Nonrelativistic

Conformal Field Theory and nuclear reactions

Dam Thanh Son (University of Chicago)
50 years of Quantum Chromodynamics, UCLA
September 15, 2023

Happy birthday QCD!

Cultural impact of QCD

- QCD is the first theory where microscopic d.o.fs \neq low energy d.o.fs
- Immense impact on condensed matter physics
- quasiparticles in fractional quantum Hall states:
fractionally charged at $\nu=1 / 3$, electrically neutral fermion ("composite fermions") at $\nu=1 / 2$
- "deconfinement","partons": now standard notions in theoretical condensed matter physics

This talk

- about "chemistry of QCD" - nuclei
- simplest chemistry: $\mathrm{He} \mathrm{e}_{2}$ molecule $\left(10^{-7} \mathrm{eV}\right.$ binding energy)
- processes involving very small energy scale, from 0.1 MeV to a few MeV
- Accidental fine-tuning: neutron-neutron scattering length very large $a_{n n} \approx-19 \mathrm{fm}$
- Nontrivial effect on rates of reactions with several neutron in the final state

Example

- $\pi^{-}+{ }^{3} \mathrm{H} \rightarrow \gamma+3 n$
- $E_{\gamma}=E \in\left(0, E_{0}\right), \quad E_{0} \approx 130 \mathrm{MeV}$
- Near end point
- $\frac{d \sigma}{d E} \sim\left(E_{0}-E\right)^{1.77}$
- $1.77=\Delta-5 / 2$ where $\Delta=4.27$ is the scaling dimension of a local operator in a nonrelativistic CFT

Plan

- Nonrelativistic conformal symmetry
- Nonrelativistic CFTs
- Fermions at unitarity
- Neutrons and "UnNuclear Physics"

Refs.:Y. Nishida, DTS , PRD 76, 086004 (2007)
H.-W. Hammer, DTS PNAS 118 (2021) e2108716118
S.D. Chowdhury, R. Mishra, DTS to appear

Schrödinger group

- Symmetries of the free Schrödinger equation

$$
i \frac{\partial \psi}{\partial t}=-\frac{1}{2 m} \nabla^{2} \psi
$$

- Phase rotation $M=m N \quad \psi \rightarrow e^{i \alpha} \psi$
- space and time translations \mathbf{P}, H; rotations $J_{i j}$
- Galilean boosts $\mathbf{K} \psi(t, \mathbf{x}) \rightarrow e^{i m \mathbf{v} \cdot \mathbf{x}-\frac{i}{2} m v^{2} t} \psi(t, \mathbf{x}-\mathbf{v} t)$
- Dilatation $D \psi(t, \mathbf{x}) \rightarrow \lambda^{3 / 2} \psi\left(\lambda^{2} t, \lambda \mathbf{x}\right)$

"Proper conformal transformation"

$$
C: \psi(t, \mathbf{x}) \rightarrow \frac{1}{(1+\alpha t)^{3 / 2}} \exp \left(\frac{i}{2} \frac{m \alpha x^{2}}{1+\alpha t}\right) \psi\left(\frac{t}{1+\alpha t}, \frac{\mathbf{x}}{1+\alpha t}\right)
$$

Schrödinger algebra

$[X, Y]$

$X \backslash Y$	P_{j}	K_{j}	D	C	H
P_{i}	0	$-i \delta_{i j} M$	$-i P_{i}$	$-i K_{i}$	0
K_{i}	$i \delta_{i j} M$	0	$i K_{i}$	0	$i P_{i}$
D	$i P_{j}$	$-i K_{j}$	0	$-2 i C$	$2 i H$
C	$i K_{j}$	0	$2 i C$	0	$i D$
H	0	$-i P_{j}$	$-2 i H$	$-i D$	0

