○ FCC

Magnets for FCC-ee

J. Bauche¹, H. Deveci¹, C. Eriksson¹, F. Saeidi², L. von Freeden¹ ¹ CERN, Geneva ² IPM, Tehran

TE-MSC seminar, 16th November 2023.

Acknowledgements

This presentation has been prepared with material from many members of the FCC collaboration. The FCC-ee NCM team would like to thank in particular:

D. Aguglia, W. Bartmann, L. Baudin, M. Benedikt, M. Boscolo (INFN), J.-P. Burnet, F. Carra, A. Chancé (CEA), P. Craievich (PSI), B. Dalena (CEA), C. Garion, M. Guinchard, J. Gutleber, M. Karppinen, J. Keintzel, R. Kersevan, R. Losito, A. Milanese, K. Oide (UniGE), C. Paus (MIT), C. Petrone, A. Piccini, P. Raimondi (SLAC), T. Raubenheimer (SLAC), S. Rorison, D. Schoerling, C. Tetrault, M. Timmins, R. Tomas Garcia, D. Tommasini, A. Unnervik, F. Valchkova-Georgieva, B. Wicki, T. Zickler, F. Zimmermann

The Future Circular Collider Innovation Study (FCCIS) project has received funding from the European Union's Horizon 2020 research and innovation programme under grant No 951754. The information herein only reflects the views of its authors and the European Commission is not responsible for any use that may be made of the information.

Outline

FCC

FCC-ee accelerator complex

- Physics case, operation plan and layout
- General considerations for magnet design

Collider magnets

- Arc main magnets
 - Dipole
 - Quadrupole
 - Sextupole
- IR magnets
 - Beamstrahlung photon extraction line
 - Polarization wigglers

Booster magnets

- Specifications and challenges
- Dipole
- Quadrupole

FCC-ee feasibility study

- Scope and timeline of magnet development work
- Cost estimate and optimization

Concluding remarks

FCC-ee accelerator complex

Physics case and operation plan

- **FCC-ee** is a high luminosity Higgs and electroweak factory
- Study of **Z**, **W**, **Higgs** and **top** particles with high precision
- High luminosity provides 3 orders of magnitude higher **sensitivity** to small deviations from the Standard Model → potential to discover new physics
- 4 periods of exploitation, **4 energies**, staged layout modifications

2

3

FCC project time plan

Time [years]

15

14

- RF system modifications

13

12

FCC-ee exploitation timescale

C. Paus (MIT)

FCC

Placement in Geneva region

- Layout chosen out of **50 initial variants**
- 95% in **molasse** geology to minimize construction risks
- Layout matched with electrical power distribution
- Site investigations planned for 2024-2025

Altimetry and geological layers along machine circumference

Collider layout and main parameters

- Electron / positron **storage ring** (no acceleration)
- Machine circumference: 90.6 km
- 2840 arc half-cells, ~60 km of dipoles
- Top-up injection from booster

	Z	w	н	tt
Beam energy [GeV]	45.6	80	120	182.5
Beam current [mA]	1270	137	26.7	4.9
Energy loss / turn [GeV]	0.04	0.37	1.89	10.4

FCC

FCO

Booster layout and main parameters

- Installed in same tunnel as collider
- 2944 arc half-cells, ~65 km of dipoles
- Injection at 20 GeV
- Ramp-up time ~2 sec. at tt_bar

Pre-injector layout

- Two options for pre-injector:
 - **SPS** as pre-booster ring
 - High Energy LINAC
- Both would inject at 20 GeV in the booster
- Choice will depend on budget and performance
- Magnet specifications under evaluation by beam optics

FCC

Integration - main ring arcs

Machine tunnel 5.5m in diameter

10

Diameter and layout of tunnel shall fulfil both FCC-ee and FCC-hh requirements

Compactness of components is a key design factor

F. Valchkova-Georgieva

Alcoves

○ FCC

- Placed every **1.6 km** to host
 - **Electrical racks** for correction circuits powering, vacuum, instrumentation, etc.

ection Tunne

ves (7 per Sector)

• Transport layby for crossing vehicles

Standard FCC alcove layout

J.-P. Burnet

F. Carra &

Arc half-cell WG

FCC

Regular arcs, half-cell layout

Regular arc half-cell layout

- SSS are shifted azimuthally to gain space verticaly, since dipoles are thinner
- An arc half-cell mock-up with reduced length elements is under design, to be built in the frame of the feasibility study

Arc half-cell mock-up proposal from WG

General considerations for magnet design

FCC

General considerations for magnet design

Due to the large **size** of the machine and **number** of elements, the key **design objectives** are:

- Optimised performance
 - Achieving specified parameters and integration
 - **Robust design** to ensure machine **availability** (minimized maintenance)
- Minimised costs
 - CAPEX Production costs (design simplicity and compactness, automated manufacturing and installation)
 - **OPEX Operational** costs (**low energy consumption**, minimized maintenance)

Main magnets (arcs)	Quantity	Length [m]
Collider dipole	5680	10.6
Collider quadrupole	2840	2.9
Collider sextupole	4672	1.5
Booster dipole	5888	11.1
Booster quadrupole	2944	1.5
Booster sextupole	1120	0.5
Total	23144	

Energy consumption forecast

- Power demand dominated by **RF** (41% to 67%) of total power
- RF power demand is constant at all energy stages, since SR power losses are constant (50 MW/beam)
- Magnet power demand ranges from 3% (Z) to 28% (tt) of total power

Energy consumers in beam operation		Z	W	н	tt
Beam energy [GeV]		45.6	80	120	182.5
Magnet current ratio (OP/peak)		25%	44%	66%	100%
Magnet power ratio (OP/peak)		6%	19%	43%	100%
Magnots [MW]	Collider	6	17	39	89
wagnets [www]	Booster	1	3	5	11
	Collider	146	146	146	146
	Booster	2	2	2	2
	Collider	1.2	11.5	11.5	27.6
	Booster	0.35	0.80	1.50	7.40
C&V [MW]		25	26	28	33
Experiments [MW]		10	10	10	10
Data centers [MW]		4	4	4	4
General services [MW]		26	26	26	26
Total power [MW]		222	247	273	357

FCC

Beam energy along ring

Field tapering

FCC

- Synchrotron radiation will generate up to 5.2% of energy loss per turn at top energy! Scales with 3rd power of energy
- Energy saw-tooth effect needs to be **mitigated** to limit losses and preserve **beam orbit** in collider
- **Field** shall be **tuneable** along machine circumference, up to ±2.6% at 182.5 GeV (but only ±0.04% at 45 GeV)
- Tapering circuits grouped every 4 FODO in present optics layout

→ <u>Tapering options for large magnet series circuits</u>:

Beam energy along ring at 182.5 GeV

Adjusted parameter	System	0	•
Magnetic length	Pole end shims	No powering	No tunability Resolution
Magnetic field	Trim windings	Tunability Use for corrections	Powering Eield quality
Main coil powering	T rim converters	No trim windings Tunability	Needs access to main coil individual turns
current-	S hunt resistors	No powering (No adjustability Temperature dependence
Integrated field	Separate correctors	Use for corrections	Dimensioning Space in layout

Correction circuits

Baseline: synchrotron light source scheme

- → Orbit and quadrupoles corrections: trim coils in sextupoles
 - \rightarrow granularity < arc half-cell (40% of half-cells with no sextupoles)

Alternatives

FCC

- 1) H + V orbit corrections use quadrupole tapering trim coils
 - \rightarrow granularity: at every arc half-cell

