$	$(1 / 2)^{+}$	$\Sigma(1190)$	$[s q][\bar{s} \bar{q}]$	0^{++}	$a_{0}(980)$
								$f_{0}(980)$
$\bar{s} q$	$1^{-(-)}$	$K^{*}(890)$	-	二	-	-	二	-
$\bar{s} q$	$2^{+(+)}$	$K_{2}^{*}(1430)$	[sq] q	$(3 / 2)^{+}$	$\Sigma(1385)$	$[s q][\bar{q} \bar{q}]$	$1^{+(+)}$	$K_{1}(1400)$
$\bar{s} q$	3-(-)	$K_{3}^{\prime}(1780)$	[sq]q	$(3 / 2)^{-}$	$\Sigma(1670)$	[sq] ${ }^{\text {q }}$] $]$	$2^{-(-)}$	$K_{2}(\sim 1700) ?$
$\bar{s} q$	$4^{+(+)}$	$K_{4}^{*}(2045)$	$[s q] q$	$(7 / 2)^{+}$	$\Sigma(2030)$	[sq] $[\bar{q} \bar{q}]$	$3^{+(+)}$	$K_{3}(\sim 2070) ?$
$\bar{s} s$	0^{-+}	$7(550)$	-	-	(1320)	-	-	(1370)
$\bar{s} s$	1^{+-}	$h_{1}(1170)$	$[s q] s$	$(1 / 2)^{+}$	$\Xi(1320)$	$[s q][\bar{s} \bar{q}]$	0^{++}	$f_{0}(1370)$
								$a_{0}(1450)$
$\bar{s} s$	2^{-+}	$ग_{2}$ (1645)	$[s q] s$	$(?)^{?}$	$\Xi(1690)$	$[s q][\bar{s} \bar{q}]$	1^{-+}	$\Phi^{\prime}(1750)$?
$\bar{s} s$	1^{-}	$\Phi(1020)$	-	-	-	-	-	-
$\bar{s} s$	2^{++}	$f_{2}^{\prime}(1525)$	$[s q] s$	$(3 / 2)^{+}$	$\Xi^{*}(1530)$	$[s q][\bar{s} \bar{q}]$	1^{++}	$f_{1}(1420)$
$\bar{s} s$	3--	$\Phi_{3}(1850)$	[sq]s	(3/2) ${ }^{-}$	$\Xi(1820)$	[sq] $[\bar{s} \bar{q}]$	2^{--}	$\Phi_{2}(\sim 1800) ?$
$\bar{s} s$	2^{++}	$f_{2}(1950)$	$[s s] s$	$(3 / 2)^{+}$	$\Omega(1672)$	$[s s][\bar{s} \bar{q}]$	$1^{+(+)}$	$K_{1}(\sim 1700)$?