[N, anything] $=0$

Nonrelativistic CFTs

Y. Nishida, DTS, 2007

- QFTs with Schrödinger symmetry
- local operators $O(\vec{x})$ characterized by charge (mass) and dimension $[D, O(0)]=i \Delta_{0} O(0), \quad[M, O(0)]=i N_{O} O(0)$ example: $\psi \quad N_{\psi}=1, \Delta_{\psi}=\frac{3}{2}$
- primary operators: $\left[K_{i}, O(\overrightarrow{0})\right]=[C, O(\overrightarrow{0})]=0$
- Constraints from conformal invariance:

$$
\left\langle T O(t, \vec{x}) O^{\dagger}(0,0)\right\rangle=\frac{c}{t^{\Delta_{o}}} \exp \left(\frac{i m_{O} x^{2}}{2 t}\right) \quad \begin{aligned}
& {[E]=2} \\
& {[p]=1}
\end{aligned}
$$

Example of NRCFTs

- Free particles
- nonrelativistic anyons (two spatial dimensions)
- Spin-1/2 fermions at unitarity
- realized in cold atom experiments, but also approximately by neutrons

Unitarity fermions: QM

- Wave function of m spin-up and n spin-down fermions $\psi\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{m} ; \mathbf{y}_{1}, \ldots, \mathbf{y}_{n}\right)$
- ψ antisymmetric under exchanging two x's or y's
- When one spin-up and one spin-down fermions approach each other:

$$
\begin{gathered}
\psi(\mathbf{x}, \mathbf{y})=\frac{C}{|\mathbf{x}-\mathbf{y}|}+O(|\mathbf{x}-\mathbf{y}|)+\cdots \\
\bullet H=-\frac{1}{2} \sum_{a} \frac{\partial^{2}}{\partial \mathbf{x}_{a}^{2}}-\frac{1}{2} \sum_{a} \frac{\partial^{2}}{\partial \mathbf{y}_{a}^{2}}
\end{gathered}
$$

What are the local operators?

- First example: annihilation operator in second quantized formulation of QM
- $\langle 0| \hat{\psi}(\vec{x})\left|\Psi_{1 \text {-body }}\right\rangle=\Psi(\vec{x})$
- This is a charge- 1 operator, dimension=3/2

Charge-2 local operator

- Second-quantized formulation of QM :

$$
\langle 0| \psi_{\uparrow}(\mathbf{x}) \psi_{\downarrow}(\mathbf{y})\left|\Psi_{2 \text {-body }}\right\rangle=\Psi(\mathbf{x}, \mathbf{y})
$$

- Limit $\mathbf{y} \rightarrow \mathbf{x}$ does not exist:

$$
\langle 0| \psi_{\uparrow}(\mathbf{x}) \psi_{\downarrow}(\mathbf{x})|\Psi\rangle=\Psi(\mathbf{x}, \mathbf{x})=\infty
$$

- but one can define

$$
O_{2}(\mathbf{x})=\lim _{\mathbf{y} \rightarrow \mathbf{x}}|\mathbf{x}-\mathbf{y}| \psi_{\uparrow}(\mathbf{x}) \psi_{\downarrow}(\mathbf{y})
$$

- then

$$
\langle 0| O_{2}(\mathbf{x})|\Psi\rangle=\lim _{\mathbf{y} \rightarrow \mathbf{x}}|\mathbf{x}-\mathbf{y}| \Psi(\mathbf{x}, \mathbf{y})=\text { finite }
$$

Dimension of O_{2}

- $O_{2}(\mathbf{x})=\lim _{\mathbf{y} \rightarrow \mathbf{x}}|\mathbf{x}-\mathbf{y}| \psi_{\uparrow}(\mathbf{x}) \psi_{\downarrow}(\mathbf{y})$
- $\Delta\left[O_{2}\right]=2 \Delta[\psi]-1=2$
- cf free theory: $\Delta[\psi \psi]=3$