2) H orbit correction uses dipole tapering trim coils + V orbit correction uses quadrupole tapering trim coils

 \rightarrow granularity: at every arc half-cell

BASELINE	Location	Mag. Length	Peak field (B) or gradient (Q)	Integrated strength
		[m]	[T] or [T/m]	[Tm] or [T]
Orbit correction H	Sextupole	1.5	0.013	0.02
Orbit correction V	Sextupole	1.5	0.013	0.02
Normal quadrupole	Sextupole	1.5	0.4	0.6
Skew quadrupole	Sextupole	1.5	0.4	0.6

Correction specifications from optics

ALTERNATIVE 1	Location	Mag. Length	Peak field (B) or gradient (Q)	Integrated strength
		[m]	[T] or [T/m]	[Tm] or [T]
Orbit correction H	Quadrupole	2.9	0.0067	0.02
Orbit correction V	Quadrupole	2.9	0.0067	0.02

ALTERNATIVE 2	Location	Mag. Length	Peak field (B) or gradient (Q)	Integrated strength
		[m]	[T] or [T/m]	[Tm] or [T]
Orbit correction H	Dipole	21.15	0.0009	0.02
Orbit correction V	Quadrupole	2.9	0.0067	0.02

Collider magnets – Regular arcs

Arc magnet specifications

- Luminosity depends on dipole filling factor, needs to be maximized to minimize SR
 - → Low field in dipoles compared to quads and sextupoles
 - → Dipole length variable with sextupole presence in SSS
- **Apertures** have been reduced recently, still under evaluation...
- Smaller aperture in sextupole (no vacuum bake-out system)
- Field quality specifications from latest beam dynamics studies, achievable for arc magnets

	Mag. Length	Bore aperture	Vacuum aperture	Pole tip field	Number of units (arcs)	Total magnetic length	Ring filling factor (91 km)
	[m]	(reduced) [mm]	(reduced) [mm]	[T]		[km]	[%]
Dipole (S)	19.30				1128	21.77	
Dipole (M)	20.95	37	30	0.061	284	5.95	
Dipole (L)	22.65				1428	32.35	
Total					2840	<u>60.1</u>	65.9
Quadrupole	2.9	37	30	0.438	2836	8.2	9.0
Sextupole	1.5	33	30	0.442	4672	7.0	7.7

Arc magnet specifications from optics – May 2023 (K. Oide)

Z	tt
2	2
0.1	0.5
10	8
0.1	8
1	8
1	5
10	10
0.01-0.1	0.1
1	1
5	5
0.01	1
	Z 2 0.1 10 0.1 1 1 0.01-0.1 1 5 0.01

Magnet field quality specifications from optics – March 2023 (R. Tomas)

Collider dipole

Dipole design

FCC

- Twin aperture design, magnetically coupled, low field
- → Low power consumption (50% w.r.t. separate magnets)
- I-shape yoke allows compactness and simplicity
- Inter-beam distance 350 mm shared between vacuum chamber, SR absorbers, busbars and yoke return leg
- DC operation, compatible with **solid iron** yoke technology
- Single water-cooled busbar; trim coils for corrections
- → Design compatible with low-cost production

Magnetic model cross-section at peak excitation (B = 61 mT)

FCC

Dipole – 1st model magnets

- Two **model magnets** built with different yoke materials
 - «Noble» pure iron (ARMCO)
 - Standard constructional steel (S355)
- **Hysteresis** loop more pronounced with constructional steel, as expected from coercivity
- Machine operated in DC, degaussing and precycling can be included during machine set-up
- Tapering trim coils not yet included in design at this stage

Measured transfer function - comparison ARMCO vs. S355

Dipole field tapering and tuning

Trim coils

FCC

- Allow to modulate the field in the apertures independently for:
- → Field tapering up to ±2.6 % (tt_{bar})
- → Field tuning up to ±1 % (all phases)
- \rightarrow Possibly, **H orbit correction** (up to ±1.5 %)
- → Worst case: could be up to ~5% of main field variation

Trim coils wrapped around top and bottom poles

Vacuum integration

- SR power is collected by absorbers integrated on vacuum chamber winglets
- Large amount of radiation still expected in the surrounding equipment (under evaluation)
- → Single busbar design

FCC

- Provides significantly better **radiation hardness** w.r.t. multiturn "coil" solution
- Much **cheaper to produce** (extrusion), no winding, no complex impregnation...
- However, **larger dissipated power** due to higher transport current (still... only about 25% of the dipole circuit power, which is only between 0.5 and 5.5% of the full machine power...)
- **Insulation technology** to be assessed based on outcome of radiation studies (e.g. inorganic coatings, mica-based wrapping with cyanate-esther impregnation, etc.)

Dipole cross-section with SMA flanges

SR absorber integration in dipole

C. Tetrault, S. Rorison, R. Kersevan, C. Garion

TE-MSC Seminar 16th November 2023

Magnetic design

FCC

The magnet geometry optimized for:

- $b_n < 0.5$ units •
- $b_2 < 1.5$ units (not incl. in field error budget for optics)

Main parameters

- Aperture reduction would reduce the power consumption by ~10%
- **Copper busbars** would reduce the power consumption by ~35%

→ to be decided from lifetime cost optimization

b9

Simulated normalized harmonics

mm (1E-4) 2.0 1.0

R=10

8 -1.0 Bn/B1

Field harmonics (left) and homogeneity at peak field (right)

		CDR	2023, ap	. 84 mm	2023, ap	. 74 mm
		AI BB	Cu BB	AI BB	Cu BB	AI BB
Parameter	Unit	Value	Value	Value	Value	Value
Number of units		2900	28	40	28	40
Total magnetic length	km	65	60	.1	60	.1
Central field, 45.6 GeV – 182.5 GeV	mT	14.1 - 56.6	15.3 -	61.3	15.3 -	61.3
Inter-beam distance	mm	300	35	i0	35	50
Bore aperture	mm	84	8	4	7	4
Magnetic lengths	m	10.6 - 12.2	19.30 -	19.30 - 22.65		22.65
Magnet overall transverse dimensions	mm	450 x 136	520 x 144		520 x 134	
Iron mass per unit length	kg/m	219	24	13	239	
Busbar mass per unit length	kg/m	19.9	75	23	64	19
Magnet unit mass (10.6 m average length)	kg	2678	3562	2976	3395	2893
Total magnet mass, 60.1 km	tons	15529	19098	15954	18202	15509
Maximum operating current (tt_bar)	Α	1900	41	16	36	28
Maximum current density (tt_bar)	A/mm2	0.79	0.	98	1.	01
Resistance per unit length	μΩ/m	22.7	8.22	8.22 12.66		14.78
Maximum voltage to ground per 1/2 octant (balanced at mid-point)	num voltage to ground per 1/2 octant (balanced at mid-point) V 88 64		98	65	101	
Maximum dissipated power per unit length (tt_bar)	W/m	164	139	215	126	195
Total dissipated power, 60.1 km (tt_bar; busbars interconn. not incl.)	MW	10.7	8.4	12.9	7.6	11.7
Total dissipated power, 83.0 km (tt_bar; busbars interconn. incl.)	MW	13.3	11.6	17.8	10.5	16.1

Main magnet parameter comparison (computed at tt_{bar})

