The Rise of
Jet Substructure

bm
D‘
V—

1 ]
J
——\

lan Moult =

CD at 50 September 15, 2023 1/53




N
Jets

e Jets play a central role in colliders as proxies for quarks and gluons
= long distance manifestation of microscopic interactions.

2-Jet Event 3-Jet Event
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-
Jets at the Large Hadron Collider

e The LHC produces jets with unprecedented energy and multiplicity.

pr = 3.2 TeV 9 Jet Event

e Provides a rich dataset for exploring the dynamics of QCD.
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Jet Substructure

e The LHC is the first collider where electroweak scale particles appear
boosted inside jets = The SM in a new regime.

o Electroweak scale dynamics imprinted in energy flow of jets
—> jets have substructure!
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The Standard Model of Jets

e Jets are the long distance manifestation of Standard Model dynamics.

ot

Gauge Bosons

e | |
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e Understanding QCD jets takes on a central role.
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Jet Substructure

o Jet Substructure uses the internal structure of jets to provide
qualitatively new ways to study the SM and Beyond.

The anti-k jet clustering algorithm

. LPTHE), Gavi . Solam (Pari,LPTHE, Gragory Soyes (Broaktaven)

JHep 04 (2008) 063

D 9sisctations

100 2008) 242001

262001

e Tremendous Influence: Reinvigorated the study of jets in QCD.
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N
Jet Substructure

e Jet substructure has emerged as a central new technique at the LHC:

Innovative Search Techniques Novel Probes of QCD Dynamics
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o
pQCD (NLL) |
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e Has evolved well beyond its origin to have a large impact on BSM,
SM, high energy QCD and nuclear physics.

3

. QCb at 50 Sesienlar iB, A 3



Outline

e Decoding Energy Flux

Two-Point Energy Correlator
(&:62)

o Asymptotic Scaling of Quarks and Gluons

§ CMS Open Data
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Normalized EEC
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¢ Imaging Intrinsic and
Emergent Scales of the
Standard Model
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Decoding Energy Flux
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Decoding Energy Flux

¢ In condensed matter physics or cosmology we decode the underlying
dynamics using correlation functions.

13.8 billion years

AR |\

—_
380 000 years

. -

e What is the analog for collider physics?

. QCb at 50

September 15, 2023 10 / 53



-
Energy Flux

e Expectation value of energy flux at specific angles on the celestial
sphere is calculable in perturbation theory.

Energy flow becomes the focus of computability.

Our ensembles will thus be specified in terms of sets of jet-related

states, To make this idea more quantitative we define for any state a,an

=| Al observables B

Well-defined detectors

Yangular energy current” in the efe” on
Da
ERCIEE I TR
i=1
where the sum is over the n, massless p
[mi} and momentum directions (wi} @ s
related states have the same j(f). Eac
linear momenta may be described as a je
states is characterized by the number o

and directions.

(i) = lim r2/dt n'Toi(t, r7)
r—>00
0

[Korchemsky, Sterman], [Sveshnikov, Tkachov], [Hofman, Maldacena],[Korchemsky, Sokatchev, Zhiboedov,...]
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A Modern Perspective

e What is a detector?

[Caron Huot, Kologlu, Kravchuk, Meltzer, Simmons Duffin]

e To be able to understand subtle signals in energy flux, we must
understand what a detector is in Quantum Field Theory.
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Calorimeter Cells in Field Theory

o Calorimeter cells can be given a field theoretic definition in terms of
light-ray operators.  [Hofman, Maldacena]

Korchemsky, Sterman]
Ore, Sterman]
Basham, Brown, Ellis, Love]

@ <« £ = lim 12 / dt ' Tou (¢, rii)
N 0

(W|E(n) - - € (N )W)

e Provides a sharp link between experimentally measurable observables
and the underlying QFT.
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Energy Correlators: History

e Proposed 45 years ago (The first jet substructure!):

Energy Correlations in electron - Positron Annihilation: Testing QCD

C.Louis Basham (Washington U., Seattle), Lowell S. Brown (Washington U., Seattle), Stephen D.
Ellis (Washington U., Seattle), Sherwin T. Love (Washington U., Seattle)
Aug, 1978