Charge-3 operator

- Need to know short distance behavior of $\Psi\left(\mathbf{x}_{1}, \mathbf{x}_{2} ; \mathbf{y}\right)$
- 3-body problem solved by Efimov ~ 1970

$$
\begin{aligned}
& \Psi\left(\mathbf{x}_{1}, \mathbf{x}_{2} ; \mathbf{y}\right) \sim R^{-0.2273} f(\alpha, \hat{\rho}, \hat{r}) \\
& \quad R^{2}=\left|\mathbf{x}_{1}-\mathbf{x}_{2}\right|^{2}+\left|\mathbf{x}_{1}-\mathbf{y}\right|^{2}+\left|\mathbf{x}_{2}-\mathbf{y}\right|^{2} \\
& \alpha, \hat{\rho}, \hat{r}=5 \text { hyperangles }
\end{aligned}
$$

- Charge-3 operator

$$
O_{3}(\mathbf{x}) \sim \lim _{\mathbf{x}_{2} \rightarrow \mathbf{x} \mathbf{y} \rightarrow \mathbf{x}} \lim ^{0.2273} \psi_{\uparrow}(\mathbf{x}) \psi_{\uparrow}\left(\mathbf{x}_{2}\right) \psi_{\downarrow}(\mathbf{y})
$$

- $\Delta\left[O_{3}\right]=4.2727$
cf free theory: $\left[\psi_{\downarrow} \psi_{\uparrow} \nabla \psi_{\uparrow}\right]=\frac{11}{2}$

Dimension of charge-3 operators

$$
\begin{aligned}
& \Delta=\frac{5}{2}+s \text { where } s \text { solves an equation } \\
& l=0: \quad s \cos \left(\frac{\pi}{2} s\right)+\frac{4}{\sqrt{3}} \sin \left(\frac{\pi}{6} s\right)=0 \\
& \Delta=4.666,7.627,9.614, \ldots, 2 n+\frac{7}{2} \\
& l=1: \quad\left(s^{2}-1\right) \sin \left(\frac{\pi}{2} s\right)+\frac{4}{\sqrt{3}} s \cos \left(\frac{\pi}{6} s\right)-4 \sin \left(\frac{\pi}{6} s\right)=0 \\
& \Delta=4.273,6.878,8.216, \ldots .2 n+\frac{5}{2}
\end{aligned}
$$

Charge-4 operator

- Dimension of operator with particle number $\mathrm{N}>3$ can only be obtained numerically
- Nishida and DTS 2007: equal to ground state energy of N unitary fermions in a harmonic trap
- $\Delta\left[O_{4}\right]=5.0 \pm 0.1$ (cf. free theory: 8)

Two point functions

- One can compute two-point functions by inserting a complete set of states

$$
\langle 0| O(t, \mathbf{x}) O^{\dagger}(0)|0\rangle=\sum_{n}\langle 0| O(0)|n\rangle e^{-i E_{n} t+i \boldsymbol{P}_{n} \times \mathbb{x}}\langle n| O^{\dagger}(0)|0\rangle
$$

- Result

$$
\left\langle O(t, \mathbf{x}) O^{\dagger}(0, \mathbf{0})\right\rangle=\frac{C}{t^{\Delta_{O}}} \exp \left(\frac{i M_{O} x^{2}}{2 t}\right)
$$

- In momentum space

$$
\left\langle O O^{\dagger}\right\rangle(\omega, \mathbf{p}) \sim\left(\frac{\mathbf{p}^{2}}{2 M_{O}}-\omega\right)^{\Delta_{O}-5 / 2}
$$

NRCFT in real world: neutrons

- $a \approx-19 \mathrm{fm}, r_{0} \approx 2.8 \mathrm{fm}$
- NRCFT in energy range between $\hbar^{2} / m a^{2} \sim 0.1 \mathrm{MeV}$ and $\hbar^{2} / m r_{0}^{2} \sim 5 \mathrm{MeV}$
- Consequence: power-law behavior in processes with final state neutrons
- "Unnuclear Physics" Hammer, DTS 2021 nonrelativistic version of Georgi's "unparticle physics"