Meson

Baryon

Tetraquark

New Organization of the Hadron Spectrum m. Nielsen, sjb

Superpartners for states with one c quark

Meson			Baryon			Tetraquark		
q-cont	$J^{P(C)}$	Name	q-cont	J^{P}	Name	q-cont	$J^{P(C)}$	Name
$\bar{q} c$	0^{-}	$D(1870)$	-	-	-	-	-	-
$\bar{q} c$	$1{ }^{+}$	$D_{1}(2420)$	[ud]c	$(1 / 2)^{+}$	$\Lambda_{c}(2290)$	$[u d][\bar{c} \bar{q}]$	0^{+}	$\bar{D}_{0}^{*}(2400)$
$\bar{q} c$	2^{-}	$D_{J}(2600)$	[ud]c	$(3 / 2)^{-}$	$\Lambda_{c}(2625)$	[ud] $] \bar{c} \bar{q}]$	1^{-}	-
$\bar{c} q$	0^{-}	$\bar{D}(1870)$						
$\bar{c} q$	1^{+}	T1 ${ }^{1} 2420$)	$[c q] q$	$(1 / 2)^{+}$	$\Sigma_{c}(2455)$	$[c q][\bar{u} \bar{d}]$	0^{+}	$D_{0}^{*}(2400)$
$\bar{q} c$	1^{-}	$D^{*}(2010)$						
$\bar{q} c$	2^{+}	$D_{2}^{*}(2460)$	$(q q) c$	$(3 / 2)^{+}$	$\Sigma_{c}^{*}(2520)$	$(q q)[\bar{c} \bar{q}]$	1^{+}	$D(2550)$
$\bar{q} c$	3^{-}	$D_{3}^{*}(2750)$	$(q q) c$	$(3 / 2)^{-}$	$\Sigma_{c}(2800)$	$(q q)[\bar{c} \bar{q}]$	-	-
$\bar{s} c$	0^{-}	$D_{s}(1968)$,		-	- -
$\bar{s} c$	1^{+}	$D_{s 1}(2460)$	$[q s] c$	$(1 / 2)^{+}$	$\Xi_{c}(2470)$	$[q s][\bar{c} \bar{q}]$	0^{+}	$\bar{D}_{s 0}^{*}(2317)$
$\bar{s} c$	2^{-}	$T_{\text {s2 }}(\sim 2860) ?$	$[q s] c$	$(3 / 2)^{-}$	$\Xi_{c}(2815)$	¢sq][$\bar{c} \bar{q}]$	1^{-}	-
$\bar{s} c$	1^{-}	$D_{s}^{*}(2110)$			-		-	-
$\bar{s} c$	2^{+}	$D_{s 2}^{*}(2573)$	(sq) c	$(3 / 2)^{+}$	$\Xi_{c}^{*}(2645)$	$(s q)[\bar{c} \bar{q}]$	1^{+}	$D_{s 1}(2536)$
$\bar{c} s$	1^{+}	$\widehat{T}_{\text {s1 }}(\sim 2700) ?$	$[c s] s$	$(1 / 2)^{+}$	$\Omega_{c}(2695)$	[cs] $[\leqslant \bar{q}]$	0^{+}	??
$\bar{s} c$	2^{+}	$\widehat{s}_{s 2}^{*}(\sim 2750) ?$	(ss)c	$(3 / 2)^{+}$	$\Omega_{c}(2770)$	(ss)[ccs]	1^{+}	??

Mesons: GreenSquare, Baryons(BlueTriangle), Tetraquarks(RedCircle)

Connection to the Linear Instant-Form Heavy Quark Potential

Harmonic Oscillator $U(\zeta)=\kappa^{4} \zeta^{2}$ LF Potential for relativistic light quarks

Linear instant nonrelativistic form $V(r)=C r$ for heavy quarks
A.P. Trawinski, S.D. Glazek, H. D. Dosch, G. de Teramond, sjb

Bound States in Relativistic Quantum Field Theory: Light-Front Wavefunctions
Dirac's Front Form: Fixed $\tau=t+z / c$
Fixed $\tau=t+z / c$
Boost invariant, Lorentz frame independent, Causal

$$
\psi\left(x_{i},{\overrightarrow{k_{\perp}}}_{i}, \lambda_{i}\right)
$$

$$
x=\frac{k^{+}}{P^{+}}=\frac{k^{0}+k^{3}}{P^{0}+P^{3}}
$$

Invariant under boosts. Independent of $P^{\boldsymbol{\mu}}$

$$
\mathrm{H}_{L F}^{Q C D}\left|\psi>=M^{2}\right| \psi>
$$

Direct connection to QCD Lagrangian

LF Wavefunction: off-shell in invariant mass

Remarkable new insights from AdS/CFT, the duality between conformal field theory and Anti-de Sitter Space

$$
<p+q\left|j^{+}(0)\right| p>=2 p^{+} F\left(q^{2}\right)
$$

Front Form

Drell \&Yan, West Exact LF formula!