25

Collider quadrupole

FCO

Quadrupole design, CDR

- Twin aperture design, magnetically coupled
- Only 2 racetrack coils for 8 poles, out of mid-plane (SR)
- Low power consumption (50% w.r.t. separate magnets)
- Top-bottom assembly via non-magnetic central spacer
- Balance of **parallel flux loops** controlled by central gap height (adjustable with end shims)
- DC operation (solid iron yoke), classical field range

1st model magnet, 1m-long

⁰Magnetic model (CDR), $G_0^{0.8 \text{ T}}$ max = 10 T/m, $B_{\text{pole tip}} 0.42^{1.6 \text{ T}}$

Maximum gradient	T/m	10.0
Magnetic length	m	3.1
Number of twin units per ring		2900
Aperture diameter	$\mathbf{m}\mathbf{m}$	84
Radius for good field region	$\mathbf{m}\mathbf{m}$	10
Field quality in GFR (not counting dip. term)	10^{-4}	≈ 1
Maximum operating current	А	474
Maximum current density	A/mm^2	2.1
Number of turns		2×30
Resistance per twin magnet	$\mathrm{m}\Omega$	33.3
Inductance per twin magnet	$_{\rm mH}$	81
Maximum power per twin magnet	\mathbf{kW}	7.4
Maximum power, 2900 units (with 5% cable losses)	MW	22.6
Iron mass per magnet	kg	4400
Copper mass per magnet (two coils)	kg	820

Parameters (CDR)

FCO

Quadrupole model magnet, CDR

Magnetic measurements performed on 1-m model magnet

- ~0.4 mm magnetic axis shift for each aperture between low and high fields
- Mismatch MM vs. FEM (3D) at low fields has been further investigated
- Trim circuits not yet implemented in the design at this stage

TEAT		xctr [mm]		∫b₃ [10-4 @ 10	mm]
I[A]	AP1	AP2	FEM	AP1	AP2	FEM
25	0.75	-0.75	0.17	13.1	-14.4	-57.9
50	0.22	-0.23	0.17	34.7	-35.4	-57.9
100	-0.07	0.07	0.17	46.6	-46.6	-58.0
150	-0.17	0.16	0.17	50.9	-50.9	-58.2
200	-0.22	0.22	0.18	53.5	-53.6	-59.0
250	-0.29	0.27	0.22	57.8	-57.2	-62.5
200	-0.23	0.22	0.18	53.1	-53.3	-59.0
150	-0.18	0.17	0.17	51.0	-50.6	-58.2
100	-0.10	0.09	0.17	46.9	-46.9	-58.0
50	0.15	-0.16	0.17	35.7	-35.2	-57.9
25	0.59	-0.59	0.17	15.9	-14.9	-57.9

The simulation results are for AP2, as $\frac{1}{4}$ of the magnet is modeled; furthermore, no hysteretic behavior is considered in the BH curve.

Measured magnetic axis shift and Jb3

DIPOLE AND SEXTUPOLE COMPONENTS IN THE TWIN QUADRUPOLE

Quadrupole field tapering v.1

Trim coils

FCC

- Wrapped around the back legs to trim individually each aperture
- **Significant cross-talk** : both magnetic axes shift up to 0.2 mm in same direction, even when single aperture trim is activated
- b₃ scaling accordingly
- → Issue coming from **unbalanced flux densities** on either sides of the apertures, scaling with powering and trim currents
- → Attempt to re-equilibrate the flux densities with yoke separation and side chamfer → partially successful, but not at all powering levels

Separated yokes with chamfer

Flux density and field lines, trims activated

FCC

Quadrupole - new design

- Pole shape modifed to streamline flux through the poles
- Trim coils for field tapering placed at pole level
 - → Opens possibility to host orbit correction circuits
- Coupling significantly mitigated (2D simulations):
 - → b1 reduced to ~10 units
 - → Magnetic axis shift reduced to ~0.01 mm

Other harmonics [Units]

FCC

Trim circuit options

 If only quadrupolar tapering / tuning is needed, all trim coils in each aperture can be powered in series
→ 1 trim power supply per aperture

- If either horizontal <u>or</u> vertical dipole correction is required, each pair of adjacent trim coils can be powered in series
 2 trim neuron supplies per eperture
 - \rightarrow 2 trim power supplies per aperture

- 3. If both **horizontal** <u>and</u> vertical dipole correction is required, each trim coil needs to be powered independently
 - → 4 trim power supplies per aperture

Horizontal correction: field quality

• Field quality **dB/B ≈ 6%**.

FCC

Large sextupole component

Rref = 10 mm	Main harmonic: B1					
b1	10000.000					
b2	-9.499					
b3	578.806					
b4	-0.005					
b5	5.581					
b6	0.000					
b7	-0.292					
b8	-0.001					
b9	-0.006					
b10	0.000					
Harmonics –						

horizontal correction dipole

<u>Main coils OFF</u> \rightarrow Field homogeneity and harmonics w.r.t. **dipole component**

Vertical correction: field quality

- Same as for horizontal corr., due to pole symmetry, but components are **skew**
- Field quality **dB/B ≈ 6%**.

FCC

 Large skew sextupole component

Rref = 10 mm	Main harmonic: A1				
a1	10000.000				
a2	0.265				
a3	-577.456				
a4	0.032				
a5	5.659				
a6	0.002				
a7	0.295				
a8	0.000				
a9	-0.006				
a10	0.000				
Llowencies					

Harmonics – vertical correction dipole

<u>Main coils OFF</u> \rightarrow Field homogeneity and harmonics w.r.t. **dipole component**

FCC

Quadrupole field quality with orbit correction

Rref = 10 mm

b1

b2

b3

b4

b5

b6 b7 b8 b9 b10

- Sextupole component introduced ۰ by horizontal or vertical correction is significant with respect to the main quad field
- \rightarrow Values sumbmitted to beam optics physicists, expecting feedback

Rref = 10 mm	Main harm: B2	Rref = 10 mm	Main harm: B2	Rref = 10	Main harm: B2	Rref = 10	Main harm: B2
L	554.930	a1	0.000	b1	-4.357	al	554.098
2	10000.000	a2	0.000	b2	10000.000	a2	0.020
3	31.367	a3	0.000	b3	-1.004	a3	-31.996
1	0.001	a4	0.000	b4	0.000	a4	0.002
5	0.345	a5	0.000	b5	0.033	a5	0.313
5	0.271	a6	0.000	b6	0.271	a6	0.000
7	-0.018	a7	0.000	b7	-0.002	a7	0.016
3	-0.005	a8	0.000	b8	-0.005	a8	0.000
Ð	0.000	a9	0.000	b9	0.000	a9	0.000
10	-0.003	a10	0.000	b10	-0.003	a10	0.000
Harmonics of quadrupole field Harmonics of quadrupole field							le field

with max vertical correction

Main coils $ON \rightarrow$ Field homogeneity and harmonics w.r.t. **quadrupole component**

with max horizontal correction

Powering requirements

Vertical correction:

FCC

 Negligible cross-talk; NI = 177 A per trim coil to achieve max corr. field

Horizontal correction:

- Large cross-talk between apertures: opposing aperture must apply an opposing correcting field to compensate
 - With peak correction field, each trim coil needs **NI = 477 A**

→ Not really a viable option

Flux potential for vertical (top) and horizontal (bottom) corrections

FCC

Collider quadrupole - mechanical design

- Top and bottom yokes have to be **split** in two halves for coil integration
- Laminated yoke construction required for cost-effectiveness
- **Mechanical tolerances** to be evaluated with sensitivity studies
- For U-shape external pieces, stamping in 2 steps may be needed to release internal stress in the material
- Position of non-magnetic spacers for top-bottom assembly to be studied