"UnNuclear physics"

$$
P\left(A_{1}+A_{2} \rightarrow B+3 n\right)=P\left(A_{1}+A_{2} \rightarrow B+\mathscr{U}\right) P(\mathscr{U} \rightarrow 3 n)
$$

when energy scale of primary reaction is larger than $\mathscr{U} \rightarrow 3 n$
$\mathscr{U}=$ "unnucleus" = field in NRCFT

Rates of unnuclear processes

- Near end point: $\frac{d \sigma}{d E} \sim\left(E_{0}-E\right)^{\Delta-\frac{5}{2}}, \Delta=$ dimension of \mathscr{U}

Nuclear reactions

- $\frac{d \sigma}{d E} \sim\left(E_{0}-E\right)^{\alpha} \quad \alpha=\Delta-\frac{5}{2}$
- ${ }^{3} \mathrm{H}+{ }^{3} \mathrm{H} \rightarrow{ }^{4} \mathrm{He}+2 \mathrm{n}$
Δ
α
2
-0.5 Watson-Migdal I950's
- $\pi^{-}+{ }^{3} \mathrm{H} \rightarrow \gamma+3 \mathrm{n} \quad 4.27 \quad 1.77$
- ${ }^{4} \mathrm{He}+{ }^{8} \mathrm{He} \rightarrow{ }^{8} \mathrm{Be}+4 \mathrm{n} \quad 5.0 \quad 2.5$

Comparison with "experiment"

Golak et al. PRC 98, 05400 (20I8)

NRCFT as transient fixed point

Deformations of NRCFT

- Dimensional counting

$$
S=\int \underbrace{d t}_{-2} \underbrace{d^{3} x}_{-3}\left(\mathscr{L}_{\mathrm{CFT}}+\text { deformations }\right)
$$

- operators with dim < 5: relevant; dim > 5: irrelevant
- one relevant deformation: $\left[\mathrm{O}_{2}^{\dagger} \mathrm{O}_{2}\right]=4$
- Leading Galilean-invariant irrelevant deformation:

$$
O_{2}^{\dagger}\left(\partial_{t}+\frac{\nabla^{2}}{4}\right) O_{2} \quad \operatorname{dim}=6
$$

Away from conformality

- Finite scattering length and effective range can be treated as perturbation away from NRCFT

$$
L=L_{\mathrm{CFT}}+\frac{1}{a} O_{2}^{\dagger} O_{2}-r_{0} O_{2}^{\dagger}\left(i \partial_{t}+\frac{1}{4} \nabla^{2}\right) O_{2}
$$

- Contribution to $\left\langle O_{3} O_{3}^{\dagger}\right\rangle$ can be computed using conformal perturbation theory S.D. Chowdhury, R. Mishra, DTS to be published

$$
\frac{d \sigma}{d E} \sim \omega^{\Delta-5 / 2}\left(1+\frac{c_{1}}{a_{0} \sqrt{m \omega}}+c_{2} r_{0} \sqrt{m \omega}\right)
$$

Conformal perturbation theory

$$
\begin{aligned}
& \left\langle O_{3}(x) O_{3}^{\dagger}(0)\right\rangle=\frac{1}{Z} \int \mathscr{D} \psi O_{3}(x) O_{3}^{\dagger}(0) e^{i S_{\mathrm{CFT}}+\frac{i}{a} \int_{y} O_{2}^{\dagger}(y) O_{2}(y)} \\
& =\left\langle O_{3}(x) O_{3}^{\dagger}(0)\right\rangle_{0}+\frac{1}{a} \int d y\left\langle O_{3}(x) O_{2}^{\dagger}(y) O_{2}(y) O_{3}^{\dagger}(0)\right\rangle_{0} \\
& \frac{d \sigma}{d E} \sim \omega^{\Delta-5 / 2}\left(1+\frac{c_{1}}{a \sqrt{m \omega}}\right) \quad \begin{array}{l}
\Delta=4.273 \\
c_{1}=2.642
\end{array}
\end{aligned}
$$