Drell, sjb

Transverse size $\propto \frac{1}{Q}$

Timelike Pion Form Factor from AdS/QCD and Light-Front Holography

Pion Form Factor from AdS/QCD and Light-Front Holography

Using $S U(6)$ flavor symmetry and normalization to static quantities

$$
\begin{aligned}
& \frac{F_{2}\left(q^{2}\right)}{2 M}=\sum_{a} \int[\mathrm{~d} x]\left[\mathrm{d}^{2} \mathbf{k}_{\perp}\right] \sum_{j} e_{j} \frac{1}{2} \times \quad \text { Drell, sjb } \\
& {\left[-\frac{1}{q^{L}} \psi_{a}^{\uparrow *}\left(x_{i}, \mathbf{k}_{\perp i}^{\prime}, \lambda_{i}\right) \psi_{a}^{\downarrow}\left(x_{i}, \mathbf{k}_{\perp i}, \lambda_{i}\right)+\frac{1}{q^{R}} \psi_{a}^{\downarrow *}\left(x_{i}, \mathbf{k}_{\perp i}^{\prime}, \lambda_{i}\right) \psi_{a}^{\dagger}\left(x_{i}, \mathbf{k}_{\perp i}, \lambda_{i}\right)\right]} \\
& \mathbf{k}_{\perp i}^{\prime}=\mathbf{k}_{\perp i}-x_{i} \mathbf{q}_{\perp}
\end{aligned}
$$

Must have $\Delta \ell_{z}= \pm 1$ to have nonzero $F_{2}\left(q^{2}\right)$
Nonzero Proton Anomalous Moment --> Nonzero orbital quark angular momentum

Spacelike Pauli Form Factor

From overlap of $L=1$ and $L=0$ LFWFs

Bjorken sum rule defines effective charge: $\alpha_{g 1}\left(Q^{2}\right)$

$$
\int_{0}^{1} d x\left[g_{1}^{e p}\left(x, Q^{2}\right)-g_{1}^{e n}\left(x, Q^{2}\right)\right] \equiv \frac{g_{a}}{6}\left[1-\frac{\alpha_{g 1}\left(Q^{2}\right)}{\pi}\right]
$$

- Can be used as standard QCD coupling
- Well measured
- Asymptotic freedom at large $\mathbf{Q}^{\mathbf{2}}$
- Computable at large $\mathbf{Q}^{\mathbf{2}}$ in any pQCD scheme
- Universal $\boldsymbol{\beta}_{0}, \beta_{1}$
- Analytic connection to other schemes:

Commensurate scale relations

Bjorken sum $\Gamma_{1}{ }^{\mathrm{p}-\mathrm{n}}$ measurement:

Running Coupling from AdS/QCD

Bjorken sum rule:

$$
\frac{\alpha_{g_{1}}\left(Q^{2}\right)}{\pi}=1-\frac{6}{g_{A}} \int_{0}^{1} d x g_{1}^{p-n}\left(x, Q^{2}\right)
$$

Effective coupling in LFHQCD (valid at low- Q^{2})

$$
\alpha_{g_{1}}^{A d S}\left(Q^{2}\right)=\pi \exp \left(-Q^{2} / 4 \kappa^{2}\right)
$$

Imposing continuity for α and its first derivative
A. Deur, S.J. Brodsky, G.F. de Téramond, Phys. Lett. B 750, 528 (2015); J. Phys. G 44, 105005 (2017).

Analytic, defined at all scales, IR Fixed Point

$m_{\rho}=\sqrt{2} \kappa$

$$
m_{p}=2 \kappa
$$

All-Scale QCD Coupling

Deur, de Tèramond, sjb Fit to $\mathrm{Bj}+\mathrm{DHG}$ Sum Rules:

Comparison for $x q(x)$ in the pion from LFHQCD (red band) with the NLO fits [82,83] (gray band and green curve) and the LO extraction [84]. NNLO results are also included (light blue band). LFHQCD results are evolved from the initial scale $\mu_{0}=$ $1.1 \pm 0.2 \mathrm{GeV}$ at NLO and the initial scale $\mu_{0}=1.06 \pm 0.15 \mathrm{GeV}$ at NNLO.