Yoke mass ≈ 6300 kg Coils masses (main + trims) ≈ 900 kg

37

○ FCC

Experimental Modal Analysis of FCC quadrupole

• Model magnet **modes measured** by MME with vibrometer to assess **mechanical stability**

3D Scanning vibrometer

Shaker _ excitation

○ FCC

Comparison of shape modes results

M. Guinchard, A. Piccini

38

Simulation results well benchmarked with experimental results

Simulation results:

308 Hz

682 Hz

A. Piccini

○ FCC

Results for the 2.9 m long quadrupole

	SIMULATION 1 m long		SIMULATION 2.9 m long
Modes	Frequency (Hz)	Modes	Frequency (Hz)
S1	187	S1	76
S2	308	S2	161
S 3	363	S3	186
S 4	460	S4	201
S5	539	S 5	247
S 6	597	S6	297
S7	614	S7	417
S 8	652	S 8	423
S 9	682	S 9	446
S10	780	S10	447
S11	810	S11	463
S12	867	S12	518
S 13	973	S13	528
S14	1037	S14	553
S15	1151	S15	556
S16	1277	S16	572
S17	1314	S17	596
S18	1332	S18	605
S19	1349	S19	625
S 20	1418	S20	630
S21	1454	S21	647

Shape modes of CDR cross section at nom. length expected > 100 Hz

Collider sextupole

Sextupole in CDR ($R_{bore} = 38 \text{ mm}$)

- Single aperture magnet, powered in small series (4 FODO)
- 300 mm inter-beam distance, was at the limit of compatibility for individual magnets on each beam
- Current and flux densities at upper values, large dissipated power
- Space for integration of **trim circuits** (H/V orbit correctors, skew quadrupoles) was not considered

F	. S	a	ei	di

Parameter	Unit	Value
Sextupole Strength	T/m2	807
Total current	At	6300
Number of turns per coil	-	15
Conductor dimensions	mm ²	8×8
Cooling diameter	mm	3
Current density	A/mm ²	7.87
Voltage drop per magnet	V	34.5
Resistance per magnet	mΩ	77
Power per magnet	kW	15.5
Number of water circuits	-	18
Water temperature rise	°C	10.5
Cooling water speed	m/s	2.77
Pressure drop	bar	6
Reynolds No.	-	4150

Sextupole specifications update

Main Parameter	Unit	CDR (2019)	Latest (2022)	Comment
Sextupole strength (B'')	T/m2	807	876.6	Incl. tapering (3%) & tuning (5%) margins
Bore aperture radius (CDR)	mm	38	38/33	Incl. 2 mm VC thickness and 1 mm clearance
Reference radius for good field region (GFR)	mm	±10	±10	
Field quality in GFR	1.0E-04	≈1	1	
Magnetic length	mm	1400	1500	
Drift space between two consecutive sextupole magnetic lengths	mm	100	150	Considering in 3D designing
Magnet maximum physical half-width in inter-beam distance	mm	145	170	Considering inter-beam distance of 350 mm
Horizontal orbit correction integrated field strength	Tm	-	0.02	B=0.013 T
Vertical orbit correction integrated field strength	Tm	-	0.02	B=0.013 T
Skew quadrupole correction integrated gradient	Т	-	0.6	G=0.4 T/m

 \rightarrow Latest requirements more challenging than CDR

43

Addition of auxiliary coils

FCC

Reworked yoke geometry to limit saturation to ~1.5%

Parameter	Unit	Value
Sextupole Strength	T/m2	880
Total current	At	6920
Number of turns per coil	-	22
Conductor dimensions	mm ²	6.5×6.5
Cooling diameter	mm	3.5
Current density	A/mm ²	9.6
Voltage drop per magnet	V	70
Resistance per magnet	mΩ	223
Power per magnet	kW	22.1
Number of water circuits	-	18
Water temperature rise	°C	13.2
Cooling water speed	m/s	2.3
Pressure drop	bar	6
Reynolds No.	-	4030

- The current density is increased to 9.6 A/mm².
- Power increased to 22 kW
 - Requires 18 parallel cooling circuits
- Still very limited space for auxiliary coils

44

Sextupole v3 ($R_{bore} = 33 \text{ mm}$)

Reduced aperture

○ FCC

Parameter	Unit	Value
Sextupole strength	T/m2	880
Current	А	4250
Number of turns per coil	-	14
Operation current	А	304
Conductor dimensions	mm ²	8.5×8.5
Cooling diameter	mm	4
Current density	A/mm ²	5.1
Voltage drop per magnet	V	23.4
Resistance per magnet	mΩ	78
Power per magnet	kW	7.2
Number of water circuits	-	6
Water temperature rise	°C	13.2
Cooling water speed	m/s	1.8
Pressure drop	bar	6
Reynolds no.	-	3530

Power decreased to 7.2 kW

- ✓ 1/3 of R=38 (880 T/m2)
- ✓ 1/2 of CDR (807 T/m2)

Saturation <1%</p>

Gradient homogeneity < 0.5 units</p>

Corrector circuits

FCC

- Baseline: similar scheme as synchrotron light sources
- Orbit correction circuits could be moved to dipoles and quads

Green Coils: Main Sextupole Orange Coils: Vertical Corrector Brown Coils: Horizontal Corrector Red Coils: Normal Quadrupole Yellow Coils: Skew Quadrupole

Parameter	Ver. Corrector	Horiz. Corrector	Nor. Quad. Corrector	Sk. Quad. Corrector
Integrated Strength(Tm)/(T)	0.02	0.02	0.6	0.6
Magnetic field (mT)/(T/m)	13	13	0.4	0.4
Effective length (mm)	1500	1500	1500	1500
Ampere-Turns per pole (A.t)	345	400/200	210	378
Number of turns	48	48/24	14	24
Conductor size (mm ²)	3.75 × 1.6	3.75 × 1.6	3.75 × 1.6	3.75 × 1.6
Current (A)	7.2	8.3	15	15.8
Current Density (A/mm ²)	1.2	1.4	2.5	2.6
Resistance per magnet (Ω)	1.7	2.5	0.5	0.4
Total Voltage (V)	12.1	21	7.4	6.62
Total Power (W)	87	175	110	104
Total Cable Length (m)	590	885	172	147
Total Cable Weight (kg)	32	48	9	8

Vertical Corrector

Horizontal Corrector

-200

Normal Quad Corrector

Skew Quad Corrector

Correction circuits field quality

<u>Main coils OFF</u> \rightarrow Field homogeneity and harmonics w.r.t. correction field component

 $B_v(0) = 0.013 T$

○ FCC

Bx field homogeneity B_x(0) = 0.013 T

Intical Correcto

 $G_{n}(0) = 0.4 \text{ T/m}$

Skew gradient homogeneity $G_s(0) = 0.4 \text{ T/m}$

47

FCC

Correction circuits field quality

- The Horizontal dipole corrector introduces a strong normal sextupole component that can be cured by the main sextupole coil
- The Horizontal/Vertical dipole correctors introduces strong normal/skew decapole components
- > The Normal Quadrupole corrector introduces a strong normal octupole term
- > The Skew Quadrupole corrector introduces a strong skew octupole term

All coils ON (main and trim)

→ Field harmonics w.r.t. **sextupole** component

Flux potential with main and trim coils at peak current

48

Collider magnets – Interaction regions

Beamstrahlung photon extraction line

Magnets downstream IPs

- Collisions at IPs will generate highly energetic "Beamstrahlung" (BS) photons → beam power ~400 kW
- BS photons must be channelled to a dedicated beam dump via a straight extraction line through the magnets
- **Preliminary magnet designs** needed to identify potential conflicts
- First approach: define cross-sections based on **analytical formulae**, via a script and check interferences with BS envelope

X [m]

BS photon extraction and e+ layout

Method for preliminary magnet designs

Dipoles

FCC

Assumptions made:

- H-shaped cross-section.
- Conductor shape and current density assumed.
- Spacing around beam aperture and conductors assumed.

