The Rise of Jet Substructure

QCD at 50

Ian Moult

Yale

Jets

Jets play a central role in colliders as proxies for quarks and gluons
⇒ long distance manifestation of microscopic interactions.

Jets at the Large Hadron Collider

• The LHC produces jets with unprecedented energy and multiplicity.

• Provides a rich dataset for exploring the dynamics of QCD.

Jet Substructure

Electroweak scale dynamics imprinted in energy flow of jets
⇒ jets have substructure!

QCD at 50

September 15, 2023 4 / 53

The Standard Model of Jets

• Jets are the long distance manifestation of Standard Model dynamics.

• Understanding QCD jets takes on a central role.

Jet Substructure

• Jet Substructure uses the internal structure of jets to provide qualitatively new ways to study the SM and Beyond.

Jet substructure as a new Higgs search channel at the LHC

Jonathan M. Butterworth (University Coll. London), Adam R. Davison (University Coll. London), Mathleu-Rubh (Paris, DTHE), Gavin P. Salam (Paris, LPTHE) Feb. 2008

4 pages Published in: Phys.Rev.Lett. 100 (2008) 242001 e-Print: 0502.2470 (hep-ph) Doi: 10.1103/PhysRev.dem.100.242001 Wew in: HAL Science Duverte, ADS Abstract Service

🛛 pdf 🖂 cite 🔯 claim

🖸 reference search \ominus 1,207 citations

• Tremendous Influence: Reinvigorated the study of jets in QCD.

Jet Substructure

• Jet substructure has emerged as a central new technique at the LHC:

• Has evolved well beyond its origin to have a large impact on BSM, SM, high energy QCD and nuclear physics.

Outline

• Decoding Energy Flux

• Asymptotic Scaling of Quarks and Gluons

• Imaging Intrinsic and Emergent Scales of the Standard Model

Decoding Energy Flux

Decoding Energy Flux

• In condensed matter physics or cosmology we decode the underlying dynamics using correlation functions.

• What is the analog for collider physics?

Energy Flux

• Expectation value of energy flux at specific angles on the celestial sphere is calculable in perturbation theory.

Well-defined detectors

Energy flow becomes the focus of computability.

Our ensembles will thus be specified in terms of sets of jet-related states. To make this idea more quantitative we define for any state a, an "angular energy current" in the e^+e^- CM All observables

$$j_a(\Omega) = \sum_{i=1}^{n} \eta_i \delta(\Omega - w_i)$$

where the sum is over the n_{α} massless p $\{\gamma_k\}$ and momentum directions $\{w_k\}$ (w_k a related states have the same j(i). Eac linear momenta may be described as a je states is characterized by the number o and directions.

$$\mathcal{E}(\vec{n}) = \lim_{r \to \infty} r^2 \int_0^\infty dt \ n^i T_{0i}(t, r\vec{n})$$

[Korchemsky, Sterman], [Sveshnikov, Tkachov], [Hofman, Maldacena], [Korchemsky, Sokatchev, Zhiboedov,...]

QCD at 50

September 15, 2023 11 / 53

A Modern Perspective

• What is a detector?

[Caron Huot, Kologlu, Kravchuk, Meltzer, Simmons Duffin]

• To be able to understand subtle signals in energy flux, we must understand what a detector is in Quantum Field Theory.

Calorimeter Cells in Field Theory

 Calorimeter cells can be given a field theoretic definition in terms of light-ray operators. [Hofman, Maldacena]

Korchemsky, Sterman] Ore, Sterman] [Basham, Brown, Ellis, Love]

• Provides a sharp link between experimentally measurable observables and the underlying QFT.

Energy Correlators: History

• Proposed 45 years ago (The first jet substructure!):

Energy Correlations in electron - Positron Annihilation: Testing QCD

C.Louis Basham (Washington U., Seattle), Lowell S. Brown (Washington U., Seattle), Stephen D. Ellis (Washington U., Seattle), Sherwin T. Love (Washington U., Seattle) Aug, 1978

13 pages

Published in: Phys.Rev.Lett. 41 (1978) 1585 DOI: 10.1103/PhysRevLett.41.1585 Report number: RLO-1388-759 View in: CSTI Information Bridge Server, ADS Abstract Service

🖃 cite 📑 claim

😨 reference search 🛛 🕣 381 citations

Abstract: (APS)

An experimental measure is presented for a precise test of quantum chromodynamics. This measure involves the asymmetry in the energy-weighted opening angles of the jets of hadrons produced in the process e4--->hadrons at energy W. It is special for several reasons: It is reliably calculable in asymptotically free perturbation theory; It has rapidly vanishing (order 1W2) corrections due to nonperturbative confinement effects; and It is trainpliforward to determine experimentally.