Universality of Generalized Parton Distributions in Light-Front Holographic QCD
Guy F. de Te'ramond, Tianbo Liu, Raza Sabbir Sufian, Hans Günter Dosch, Stanley J. Brodsky, and Alexandre Deur PhySICAL REVIEW LETTERS 120,182001 (2018)

Comparison for $x q(x)$ in the proton from LFHQCD (red bands) and global fits: MMHT2014 (blue bands) [5], CT14 [6] (cyan bands), and NNPDF3.0 (gray bands) [77]. LFHQCD results are evolved from the initial scale $\mu_{0}=1.06 \pm 0.15 \mathrm{GeV}$.

Universality of Generalized Parton Distributions in Light-Front Holographic QCD
Guy F. de Téramond, Tianbo Liu, Raza Sabbir Sufian, Hans Günter Dosch, Stanley J. Brodsky, and Alexandre Deur PHYSICAL REVIEW LETTERS 120, 182001 (2018)

Tianbo Liu, Raza Sabbir Sufian, Guy F. de T'eramond, Hans Gunter Dösch, Alexandre Deur, sjb

Polarized distributions for the isovector combination $x\left[\Delta u_{+}(x)-\Delta d_{+}(x)\right]$

$$
d_{+}(x)=d(x)+\bar{d}(x) \quad u_{+}(x)=u(x)+\bar{u}(x)
$$

$$
\Delta q(x)=q_{\uparrow}(x)-q_{\downarrow}(x)
$$

Polarized GPDs and PDFs (HLFHS Collaboration, 2019)

- Separation of chiralities in the AdS action allows computation of the matrix elements of the axial current including the correct normalization, once the coefficients c_{τ} are fixed for the vector current
- Helicity retention between quark and parent hadron (pQCD prediction): $\lim _{x \rightarrow 1} \frac{\Delta q(x)}{q(x)}=1$
- No spin correlation with parent hadron: $\lim _{x \rightarrow 0} \frac{\Delta q(x)}{q(x)}=0$

An analytic first approximation to QCD

AdS/QCD + Light-Front Holography

- As Simple as Schrödinger Theory in Atomic Physics
- LF radial variable ζ conjugate to invariant mass squared
- Relativistic, Frame-Independent, Color-Confining
- Unique confining potential!
- QCD Coupling at all scales: Essential for Gauge Link phenomena
- Hadron Spectroscopy and Dynamics from one parameter
- Wave Functions, Form Factors, Hadronic Observables, Constituent Counting Rules
- Insight into QCD Condensates
- Systematically improvable with DLCQ-BLFQ Methods

```
Supersymmetric Features of Hadron Physics
    from Superconformal Algebra
    and Light-Front Holography
```

- Color Confinement, Analytic form of confinement potential de Téramond, Dosch, Lorcé, sjb
- Retains underlying conformal properties of QCD despite mass scale (DeAlfaro-FubiniFurlan Principle)
- Massless quark-antiquark pion bound state in chiral limit, GMOR
- QCD coupling at all scales
- Connection of perturbative and nonperturbative mass scales
- Poincarè Invariant
- Hadron Spectroscopy-Regge Trajectories with universal slopes in n, L
- Supersymmetric 4-Plet: Meson-Baryon -Tetraquark Symmetry
- Light-Front Wavefunctions
\bullet Form Factors, Structure Functions, Hadronic Observables
- OPE: Constituent Counting Rules
- Hadronization at the Amplitude Level: Many Phenomenological Tests
- Systematically improvable: Basis LF Quantization (BLFQ)

> Supersymmetric Features of Hadron Physics
> from Superconformal Algebra
> and Light-Front Holography

Cut of Proton Self Energy:
QCD predicts Intrinsic Heavy Quarks!