Dimensions then given by magnet strength and beam aperture:

- Max field per magnet given by: $B_{max} = 3.3356K_0(B\rho)_{max}$
- Current per pole approximated by: $NI \approx \frac{B_{max}h}{2\mu_0}$
- Pole tip overhang given by: $2\frac{a}{h} = -0.14 \ln \frac{\Delta B}{B} 0.25$
- Pole width given by: $W_{pole} = d_{Beam} + 2a$

Method for preliminary magnet designs

Quadrupoles

FCC

Assumptions made:

- Standard quadrupole cross-section.
- Straight poles assumed for simplicity.
- Conductor shape and current density assumed.
- Spacing around beam aperture and conductors assumed.

Dimensions then given by magnet strength and beam aperture:

• Max gradient per magnet given by:

 $G_{max} = 3.3356K_1(B\rho)_{max}$

- Current per pole approximated by: $NI \approx \frac{G_{max}r^2}{2\mu_0}$
- Hyperbolic pole tips assumed: $2xy = R^2$
- Pole tip cut-off points given by conformal mapping of an optimal dipole tip; the cut-off points determine the pole width.

Magnet-BS conflicts along lattice

- BS envelope within beam aperture
- BS envelope intersects beam aperture edge
- BS envelope intersects magnet poles
- BS envelope intersects magnet back-leg
- BS envelope fully separated from magnet cross-section

Name	L [m]	S [m]	BS status	Comment
QC4.1	3.50	24.55		BS envelope within beam aperture for all magnets before and up to this point.
BC1.1	39.39	64.25		BS envelope intersects beam aperture edge, enlarged vacuum chamber (VC) needed.
QC5.1	3.50	68.05		Magnet aperture radius needs to be enlarged significantly.
BC2.1	1.70	70.05		BS envelope intersects beam aperture edge, enlarged VC needed.
QC6.1	3.50	73.85		Magnet aperture radius needs to be enlarged significantly.
BC3.1	39.66	113.81		C-shape cross-section required.
QC7.1	3.50	117.61		Figure-of-eight cross-section required.
SY1R.1	0.15	118.06	-	Superconducting; not investigated.
SY1R.2	0.15	118.21	-	Superconducting; not investigated.
BC4.1	29.92	148.43		C-shape cross-section required.
QY2.1	3.50	152.23		BS envelope outside of magnet cross-section.
BC5.1	42.45	194.98		BS envelope outside of magnet cross-section, no conflicts foreseen beyond this point.

Magnet-BS conflicts along lattice

- BS envelope within beam aperture
- BS envelope intersects beam aperture edge
- BS envelope intersects magnet poles
- BS envelope intersects magnet back-leg
- BS envelope fully separated from magnet cross-section

L [m] **S** [m] **BS** status Comm Name QC4.1 3.50 24.55 BS env BC1.1 39.39 64.25 BS env QC5.1 68.05 3.50 Magne BC2.1 1.70 70.05 BS env y (mm) QC6.1 73.85 3.50 **Magne** BC3.1 39.66 113.81 C-shap QC7.1 3.50 117.61 Figure-**SY1R.1** 0.15 118.06 Superc -**SY1R.2** 0.15 118.21 Superc -BC4.1 29.92 148.43 C-shap QY2.1 3.50 152.23 BS env BC5.1 42.45 194.98 BS env

○ FCC

Magnet-BS conflicts along lattice

Name	L [m]	S [m]	BS status	Comm
QC4.1	3.50	24.55		BS env
BC1.1	39.39	64.25		BS env
QC5.1	3.50	68.05		Magne
BC2.1	1.70	70.05		BS env
QC6.1	3.50	73.85		Magne
BC3.1	39.66	113.81		C-shap
QC7.1	3.50	117.61		Figure-
SY1R.1	0.15	118.06	-	Superc
SY1R.2	0.15	118.21	-	Superc
BC4.1	29.92	148.43		C-shap
QY2.1	3.50	152.23		BS env
BC5.1	42.45	194.98		BS env

BS envelope within beam aperture		
BS envelope intersects beam aperture edge		
BS envelope intersects magnet poles		
BS envelope intersects magnet back-leg		

BS envelope fully separated from magnet cross-section.

BC1.1

Magnet-BS conflicts along lattice

BS envelope fully separated from magnet cross-section

required.

250 300

Magnet-BS conflicts along lattice

BS envelope within beam aperture

BS envelope intersects magnet poles

BS envelope intersects magnet back-leg

BS envelope intersects beam aperture edge

-300

-300 -250

-200 -150 -100

-50 0 50 100 150 200

x (mm)

FCC

○ FCC

58

Magnet-BS conflicts along lattice

200

150 100 50

-250 -200 -150 -100

-50

50 100 150 200 250

0 x (mm)

(mg) 0 -50 -100 -150 -200

Name	L [m]	S [m]	BS status	Comm
QC4.1	3.50	24.55		BS env
BC1.1	39.39	64.25		BS env
QC5.1	3.50	68.05		Magne
BC2.1	1 70	70.05		BS env
QC6.1	3.50	73.85		Magne
BC3.1	39.66	113.81		C-shap
QC7.1	3.50	117.61		Figure-
SY1R.1	0.15	118.06	-	Superc
SY1R.2	0.15	118.21	-	Superc
BC4.1	29.92	148.43		C-shap
QY2.1	3.50	152.23		BS env
BC5.1	42.45	194.98		BS env

 BS envelope within beam aperture BS envelope intersects beam aperture edge BS envelope intersects magnet poles BS envelope intersects magnet back-leg BS envelope fully separated from magnet cross-section 					
BC2.1					
	Yoke cross-section				
	Beam aperture				
	BS envelope (8ơ), tī, magnet entrance				
	'' '' '' , tī, magnet exit				
	" " , Z, magnet entrance				
	" " .Z. magnet exit				
	Conductor				

Magnet-BS conflicts along lattice

Name	L [m]	S [m]	BS status	Comm
QC4.1	3.50	24.55		BS env
BC1.1	39.39	64.25		BS env
QC5.1	3.50	68.05		Magne
BC2.1	1.70	70.05		BS env
QC6.1	3 50	73.85		Magne
BC3.1	39.66	113.81		C-shap
QC7.1	3.50	117.61		Figure-
SY1R.1	0.15	118.06	-	Superc
SY1R.2	0.15	118.21	-	Superc
BC4.1	29.92	148.43		C-shap
QY2.1	3.50	152.23		BS env
BC5.1	42.45	194.98		BS env