SUCCESSIVE COMBINATION JET ALGORITHM FOR HADRON COLLISIONS

Stephen D. Bills" Thoratical Physics Division, CEBN Cill - 1111 (Jacrawa 21 SWITZERIAND and Davisen F. Soper Unionaly of Oogen Dagree, Oit PHID, USA

Abstract let finding algorithms, as they are used in e⁺e⁻ and hadron collisions, are reviewed and correspond. It is suggested that a successive combination mybe algorithm, similar to that termine experimentally

• Large resurgence of interest due to LHC dataset and improvement in our understanding of perturbative QCD.

Jets at the LHC

- Transition from GeV \rightarrow TeV Jets transforms the questions we can understand using perturbation theory.
- Move from exclusive amplitudes to the study of correlations $\langle \Psi | \mathcal{E}(\hat{n}_1) \cdots \mathcal{E}(\hat{n}_k) | \Psi \rangle$ on high multiplicity states \implies A new regime of QCD!

Energy Correlators: Present

Figure: Wenging Fan

• Asymptotic Freedom and Confinement in one plot!

Asymptotic Scaling of Quarks and Gluons

Scaling Behavior in QFT

• Scaling behavior in Euclidean regime well understood.

$\lambda\text{-point}$ of Helium

$$\mathcal{O}(x)\mathcal{O}(0) = \\ \sum x^{\gamma_i} c_i \mathcal{O}_i$$

The OPE Limit of Lightray Operators

• Energy flow operators admit a Lorentzian OPE: "the lightray OPE"

[Hofman, Maldacena] [Chang, Kologlu, Kravchuk, Simmons Duffin, Zhiboedov] QCD: [Dixon, Moult, Zhu]

• Predicts universal scaling behavior in correlations of energy flux at energies $E\gg\Lambda_{\rm QCD}$. See early work by [Konishi, Ukawa, Veneziano]

• Beautiful scaling behavior in energy flux, even in complicated hadronic environment!

Scaling Behavior in Jets

Thanks to Helen Caines, Meng Xiao, ChenFeng Lu,

Andrew Tamis, Ananya Rai.

• Measurements from ALICE, CMS and STAR from 15 GeV to 1784 GeV released last week!

• Dominated by classical scaling. Can we accurately measure anomalous scaling?

The Spectrum of a Jet

• The light-ray OPE predicts that the N-point correlators develop an anomalous scaling that depends on N.

• Directly probes the spectrum of (twist-2) lightray operators from asymptotic energy flux.

Anomalous Scaling of 3/2 Ratio

• Anomalous scaling measured from 15 GeV to 1784 GeV!

Asymptotic Freedom

- Scaling exponents are proportional to $\alpha_s \implies$ run with p_T .
- Asymptotic Freedom by eye!

The Strong Coupling

- Proof of principle α_s can be extracted from jet substructure in complicated hadron collider environment: 4% accuracy.
- Hope to use high energies of the LHC to resolve previous tensions in α_s extractions.

Jet Substructure: Factorization

• Any quantitative result at colliders relies crucially on the seminal factorization theorems of Collins, Soper, Sterman.

Fig. 1. General graphical contribution to the Deth-Yan cross section, corresponding to eq. (2.1). In the corresponding region in momentum space, each propagator or cut line falls into one of the subgraphs.

• Greatly extended to more differential jet substructure observables using Soft Collinear Effective Theory.

• Forms the theoretical backbone of the jet substructure program.

Imaging the Confinement Transition

Dynamics of Hadronization

• What are the dynamics of the hadronization process?

• Can it be directly imaged in asymptotic energy flux?

The Confinement Transition

Non-Gaussianities in Energy Flux

[Chen, Moult, Thaler, Zhu]

Non-Gaussianities

- Higher-point correlators probe more detailed aspects of interactions.
- e.g. Non-Gaussianities allow one to distinguish models of inflation.