Probability $(\mathrm{QED}) \propto \frac{1}{M_{\ell}^{4}} \quad$ Probability $(\mathrm{QCD}) \propto \frac{1}{M_{Q}^{2}}$

$$
x_{Q} \propto\left(m_{Q}^{2}+k_{\perp}^{2}\right)^{1 / 2}
$$

Hoyer, Peterson, Sakai, Collins, Ellis, Gunion, Mueller, sjb Polyakov, et al.

$$
p p \rightarrow Z+c+X \quad g+c \rightarrow Z+c
$$

$Z+c$: results

- Clear enhancement in highest- y bin
- Consistent with expected effect from |uudc $\bar{c}\rangle$ component predicted by LFQCD
- Inconsistent with No-IC theory at ~ 3 standard deviations
- Global PDF analysis required to determine true significance

QCD physics measurements at the LHCb experiment

I.A. Schmidt, V. Lyubovitskij, sjb

Interference of Intrinsic and Extrinsic Heavy Quark Amplitudes

Interference predicts $Q(x) \neq \bar{Q}(x)$
$\frac{d \sigma}{d y d p_{T}^{2}}\left(p p \rightarrow D^{+} c \bar{d} X\right) \neq \frac{d \sigma}{d y d p_{T}^{2}}\left(p p \rightarrow D^{-} \bar{c} d X\right)$
QED Analog: J. Gillespie, sjb (I968)

Constraints on charm-anticharm asymmetry in the nucleon from lattice QCD

Raza Sabbir Sufian ${ }^{\text {a }}$, Tianbo Liu ${ }^{\text {a }}$, Andrei Alexandru ${ }^{\text {b,c }}$, Stanley J. Brodsky ${ }^{\text {d }}$, Guy F. de Téramond ${ }^{\text {e }}$, Hans Günter Dosch ${ }^{\text {f }}$, Terrence Draper ${ }^{g}$, Keh-Fei Liu ${ }^{\text {g , Yi-Bo Yang }}{ }^{\text {h }}$
${ }^{a}$ Thomas Jefferson National Accelerator Facility, Newport News, VA 23606, USA
${ }^{b}$ Department of Physics, The George Washington University, Washington, DC 20052, USA
${ }^{c}$ Department of Physics, University of Maryland, College Park, MD 20742, USA
${ }^{d}$ SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94309, USA
${ }^{e}$ Laboratorio de Física Teórica y Computacional, Universidad de Costa Rica, 11501 San José, Costa Rica
${ }^{f}$ Institut für Theoretische Physik der Universität, D-69120 Heidelberg, Germany ${ }^{g}$ Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506, USA
${ }^{h}$ CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China

Abstract

We present the first lattice QCD calculation of the charm quark contribution to the nucleon electromagnetic form factors $G_{E, M}^{c}\left(Q^{2}\right)$ in the momentum transfer range $0 \leq Q^{2} \leq 1.4 \mathrm{GeV}^{2}$. The quark mass dependence, finite lattice spacing and volume corrections are taken into account simultaneously based on the calculation on three gauge ensembles including one at the physical pion mass. The nonzero value of the charm magnetic moment $\mu_{M}^{c}=-0.00127(38)_{\text {stat }}(5)_{\text {sys }}$, as well as the Pauli form factor, reflects a nontrivial role of the charm sea in the nucleon spin structure. The nonzero $G_{E}^{c}\left(Q^{2}\right)$ indicates the existence of a nonvanishing asymmetric charm-anticharm sea in the nucleon. Performing a nonperturbative analysis based on holographic QCD and the generalized Veneziano model, we study the constraints on the $[c(x)-\bar{c}(x)]$ distribution from the lattice QCD results presented here. Our results provide complementary information and motivation for more detailed studies of physical observables that are sensitive to intrinsic charm and for future global analyses of parton distributions including asymmetric charm-anticharm distribution.

Keywords: Intrinsic charm, Form factor, Parton distributions, Lattice QCD, Light-front holographic QCD, JLAB-THY-20-3155, SLAC-PUB-17515

The distribution function $x[c(x)-\bar{c}(x)]$ obtained from the LFHQCD formalism using the lattice QCD input of charm electromagnetic form factors $G_{E, M}^{c}\left(Q^{2}\right)$. The outer cyan band indicates an estimate of systematic uncertainty in the $x[c(x)-\bar{c}(x)]$ distribution obtained from a variation of the hadron scale κ_{c} by 5%.