Effective-range correction

- Effective range correction proportional to

$$
\frac{\Gamma\left(\frac{d}{2}+s-2\right)}{\Gamma\left(3-\frac{d}{2}\right) \Gamma(d-3)}=0
$$

- Vanishes at physical dimension $d=3$, but not in fractional spatial dimension
- we do not understand this completely

Open questions

- Can one resum all $1 / a$ correction and determine the correlator along the whole RG flow?
- Can be done for O_{2}

$$
\left\langle O_{2} O_{2}^{\dagger}\right\rangle=\left(\sqrt{\frac{p^{2}}{4}-p_{0}}-\frac{1}{a}\right)^{-1}
$$

but needs to be down for charge-3 operators

- Charge-4 operators and higher?

Four-neutron production

${ }^{8} \mathrm{He}\left(p, \mathrm{p}^{4} \mathrm{He}\right) 4 \mathrm{n}$

(Duer et al Nature 2022)

Four-neutron production

${ }^{8} \mathrm{He}\left(p, \mathrm{p}^{4} \mathrm{He}\right) 4 \mathrm{n}$

(Duer et al Nature 2022)

Conclusion

- QCD has a large cultural impact on CMP
- NR conformal field theories have Schrödinger symmetry
- Example: fermions at unitarity
- Approximately realized by neutrons in nuclear physics
- Leads to a power-law behavior of differential cross sections of certain processes near threshold
- Nonrelativistic conformal perturbation theory
- the full power of NRCFT still to be explored

Width of hypothetical multi-neutron resonances

- Suppose we have a multi-neutron resonance with $\hbar^{2} / m a^{2} \ll \operatorname{Re} E \ll \hbar^{2} / m r_{0}^{2}$
- Then the width will scale as

$$
\Gamma \sim E^{\Delta-5 / 2}= \begin{cases}E^{1.77} & N=3 \\ E^{2.5} & N=4\end{cases}
$$

DTS, M.A. Stephanov, H.-U.Yee, PRA I06(2022) L05080I

New approach to twoneutron halo nuclei

- Borromean two-neutron halo nuclei (Ann),

$$
A={ }^{4} \mathrm{He},{ }^{9} \mathrm{Li},{ }^{20} \mathrm{C}, \ldots
$$

- Small two-neutron separation energy

$$
\begin{aligned}
& B\left({ }^{6} \mathrm{He}\right)=0.975 \mathrm{MeV} \\
& B\left({ }^{11} \mathrm{Li}\right)=0.369 \mathrm{MeV} \\
& B\left({ }^{(22} \mathrm{C}\right)<0.18 \mathrm{MeV} \text { ? Hammer Ji Phillips } 2017
\end{aligned}
$$

- EFT based on smallness of B and neutron virtual energy

EFT of weakly-bound twoneutron halo nuclei

- Add two fields to the NRCFT of neutron: core ϕ, halo nucleus h
- Interaction: $h^{\dagger} O_{2} \phi+O_{2}^{\dagger} \phi^{\dagger} h$
- dimension: $\frac{3}{2}+\frac{3}{2}+2=5$: marginal
- leading-order EFT renormalizable;
- Universal result for (charge radius)/(matter radius), E1 dipole strength function Hongo and DTS, PRL 2022

$$
\begin{align*}
& \frac{\mathrm{d} B(E 1)}{\mathrm{d} \omega}=\frac{3}{4 \pi} Z^{2} e^{2} \frac{12 g^{2}}{\pi} \frac{A^{1 / 2}}{(A+2)^{5 / 2}} \frac{(\omega-B)^{2}}{\omega^{4}} \\
& \times f_{E 1}\left(\frac{1}{-a \sqrt{\omega-B}}\right) \tag{29}
\end{align*}
$$

where

$$
\begin{equation*}
f_{E 1}(x)=1-\frac{8}{3} x\left(1+x^{2}\right)^{3 / 2}+4 x^{2}\left(1+\frac{2}{3} x^{2}\right) \tag{30}
\end{equation*}
$$