• What is the structure of higher-point functions of energy flux?

Shape Dependence of Non-Gaussianities

• Can directly study non-gaussianities inside high energy jets.

• Illustrates theoretical control over multi-point correlations!

Beyond Energy Flux

The Space of Detectors

- Details of the hadronization process are encoded in the quantum numbers (charge, flavor, ...): By definition, energy flux is insensitive!
- What is the space of detectors over which we can gain theoretical control?

Factorization

- More general observables can be calculated by combining factorization into universal matrix elements, with the Renormalization Group.
- Tremendous recent progress in understanding renormalization group evolution of functions characterizing correlations in the hadronization process (beyond DGLAP).

• Enables the calculation of correlations on energy flux carried by hadrons of specific quantum numbers: e.g. $\langle \Psi | \mathcal{E}_+(\hat{n}_1) \cdots \mathcal{E}_-(\hat{n}_k) | \Psi \rangle$

Charged Energy Flux

- Opposite sign hadrons exhibit enhanced small angle correlations relative to like sign hadrons.
- Not electromagnetic in nature: generated by hadronization!

• How far can we push into the confinement transition? Experimental measurements will be crucial.

From Theory and Experiment

• In the last decade jet substructure has provided a new way of studying QCD: rapid evolution of new techniques from theory to experimental reality.

 $= 0.1229^{+0.0014(stat.)+0.0030(theo.)+0.0023(exp.)}_{-0.0012(stat.)-0.0033(theo.)-0.0036(exp.)}$

• Now we can begin to use jets as calibrated probes of more complicated systems!

Three Examples

• Weighing the Top Quark

 Resolving the Scales of the Quark Gluon Plasma

• New Particles and Interactions

Weighing the Top Quark

[Holguin, Moult, Pathak, Procura, Schofbeck, Schwarz]

Top Quark Mass

• In the absence of the direct observation of new physics, understanding the precise structure of the Standard Model and its extrapolation to high energies can provide clues.

- The top quark mass is one of the most important parameters of the SM. e.g. electroweak vacuum stability/criticality, electroweak fits, etc.
- Precision extraction from experiment requires detailed understanding of QCD.

Boosted Top Quarks

• Large samples of highly boosted top quarks produced at the LHC.

• Imprint their structure into three-point energy correlators.

Top Quark Mass Measurement Proposal

Resolving the Scales of the Quark Gluon Plasma

[Andres, Dominguez, Holguin, Kunnawalkam Elayavalli, Marquet, Moult]

The Quark Gluon Plasma

• Understanding extreme states of QCD matter, "the condensed matter physics of QCD", is important for many problems ranging from early universe cosmology to neutron star mergers.

• The QGP can be produced and studied in high energy colliders, providing a primary target for new jet substructure techniques.

Imaging the Plasma

• Energetic quarks and gluons produced in the collisions shoot through the plasma, much like the classic Rutherford experiment.

• How can we see there was a 10^{-14} m ball of plasma at the center?

Resolving the Scales of the QGP

• QGP scales cleanly imprinted in two-point correlation!

- Detailed behavior and higher point correlators probe transport, etc.
- Measurements public soon!

New Particles and New Interactions

Searches at the LHC

• Tremendous impact on (B)SM searches:

Charm Yukawa

- Measurements of the Higgs couplings to light quarks provide a crucial test of the Yukawa sector of the SM.
- Jet substructure provides the current most stringent bound on the charm Yukawa, $1.1 < \kappa_c < 5.5$.

• Matches the original projected sensitivity with 3000 fb⁻¹!

Higgs Self Interactions

- The Higgs self interaction accesses the Higgs potential.
- Jet Substructure exploits the high branching ratio to b-quarks.

• First observation of the $VV \rightarrow HH$ coupling in the SM!

Boosted Higgs

• Searches for modifications of Higgs couplings at high p_T .

Summary

- The spectacular understanding of QCD developed over the past 50 years is being used to study the SM in new ways.
- Jet Substructure is rapidly evolving into a precision science enabling *quantitative* new ways to study the strong force.
- With the rich experimental program from HEP to nuclear physics, expect many exciting developments in the next 50!

Happy Birthday

Asymptotic Freedom!