Color confinement potential from AdS/QCD

$$
U\left(\zeta^{2}\right)=\kappa^{4} \zeta^{2}, \zeta^{2}=b_{\perp}^{2} x(1-x)
$$

Fixed $\tau=t+z / c$

Intrinsic Charm
 $$
\mid \bar{c}[c u][u d]>
$$

$\mathbf{p} \quad[d u]_{\overline{3}_{C}}$ and $[c u]_{\overline{3}_{C}} J=0$ diquark dominance
$\psi_{n}\left(\vec{k}_{\perp i}, x_{i}\right) \propto \frac{1}{\kappa^{n-1}} e^{-\mathcal{M}_{n}^{2} / 2 \kappa^{2}} \prod_{j=1}^{n} \frac{1}{\sqrt{x}_{j}}$

$$
\mathcal{M}_{n}^{2}=\sum_{i=1}^{n}\left(\frac{k_{\perp}^{2}+m^{2}}{x}\right)_{i}
$$

Color Transparency verified for π^{+}and ρ electroproduction

Hall C E01-107 pion electro-production

$$
\mathrm{A}\left(\mathrm{e}, \mathrm{e}^{\prime} \pi^{+}\right)
$$

B.Clasie et al. PRL 99:242502 (2007)
X. Qian et al. PRC81:055209 (2010)

$$
T_{A}=\frac{\frac{d \sigma}{d Q^{2}}\left(p A \rightarrow \pi^{+} X\right)}{\frac{d \sigma}{d Q^{2}}\left(p p \rightarrow \pi^{+} X\right)}
$$

CLAS E02-110 rho electro-production A(e, $\left.e^{\prime} \rho^{0}\right)$

L. El Fassi et al. PLB 712,326 (2012)

$$
T_{A}=\frac{\frac{d \sigma}{d Q^{2}}\left(p A \rightarrow \rho^{0} X\right)}{\frac{d \sigma}{d Q^{2}}\left(p p \rightarrow \rho^{0} X\right)}
$$

Color transparency:fundamental prediction of QCD

- Not predicted by strongly interacting hadronic picture \rightarrow arises in picture of quark-gluon interactions
- QCD: color field of singlet objects vanishes as size is reduced
- Signature is a rise in nuclear transparency, T_{A}, as a function of the momentum transfer, Q^{2}

$$
T_{A}=\frac{\sigma_{A}}{A \sigma_{N}} \begin{aligned}
& \text { (nuclear cross section) } \\
& \text { (free nucleon } \\
& \text { cross section) }
\end{aligned}
$$

G. de Teramond, sjb

$$
\begin{gathered}
F\left(q^{2}\right)={ }_{n}^{n} \sum_{n} \prod_{i=1}^{\text {Drell-Yan-West Formula in Impact Space }} \\
\sum_{j} \int e_{j} \psi_{n}^{*}\left(x_{i}, \mathbf{k}_{\perp i}^{\prime}, \lambda_{i}\right) \psi_{n}\left(x_{i}, \mathbf{k}_{\perp i}, \lambda_{i}\right) \\
2(2 \pi)^{3} \\
\sum_{j i}^{n} \\
=\sum_{n} \prod_{i=1}^{n-1} \delta\left(1-\sum_{j=1}^{n} x_{j}\right) \delta^{(2)}\left(\sum_{\perp j} \mathbf{k}_{\perp} \int d^{2} \mathbf{b}_{\perp j} \exp \left(i \mathbf{q}_{\perp} \cdot \sum_{i=1}^{n-1} x_{j} \mathbf{b}_{\perp j}\right)\left|\psi_{n}\left(x_{j}, \mathbf{b}_{\perp j}\right)\right|^{2}\right. \\
\sum_{i=1}^{n} x_{i}=1 \text { and } \sum_{i=1}^{n} \mathbf{b}_{\perp i}=0 \\
F\left(q^{2}\right)=\int_{0}^{1} d x \int d^{2} \mathbf{a}_{\perp} e^{i \mathbf{a}_{\perp} \cdot \mathbf{q}_{\perp}} q\left(x, \mathbf{a}_{\perp}\right)
\end{gathered}
$$

where $\mathbf{a}_{\perp}=\sum_{j=1}^{n-1} x_{j} \mathbf{b}_{\perp j}$ is the x-weighted transverse position coordinate of the $n-1$ spectators.