BS envelope within beam aperture

BS envelope intersects magnet poles

BS envelope intersects beam aperture edge

Magnet-BS conflicts along lattice

Name	L [m]	S [m]	BS status	Comm
QC4.1	3.50	24.55		BS env
BC1.1	39.39	64.25		BS env
QC5.1	3.50	68.05		Magne
BC2.1	1.70	70.05		BS env
QC6.1	3 50	73.85		Magne
BC3.1	39.66	113.81		C-shap
QC7.1	3.50	117.61		Figure-
SY1R.1	0.15	118.06	-	Superc
SY1R.2	0.15	118.21	-	Superc
BC4.1	29.92	148.43		C-shap
QY2.1	3.50	152.23		BS env
BC5.1	42.45	194.98		BS env

BS envelope within beam aperture

BS envelope intersects magnet poles

BS envelope intersects magnet back-leg

BS envelope intersects beam aperture edge

60

○ FCC

Magnet-BS conflicts along lattice

Name	L [m]	S [m]	BS status	Comm
QC4.1	3.50	24.55		BS env
BC1.1	39.39	64.25		BS env
QC5.1	3.50	68.05		Magne
BC2.1	1.70	70.05		BS env
QC6.1	3.50	73.85		Magne
BC3.1	33.00	113.81		C-shap
QC7.1	3.50	117.61		Figure-
SY1R.1	0.15	118.06	-	Superc
SY1R.2	0.15	118.21	-	Superc
BC4.1	29.92	148.43		C-shap
QY2.1	3.50	152.23		BS env
BC5 1	42 45	194 98		BS env

BS envelope within beam aperture
BS envelope intersects beam aperture edge
BS envelope intersects magnet poles
BS envelope intersects magnet back-leg
BS envelope fully separated from magnet cross-section

Magnet-BS conflicts along lattice

Name	L [m]	S [m]	BS status	Comm
QC4.1	3.50	24.55		BS env
BC1.1	39.39	64.25		BS env
QC5.1	3.50	68.05		Magne
BC2.1	1.70	70.05		BS env
QC6.1	3.50	73.85		Magne
BC3.1	00.00	113.81		C-shap
QC7.1	3.50	117.61		Figure-
SY1R.1	0.15	118.06	-	Superc
SY1R.2	0.15	118.21	-	Superc
BC4.1	29.92	148.43		C-shap
QY2.1	3.50	152.23		BS env

BS envelope within beam aperture

BS envelope intersects magnet poles

BS envelope intersects beam aperture edge

Magnet-BS conflicts along lattice

Name	L [m]	S [m]	BS status	Comm	:
QC4.1	3.50	24.55		BS env	:
BC1.1	39.39	64.25		BS env	:
QC5.1	3.50	68.05		Magne	:
BC2.1	1.70	70.05		BS env	:
QC6.1	3.50	73.85		Magne	(mm
BC3.1	39.66	113.81		C-shap	y (r
QC7.1	J.50	117.61		Figure	-:
SY1R.1	0.15	118.06	-	Superc	-3
SY1R.2	0.15	118.21	-	Superc	-)
BC4.1	29.92	148.43		C-shap	-)
QY2.1	3.50	152.23		BS env	-1
BC5.1	42.45	194.98		BS env	

BS envelope within beam aperture

BS envelope intersects magnet poles

BS envelope intersects magnet back-leg

BS envelope intersects beam aperture edge

BS envelope fully separated from magnet cross-section.

Magnet-BS conflicts along lattice

Name	L [m]	S [m]	BS status	Comm
QC4.1	3.50	24.55		BS env
BC1.1	39.39	64.25		BS env
QC5.1	3.50	68.05		Magne
BC2.1	1.70	70.05		BS env
QC6.1	3.50	73.85		Magne
BC3.1	39.66	113.81		C-shap
QC7.1	5.50	117.61		Figure
SY1R.1	0.15	118.06	-	Superc
SY1R.2	0.15	118.21	-	Superc
BC4.1	29.92	148.43		C-shap
QY2.1	3.50	152.23		BS env
BC5.1	42.45	194.98		BS env

BS envelope within beam aperture

BS envelope intersects magnet poles

BS envelope intersects magnet back-leg

BS envelope intersects beam aperture edge

○ FCC

Magnet-BS conflicts along lattice

Name	L [m]	S [m]	BS status	Comm
QC4.1	3.50	24.55		BS env
BC1.1	39.39	64.25		BS env
QC5.1	3.50	68.05		Magne
BC2.1	1.70	70.05		BS env
QC6.1	3.50	73.85		Magne
BC3.1	39.66	113.81		C-shap
QC7.1	3.50	117.61		Figure-
SY1R.1	0.15	118.06		Superc
SY1R.2	0.15	118.21	-	Superc
BC4.1	29.92	148.43		C-shap
QY2.1	3.50	152.23		BS env
BC5.1	42.45	194.98		BS env

	bo envelope within beam apentite
	BS envelope intersects beam aperture edge
	BS envelope intersects magnet poles
	BS envelope intersects magnet back-leg
	RS envelope fully separated from magnet cross-section

BS onvolone within hear aporture.

Magnet-BS conflicts along lattice

Name	L [m]	S [m]	BS status	Comm
QC4.1	3.50	24.55		BS env
BC1.1	39.39	64.25		BS env
QC5.1	3.50	68.05		Magne
BC2.1	1.70	70.05		BS env
QC6.1	3.50	73.85		Magne
BC3.1	39.66	113.81		C-shap
QC7.1	3.50	117.61		Figure-
SY1R.1	0.15	118.06		Superc
SY1R.2	0.15	118.21	-	Superc
BC4.1	29.92	148.43		C-shap
QY2.1	3.50	152.23		BS env
BC5.1	42.45	194.98		BS env

Magnet-BS conflicts along lattice

- BS envelope within beam aperture
- BS envelope intersects beam aperture edge
- BS envelope intersects magnet poles
- BS envelope intersects magnet back-leg
- BS envelope fully separated from magnet cross-section.

QY2.1

Name	L [m]	S [m]	BS status	Comm
QC4.1	3.50	24.55		BS env
BC1.1	39.39	64.25		BS env
QC5.1	3.50	68.05		Magne
BC2.1	1.70	70.05		BS env
QC6.1	3.50	73.85		Magne
BC3.1	39.66	113.81		C-shap
QC7.1	3.50	117.61		Figure-
SY1R.1	0.15	118.06	-	Superc
SY1R.2	0.15	118 21	-	Superc
BC4.1	29.92	148.43		C-shap
QY2.1	3.50	152.23		BS env
BC5.1	42.45	194.98		BS env

Magnet-BS conflicts along lattice

- BS envelope within beam aperture
- BS envelope intersects beam aperture edge
- BS envelope intersects magnet poles
- BS envelope intersects magnet back-leg
- BS envelope fully separated from magnet cross-section

BC5.1

Name	L [m]	S [m]	BS status	Comm
QC4.1	3.50	24.55		BS env
BC1.1	39.39	64.25		BS env
QC5.1	3.50	68.05		Magne
BC2.1	1.70	70.05		BS env
QC6.1	3.50	73.85		Magne
BC3.1	39.66	113.81		C-shap
QC7.1	3.50	117.61		Figure
SY1R.1	0.15	118.06	-	Superc
SY1R.2	0.15	118.21		Superc
BC4.1	29.92	145.43		C-shap
QY2.1	3.50	152.23		BS env
BC5.1	42.45	194.98		BS env

Dipoles – cross-sections

- 2 designs could cover the needs
 - One H-type for cases without interference
 - One C-shape for cases with back-leg interference
- The C-shape design could also be standardized

Quadrupoles – cross-sections

- 3 designs could cover the needs
 - One 4-fold with nominal aperture for cases without interference
 - One 4-fold with enlarged aperture for cases with pole interference
 - One figure-of-eight for cases with back-leg interference