13 pages
Published in: Phys.Rev.Lett, 41 (1978) 1585

DOI: 10.1103/PhysRevLett.41.1585

Report number: RLO-1388-759

View in: OSTI Information Bridge Server, ADS Abstract Service

= cite [@ reference search

9 381 citations

Abstract: (APS)

Citations per year

An experimental measure is presented for a precise test of Thi

the asymmetry in the energy. the

jets of hadrons produced i the process e+e-->hadrons at energy W. It is special for several reasons: It is reliably calculable in asymptotically free perturbation theory; it

has rapidly vanishing (order 1W2) corrections due to nonperturbative confinement effects; and it is straightforward to determine experimentally.

SUCCESSIVE COMBINATION JET ALGORITHM
FOR HADRON COLLISIONS
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our understanding of perturbative QCD.
]
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N
Jets at the LHC

e Transition from GeV— TeV Jets transforms the questions we can
understand using perturbation theory.

e Move from exclusive amplitudes to the study of correlations
(U|E(nq) -+ - E(Nnk)|P) on high multiplicity states
= A new regime of QCD!
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Energy Correlators: Present

(£189)

% ﬂ:d [ ALICE Preliminary
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o Asymptotic Freedom and Confinement in one plot!

decreasing energy scale

QCD at 50

Figure: Wenqing Fan

Perturbative
Evolution

Large angle
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Asymptotic Scaling of Quarks and Gluons J

Light-Ray OPE
_—
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Scaling Behavior in QFT

e Scaling behavior in Euclidean regime well understood.

A-point of Helium
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The OPE Limit of Lightray Operators

e Energy flow operators admit a Lorentzian OPE: “the lightray OPE”

E()E(Rg) ~ > 07405 (n)

[Hofman, Maldacena]
[Chang, Kologlu, Kravchuk, Simmons Duffin, Zhiboedov]
QCD: [Dixon, Moult, Zhu]

e Predicts universal scaling behavior in correlations of energy flux at

energies E’ >> AQCD . See early work by [Konishi, Ukawa, Veneziano]
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[Komiske, Moult, Thaler, Zhu]

[Dixon, Moult, Zhu]

Scaling Behavior in Jets s e, Doy

1.4 .
Two-Point Energy Correlator

1.2
. (£182)
E 1.0 RL ¢ CMS Open Data 1
E 0.8 -LL
= E—NLL
Z 06
2
=}
Z 04 AKS5 Jets, |n| < 1.9

pr = 500-550 GeV
0.2
0'00.‘02 0.65 O.“IO O.‘ZO 0.50
Ry,

E(R)E(R2) ~ Y 07O (7)

e Beautiful scaling behavior in energy flux, even in complicated
hadronic environment!
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Scaling Behavior in Jets

Thanks to Helen Caines, Meng Xiao, ChenFeng Lu,

Andrew Tamis, Ananya Rai.

e Measurements from ALICE, CMS and STAR from 15 GeV to 1784
GeV released last week!
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e Dominated by classical scaling. Can we accurately measure
anomalous scaling?
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The Spectrum of a Jet

e The light-ray OPE predicts that the N-point correlators develop an
anomalous scaling that depends on .

3.0 T T
% NLL Projected Correlators
2 *| B== E3C/EEC
£ | —— E4C/EEC i
& 2 E5C/EEC
2 | —— E6C/EEC
1)
7, 1.5
<]
1.0
(&1&2--E5-1) ~ <@[:]]> ~ R“/(J)*'Y(:j) 001 0.02 0.05 0.10
<5152> <(O)[3]> "L R;

e Directly probes the spectrum of (twist-2) lightray
operators from asymptotic energy flux.
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Anomalous Scaling of 3/2 Ratio

e Anomalous scaling measured from 15 GeV to 1784 GeV!
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Using [Lee, Mecaj, Moult], [Chen, Gao, Li, Xu, Zhang, Zhu]
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Asymptotic Freedom

e Scaling exponents are proportional

e Asymptotic Freedom by eye!