$$
<\tilde{\mathbf{a}}_{\perp}^{2}(x)>=\frac{\int d^{2} \mathbf{a}_{\perp} \mathbf{a}_{\perp}^{2} q\left(x, \mathbf{a}_{\perp}\right)}{\int d^{2} \mathbf{a}_{\perp} q\left(x, \mathbf{a}_{\perp}\right)}
$$

At large light-front momentum fraction x , and equivalently at large values of Q^{2}, the transverse size of a hadron behaves as a point-like color-singlet object. This behavior is the origin of color transparency in nuclei.

Although the dependence of the transverse impact area as a function of x is universal, the behavior in Q^{2} depends on properties of the hadron, such as its twist.

$$
\left\langle\mathbf{a}_{\perp}^{2}\left(Q^{2}\right)\right\rangle_{\tau} \rightarrow \frac{4(\tau-1)}{Q^{2}}
$$

Mean transverse size as a function of Q and Twist

Transparency scale Q increases with twist

Light-Front Holography

Proton has equal probability for $\tau=3$ and $\tau=4$

$$
\begin{gathered}
F\left(q^{2}\right)= \\
\sum_{n} \prod_{j=1}^{n-1} \int d x_{j} \int d^{2} \mathbf{b}_{\perp j} \exp \left(i \mathbf{q}_{\perp} \cdot \sum_{j=1}^{n-1} x_{j} \mathbf{b}_{\perp j}\right)\left|\psi_{n}\left(x_{j}, \mathbf{b}_{\perp j}\right)\right|^{2} \\
\sum_{i} x_{i}=1
\end{gathered}
$$

Color Transparency is controlled by the transverse-spatial size \vec{a}_{\perp}^{2} and its dependence on the momentum transfer $Q^{2}=-t$:
The scale Q_{τ}^{2} required for Color Transparency grows with twist τ

Light-Front Holography:

$$
\left\langle\mathbf{a}_{\perp}^{2}(t)\right\rangle_{\tau}=\frac{1}{\lambda} \sum_{j=1}^{\tau-1} \frac{1}{j-\alpha(t)}
$$

For large Q^{2} :

$$
\left\langle\mathbf{a}_{\perp}^{2}\left(Q^{2}\right)\right\rangle_{\tau} \rightarrow \frac{4(\tau-1)}{Q^{2}} .
$$

Two-Stage Color Transparency

$$
14 G e V^{2}<Q^{2}<20 G e V^{2}
$$

If Q^{2} is in the intermediate range, then the twist-3 state will propagate through the nuclear medium with minimal absorption, and the protons which survive nuclear absorption will only have $\mathrm{L}=0$ (twist-3).

The twist-4 $\mathrm{L}=1$ state which has a larger transverse size will be absorbed.
Thus 50% of the events in this range of Q^{2} will have full color transparency and 50% of the events will have zero color transparency $(\mathrm{T}=0)$.

The ep $\rightarrow \mathrm{e}^{\prime} \mathrm{p}^{\prime}$ cross section will have the same angular and Q^{2} dependence as scattering of the electron on an unphysical proton which has no Pauli form factor.

$$
Q^{2}>20 G e V^{2}
$$

However, if the momentum transfer is increased to $\mathrm{Q}^{2}>20 \mathrm{GeV}^{2}$, all events will have full color transparency, and the ep $\rightarrow \mathrm{e}^{\prime} \mathrm{p}^{\prime}$ cross section will have the same angular and Q^{2} dependence as scattering of the electron on a physical proton eigenstate, with both Dirac and Pauli form factor components.