Space claim summary

	Name	S [m]	Length [m]	Height [mm]	Width [mm]	Cross-section
	QC2R2.1	8.44	1.25	-	-	Superconducting; not investigated
	QT1.1	11.73	1.00	<mark>350</mark>	<mark>350</mark>	Common quad cross-section
	QC3.1	17.51	3.50	<mark>350</mark>	<mark>350</mark>	Common quad cross-section
	QC4.1	24.55	3.50	<mark>350</mark>	<mark>350</mark>	Common quad cross-section
	BC1.1	64.25	39.39	<mark>240</mark>	<mark>300</mark>	Common H-shape
	QC5.1	68.05	3.50	<mark>610</mark>	<mark>610</mark>	Enlarged aperture
	BC2.1	70.05	1.70	<mark>240</mark>	<mark>300</mark>	Common H-shape
	QC6.1	73.85	3.50	<mark>610</mark>	<mark>610</mark>	Enlarged aperture
	BC3.1	113.81	39.66	<mark>260</mark>	<mark>300</mark>	C-shape
	QC7.1	117.61	3.50	<mark>450</mark>	<mark>300</mark>	Figure-of-eight cross-section
	SY1R.1	118.06	0.15	-	-	Superconducting; not investigated
	SY1R.2	118.21	0.15	-	-	Superconducting; not investigated
	BC4.1	148.43	29.92	<mark>260</mark>	<mark>300</mark>	C-shape
	QY2.1	152.23	3.50	<mark>350</mark>	<mark>350</mark>	Common quad cross-section
	BC5.1	194.98	42.45	<mark>240</mark>	<mark>300</mark>	Common H-shape

All superconducting before this point \rightarrow not investigated.

5 different cross-sections in total:

- Dipoles:
 - Common H-shape
 - C-shape

Magnets for FCC-ee, J. Bauche et al.

- Quads:
 - Common cross-section
 - Enlarged aperture
 - Figure-of-eight

Same respective cross-sections for quads and dipoles beyond this point.

○ FCC

Polarization wigglers
Specifications

○ FCC

Polarization wigglers are needed to measure beam characteristics

	FCC-ee	LEP
Number of units per beam	8 imes 3	8
Full gap height (mm)	90	100
Central field B^+ (T)	0.7	1.0
Central pole length (mm)	430	760
Asymmetry ratio B^+/B^-	6	2.5
Critical energy of SR photons (keV)	900	1350

FCC-ee CDR wiggler specifications

LEP damping / emittance wiggler, 1983

Magnetic concept with floating poles

Design features

FCC

- Magnetic flux in central pole loops back through end poles
- **Single main** coil with enough ampereturns is sufficient
- The coil width conditions a clean transition from B+ to B-
- A central saddle coil allows smaller magnet transverse size
- A design with **trim coils** at the pole ends has been explored

Concept of FCC-ee polarization wiggler with floating poles

W = effective magnetic width

Field self-cancellation

Flux conservation

Condition for self-cancellation of wiggler integral field strength:

 $\mathsf{B}_{\mathsf{cen}}^{*}\mathsf{L}_{\mathsf{cen}}^{}=\mathsf{B}_{\mathsf{end}}^{*}\mathsf{L}_{\mathsf{end}}^{}$

Consequently:

FCC

 $W_{cen} = W_{end}$

Schematic representation of pole effective surfaces (½ wiggler)

The translation of effective **magnetic** width/length to **physical** pole width/length is **valid outside saturation** and with **same aperture heights** on all poles

→ We could shim the end pole width to adjust the field integral to 0 during magnetic measurements

 \rightarrow The (small) dynamic range of the wigglers needs to be confirmed

FCC

77

FCC

Longitudinal field distribution - trim coils

78

FCC

Longitudinal field distribution - trim coils

NI trim = -30% NI main

 \rightarrow B+/B- ratio change: -16%

→ Residual int. field: 3.7 mTm

- **B+/B- ratio** can be adjusted... but longitudinal **field profile affected**
- The **residual field integral** is not much affected (already small due to field self-cancellation)
- → However, this could change if saturation occurs in some parts of the magnet within the dynamic range

Booster magnets – Regular arcs

FCC

- Single aperture machine, cycled •
- No field "tapering" needed for E saw tooth •
- **Beam aperture** Ø 50 mm (under discussion... • 60 mm, and soon 84 mm to be studied)
 - GFR over 2/3 aperture ٠
 - Field homogeneity between 2 and 10 units ٠
- Challenging dipole field at injection • \rightarrow only ~130 x B_{earth}

The injection energy for the booster is determined by the field quality and reproducibility of the magnetic field in the dipole magnets of the arc sections. The current design features an energy of 20 GeV, corresponding to a magnetic field of B = 6 mT.

CDR, Booster chapter, p. 495

Magnet	Parameter	Unit	Value
Dipole	Min./Max. field	G	64/593
	Length	m	11.1
Quadrupole	Min./Max. gradient	T/m	2.5/23
	Length	m	1.5
Sextupole	Min./Max. gradient	T/m ²	304/2816
	Length	m	0.5

Booster magnet parameters

Parameter	Unit	Z	W	Η	$t\overline{t}_1$	$t\overline{t}_2$
Flat bottom duration	s	51.1	11.8	5.0	1.6	1.6
Cycle duration	s	51.7	13.3	7.5	5.5	5.7
Ramp rate up	G/s			254		

CDR. Booster cycle

Booster dipole

 \rightarrow not acceptable

→ <u>costly for large scale</u> manufacturing

Dipole design

Main considerations for design

- **Performance**: field quality, reproducibility, and limited sensitivity to perturbations (@ injection)
- **Cost optimization**: large scale manufacturing, power consumption and energy storage
- Size: integration in same tunnel as collider
- Design options
- → Coil dominated magnet or iron dominated magnet?
 - o Field range achievable in normal conducting mode for both options
 - Required **ampere-turns much larger** for **coil dominated**, even with iron shell (power consumption, capital cost, size)
 - **Ironless** magnet does not shield the **earth magnetic field** ($B_{earth} \approx 70$ units of B_{inj})
 - Strong sensitivity of field quality to coil positioning for coil dominated
 - o Required conductor shape not commercially available for coil dominated
 - o Effect of iron coercivity on low field performance larger for iron dominated magnet

\rightarrow iron dominated magnet

FCC

Dipole – 1st version

Effect of coercivity

- **Flux lines** along the pole iron \rightarrow different path lengths
- At low fields, $DB_{rem} \propto DH_c * DI_{iron} / I_{air}$
- H_c scales with iron magnetization, ~10 times larger at tt_{bar} extraction than at injection
- An "anvil" pole shape can mitigate the effect, in the spirit of the LHeC dipole*

Liron O-shape magnet Yoke central part could Flux lines path length increased be trimmed as well

"Anvil" pole shape magnet

* D. Tommasini, M. Buzio, and R. Chritin, "Dipole magnets for the LHeC ring-ring option", IEEE Trans. Appl. Supercond. 22, 4000203 (2012)

Dipole – 1st version

Parameters list

FCC

- Only ~4500 tons of iron and aluminum for the 5888 dipoles of the whole ring (~1/3 of the collider dipoles)
- Power consumption minimized with low current density
- Max RMS power ~4.2 MW at tt_{bar} operation
- Average RMS power over lifetime ~2 MW
- Number of turns selected to match power converters characteristics and limit operational voltage in the machine < 1 kV (electrical safety regulations)