CMS Preliminary  36.3 " (13 TeV)
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The Strong Coupling

e Proof of principle as can be extracted from jet substructure in
complicated hadron collider environment: 4% accuracy.

e Hope to use high energies of the LHC to resolve previous tensions in
Qg eXtraCtionS_ CMS Preliminary 3 363 16" (13 TeV)
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Jet Substructure: Factorization

¢ Any quantitative result at colliders relies crucially on the seminal
factorization theorems of Collins, Soper, Sterman.

b i b : 7
H‘:r IA \ i "'/m‘“_-l G 2 ' (£ g /3/ P 1. Gener o 10 he Drct-Yom o s, o @) e

o Greatly extended to more differential jet substructure observables
using Soft Collinear Effective Theory.

|

e Forms the theoretical backbone of the jet substructure program.
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Imaging the Confinement Transition J
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Dynamics of Hadronization

e What are the dynamics of the hadronization process?

2000
-0 :
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e Can it be directly imaged in asymptotic energy flux?
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The Confinement Transition
Ry

(£189)
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Non-Gaussianities in Energy Flux J

[Chen, Moult, Thaler, Zhu]
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Non-Gaussianities

e Higher-point correlators probe more detailed aspects of interactions.

e e.g. Non-Gaussianities allow one to distinguish models of inflation.

e What is the structure of higher-point functions of energy flux?
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Shape Dependence of Non-Gaussianities

e Can directly study non-gaussianities inside high energy jets.

LL + LO prediction, Ry = 0.35

[Chen, Moult, Thaler, Zhu]

o |llustrates theoretical control over multi-point correlations!
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Beyond Energy Flux J

0.8

07} Two-Point Charge Correlators

0.6F NLL accuracy

0.5

Up-type Jet

o4 pr =1 TeV

03 [ (E4E-2) B (Ex&4) +(E-€-)
<gtrgtr> <£tr£tr>
02 0.605 0.610 040‘50 041‘00 0.5‘00 1
0
[Lee, Moult]
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The Space of Detectors

e Details of the hadronization process are encoded in the quantum
numbers (charge, flavor, ...): By definition, energy flux is insensitive!
e What is the space of detectors over which we can gain theoretical

control?

=l All observables %

Well-defined detectors
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FaCtorlzation [Chen, Jaarsma, Li, Moult, Waalewijn, Zhu]

e More general observables can be calculated by combining factorization
into universal matrix elements, with the Renormalization Group.

e Tremendous recent progress in understanding renormalization group
evolution of functions characterizing correlations in the hadronization

0.001

0

e A A N NN -~

- A% NN NE A R
S 0001 T RTR MR W W v v v v
k‘\‘\ AR N O O N
-0.002] Ak\
Ak
-0.03 A‘k
[
%00 0.001 0,002 0.003 0,004

e Enables the calculation of correlations on energy flux carried by
hadrons of specific quantum numbers: e.g. (V|E4(Ry)---E_(ng)|P)
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Charged Energy Flux

e Opposite sign hadrons exhibit enhanced small angle correlations
relative to like sign hadrons.

o Not electromagnetic in nature: generated by hadronization!

07 Two-Point Charge Correlators

NLL accuracy

Up-type Jet

pr =1TeV
03 (€16 (Er&4) +(E-E)
(Eulir) (Eubir)
0.605 0.610 0.650 0.1‘00 0.5‘00 1

0

e How far can we push into the confinement transition? Experimental
measurements will be crucial.
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From Theory and Experiment

e In the last decade jet substructure has provided a new way of
studying QCD: rapid evolution of new techniques from theory to
experimental reality.

E(Rn)E(Rz) ~ Y 07 Oi(fn) Fa® A

a,(my) = 0.1229+0:0040

=0 1229+0.OO14(stat.)+O.0030(theo.)+O,0023(exp.)
: —0400}2(stat.)—0.0033(theo4)—040036(exp.)

e Now we can begin to use jets as calibrated probes of more
complicated systems!
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Three Examples

o Weighing the Top Quark

e Resolving the Scales of
the Quark Gluon Plasma

: -
b
e New Particles and Interactions I H
b

=0
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Weighing the Top Quark J

w

[Holguin, Moult, Pathak, Procura, Schofbeck, Schwarz]
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]
Top Quark Mass

¢ In the absence of the direct observation of new physics, understanding
the precise structure of the Standard Model and its extrapolation to
high energies can provide clues.