Color transparency fundamental prediction of QCD

- Not predicted by strongly interacting hadronic picture \rightarrow arises in picture of quark-gluon interactions
- QCD: color field of singlet objects vanishes as size is reduced
- Signature is a rise in nuclear transparency, T_{A}, as a function of the momentum transfer, Q^{2}

Two-Stage Color Transparency for Proton

Color Transparency and Light-Front Holography

- Essential prediction of QCD
- LF Holography: Spectroscopy, dynamics, structure
- Transverse size predicted by LF Holography as a function of Q
- Q scale for CT increases with twist, number of constituents
- Two-Stage Proton Transparency: Equal probability L=o,i
- No contradiction with present experiments
$Q_{0}^{2}(p) \simeq 18 \mathrm{GeV}^{2}$ vs. $Q_{0}^{2}(\pi) \simeq 4 \mathrm{GeV}^{2}$ for onset of color transparency in ${ }^{12} \mathrm{C}$

Other Consequences of $[u d]_{\overline{3}_{C}, I=0, J=0}$ diquark cluster

QCD Hidden-Color Hexadiquark in the Core of Nuclei

J. Rittenhouse West, G. de Teramond, A. S. Goldhaber, I. Schmidt, sjb

$\left|\Psi_{H D Q}>=\right|[u d][u d][u d][u d][u d][u d]>$ mixes with ${ }^{4} H e \mid n p n p>$
Increases alpha binding energy, EMC effects

Diquarks Can Dominate Five-Quark Fock State of Proton

$$
|p>=\alpha|[u d] u>+\beta \mid[u d][u d] \bar{d}>
$$

Natural explanation why $\bar{d}(x) \gg \bar{u}(x)$ in proton
Excitations and Decay of HdQ in Alpha-Nuclei may explain ATOMKI XI7 signal

Underlying Principles

- Polncarè Invariance: Independent of the observer's Lorentz frame: Quantization at Fixed Light-Front Time \boldsymbol{T}
- Causality: Information within causal horizon: Light-Front
- Light-Front Holography: $\mathrm{AdS}_{5}=\operatorname{LF}(3+I)$

$$
z \leftrightarrow \zeta \text { where } \zeta^{2}=b_{\perp}^{2} x(1-x)
$$

- Introduce mass scale $\boldsymbol{\kappa}$ while retaining conformal invariance of the Action (dAFF)

"Emergent Mass"

- Unique Dilaton in $\mathrm{AdS}_{5}: e^{+\kappa^{2} z^{2}}$
- Unique color-confining LF Potential $U\left(\zeta^{2}\right)=\kappa^{4} \zeta^{2}$
- Superconformal Algebra: Mass Degenerate 4-Plet:

Meson $q \bar{q} \leftrightarrow$ Baryon $q[q q] \leftrightarrow$ Tetraquark $[q q][\bar{q} \bar{q}]$

- Color Confinement, Analytic form of confinement potential
- Retains underlying conformal properties of QCD despite mass scale (DeAlfaro-FubiniFurlan Principle)
- Massless quark-antiquark pion bound state in chiral limit, GMOR
- QCD coupling at all scales
- Connection of perturbative and nonperturbative mass scales
- Poincarè Invariant
- Hadron Spectroscopy-Regge Trajectories with universal slopes in n, L
- Supersymmetric 4-Plet: Meson-Baryon-Tetraquark Symmetry
- Light-Front Wavefunctions
- Form Factors, Structure Functions, Hadronic Observables
- OPE: Constituent Counting Rules
- Hadronization at the Amplitude Level: Many Phenomenological Tests
- Systematically improvable: Basis LF Quantization (BLFQ)

> Supersymmetric Features of Hadron Physics
> from Superconformal Algebra
> and Light-Front Holography

Holographic Light-Front QCD:

A Novel Nonperturbative Approach to Color Confinement and Hadron Physics

$|p>=| u[u d]>$ quark-diquark cluster
with Guy de Tèramond, Hans Günter Dosch, Cèdric Lorcè, Alexandre Deur, and Joshua Erlich

Fifty Years 2CD
September 15, 2023 UCLA

Stan Brodsky SIL를

NATIONAL ACCELERATOR LABORATORY