2001 Instability

Higgs
potential

150 /;N\/\d
B

NS

y

100 [~ Stability

Top mass M, in GeV

50 H

Ayaneqimiad—uoN

0 5‘0 ]60 ];0 260
Higgs mass M,, in GeV
e The top quark mass is one of the most important parameters of the
SM. e.g. electroweak vacuum stability/criticality, electroweak fits, etc.
e Precision extraction from experiment requires detailed understanding
of QCD.

. QCb at 50 S ib, B (1)) B



|
Boosted Top Quarks

e Large samples of highly boosted top quarks produced at the LHC.

3-point/2—-point energy correlators, top jet

34EEEC/EEC

i

0.0 0.1 0.2 0.3 0.4 0.5 0.6

e Imprint their structure into three-point energy correlators.
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Top Quark Mass Measurement Proposal

¢~
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Resolving the Scales of the Quark Gluon Plasma J

[Andres, Dominguez, Holguin, Kunnawalkam Elayavalli, Marquet, Moult]
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.
The Quark Gluon Plasma

e Understanding extreme states of QCD matter, “the condensed matter
physics of QCD", is important for many problems ranging from early
universe cosmology to neutron star mergers.

[
=
3
=
®
=
@
Q
5
[

Baryon Density

e The QGP can be produced and studied in high energy colliders,
providing a primary target for new jet substructure techniques.
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Imaging the Plasma

e Energetic quarks and gluons produced in the collisions shoot through
the plasma, much like the classic Rutherford experiment.

[ChS,/1] oM Experiment at LHC, CERN
MO Dt recordad: Sun Row 14 19:31:39 2010 CesT
> \| Run/Event: 151076 / 1328520
Lumi secton: 249

et 1,pt 700 GeV]

e How can we see there was a 10~'4m ball of plasma at the center?
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Resolving the Scales of the QGP

o QGP scales cleanly imprinted in two-point correlation!

Two—Point Energy Correlator
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[
»

e Detailed behavior and higher point correlators probe transport, etc.

e Measurements public soon!
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New Particles and New Interactions J
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Searches at the LHC

e Tremendous impact on (B)SM searches:
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Charm Yukawa

e Measurements of the Higgs couplings to light quarks provide a crucial

test of the Yukawa sector of the SM.

e Jet substructure provides the current most stringent bound on the

charm Yukawa, 1.1 < k. < 5.5.

Hzeo =1

= H(cd) x200

CMS Preliminary i i i 138|fb", (]3 TeV)
S AL ot Ra i
$1:2x10°F- 450 ¢ py < 1200 Gev + Data == W(qd)
N DeepDoubleX W= Z(c)  mm H(bb)
2 10k Passing Region = Z(p) W H(cS) ]
§ Z(§) & Other
I == W — QCD

-0 Hhen =86

N | N
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e Matches the original projected sensitivity with 3000 fb—!
] QCD at 50 September
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Higgs Self Interactions

e The Higgs self interaction accesses the Higgs potential.
e Jet Substructure exploits the high branching ratio to b-quarks.

95% CL upper lmiton ofpp — GaHHIB(HH — bot) (1]

o,

SUSSE,
% CL imiton olgp =

e First observation of the V'V — HH coupling in the SM!
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Boosted Higgs

Events /7 GeV.

(Data - Bkgl/ay,,

e Searches for modifications of Higgs
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Summary

q q@
e The spectacular understanding of QCD b
developed over the past 50 years is being b

q 'IQ

used to study the SM in new ways.

Two-Point Energy Correlator
(£162)
£ CMS Open Data

=

BN

e Jet Substructure is rapidly evolving into a
precision science enabling quantitative new
ways to study the strong force.

Normalized EEC

AKS Jots, [g] < 19
» 1550 GeV

B3
Ry

o With the rich experimental program from
HEP to nuclear physics, expect many
exciting developments in the next 50!
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Happy Birthday
to
Asymptotic Freedom!