Parameter	Unit	Value
Number of units		2944 x 2
Central field, 20 GeV–182.5 GeV	mT	7.1 - 65.0
Aperture (horizontal × vertical)	mm	123 x 55
Good field region (GFR) radius	mm	17
Field quality in GFR	1.0E-04	< 1
Magnetic length	m	11.1
Magnet overall transverse dimensions	mm	228 x 100
Iron mass per unit length	kg/m	55.5
Aluminium mass per unit length	kg/m	7.68
Magnet unit mass (11.1 m length)	kg	701
Total magnet mass, 65.4 km	tons	\sim 4500
Maximum operating ampere-turns (tt_bar extraction)	А	2844
Maximum RMS current density (tt_bar)	A/mm2	0.92
Peak current (coil 4 turns)	Α	711
Resistance per unit length (coil 4 turns)	$\mu\Omega/m$	596
Inductance per unit length (coil 4 turns)	μH/m	55
Peak voltage per 1/2 octant (coil 4 turns)	kV	1810
Maximum RMS power per unit length (tt_bar)	W/m	64
Maximum total peak power, 65.4 km (tt_bar; cabling not incl.)	MW	20
Maximum total RMS power, 65.4 km (tt_bar; cabling not incl.)	MW	4.2

Dipole – latest version

Transient Analysis of the Core

FCC

Magnetic properties and anhysteretic curve values of chosen material

Magnetostatic analysis results at maximum field [65 mT @ airgap]

Dipole – latest version

Transient Analysis of the Core

FCC

Transient analysis with hysteretic effects

- Dynamic simulation (without Eddy currents) from 65 mT → 6.5 mT, in 2 seconds
- Design optimized for whole dynamic range, filed homogeneity dB/B < ±2.5 units

○ FCC

Hysteresis in H shape dipole

Field quality during the cycle

FCC

Earth magnetic field and other stray field

	H shape	C shape
Shielding factor x	> 400	> 10
Shielding factor y	> 65	> 30
Δ Normal FQ	<0.(1) units	<0.(1) units
Δ Skew FQ	<0.(1) units	3 units
ΔB0	0.(8) units	1.(3) units

The C shape dipole is poor at shielding background field, in particular in the x-plane

The system is sufficiently linear to make predictions based upon shielding factor to 1 sig fig.

Earth's magnetic field shielding the for H and C shape (w/o excitation)

89

FCC

Vacuum tube eddy field

Eq.12 of Y. Chen et.al, 2019, *An expression for the eddy field in a circular vacuum chamber for HEPS booster dipole*, https://arxiv.org/pdf/1910.09781.pdf

	4.750e-003 : >5.000e-003
	4.500e-003 : 4.750e-003
	4.250e-003: 4.500e-003
	4.000e-003 : 4.250e-003
	3.750e-003: 4.000e-003
	3.500e-003 : 3.750e-003
	3.250e-003 : 3.500e-003
	3.000e-003 : 3.250e-003
	2.750e-003 : 3.000e-003
	2.500e-003 : 2.750e-003
	2.250e-003 : 2.500e-003
	2.000e-003 : 2.250e-003
	1.750e-003 : 2.000e-003
	1.500e-003 : 1.750e-003
	1.250e-003 : 1.500e-003
	1.000e-003 : 1.250e-003
	7.500e-004 : 1.000e-003
	5.000e-004: 7.500e-004
	2.500e-004 : 5.000e-004
	<0.000e+000 : 2.500e-004
Den	sity Plot: J , MA/m^2

Eddy currents in the vacuum chamber for 25.4 mT/s ramp

Booster quadrupole

FCO

1st quadrupole candidate

Current density in copper: 5.1 A_{RMS} mm⁻² @ tt2

	z	W	н	tt 1	tt 2
Power Loss [MW]	0.9	1.5	5.0	18.9	20.8

- B_{peak} < 1.6 T @ tt2, η > 98 %
- Active mass: 750 kg (2210 tons total)
- Assumes 1.5 mm for vacuum tube and 5 mm bake-out jacket
- 6 turns per coil, [1.8 kA; 1.8 kV] per 92 magnet circuit
- ΔP cooling water 5.4 bar, $\Delta T < 22$ K
- 70 mm coil overhang vs. 165 mm quad. to sext. distance
- Matches key requirements, to be optimised...

Magnet work for FCC feasibility study

WIP and next steps for magnet development

Electromagnetic design

- Lifetime cost optimization (CAPEX vs. OPEX for magnet and cooling infrastructure) to define optimal working point (J in coils, ΔT, electrical parameters for converter efficiency, hydraulic impedance, etc.)
- Design optimization (collider quadrupole, trim circuits, booster dipole for low field and cycling, etc.)
- Mechanical design
 - Design adapted to large scale production (automatised machining, assembly, measurements)
 - Design of inter-connections and interfaces
- Prototyping

FCC

- Functional model magnets to validate performance
- Model magnets for arc half-cell mock-up

Timeline for feasibility study

	2023					2024				2025			
	Q1	Q2	Q3	Q4	ŀ	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
Magnet design													
Short models													
Arc-half-cell models													
					Т	odav							

Timeline of magnet development for FCC-ee feasibility study

Timeline

FCC

- Electromagnetic and mechanical design to be completed by end of 2024
- Construction of functional model magnets until mid-2025, followed by tests and measurements
- Construction of model magnet for arc half-cell mock-up over 2025 (scope and deliverables to be defined with the working group based on decisions from the project management)

Preliminary cost estimate

			Collider				Booster		
ARCS only	/		Dipole 10.6 m (Cu busbars)	Dipole 10.6 m (Al busbars)	Quadrupole 2.9 m	Sextupole 1.5 m	Dipole 11.1 m	Quad 1.5 m	Sextupole 0.5 m
Yoke	Mass	kg	2576	2576	4400	880	611	612	
	Iron material cost	CHF/kg	2	2	2	2	2	2	
	Manufacturing cost	CHF/kg	6	6	12	18	12	12	
Coil or BB	Mass	kg	795	398	820	150	170	133	
	Conductor cost	CHF/kg	20	5.3	20	20	20	20	
	Manufacturing cost	CHF/kg	10	10	30	50	30	30	
Ancillaries	Material cost	CHF	5000	5000	5000	5000	5000	5000	
Assembly	Manpower cost per unit	CHF	1000	1000	5000	3000	3000	5000	
Total	Per unit magnet	kCHF	50	33	113	36	25	25	12
Quantity			5680	5680	2840	4672	5888	2944	1120
Gran total	For ARCS	MCHF	287	186	320	169	148	74	13

Full ring (ARCS + LSS)

FCC

	LSS to ring mag. length ratio		0	0	0.176	0.176	0	0.176	0.176
Gran total	For full RING	MCHF	287	186	376	198	148	87	16

		with dipole	with dipole
		Cu busbars	Al busbars
Gran total (full ring)*	MCHF	1112	1011

* Does not include beamstrahlung line magnets downstrean IPs and wigglers

- Based on magnet size, weight and complexity
- Booster sextupole scaled from collider
- **Previous estimates** have been done with similar approach for the **CDR. Estimate** (approved by DG) was 860 MCHF for the arc magnets of the booster and collider (with Al busbars), which is close to the latest estimate
- LSS and IR magnets to be included
- \rightarrow <u>Next step</u>: refined estimate based on global cost optimization

FCC

Global cost optimisation

Optimization of magnet system total cost over machine lifetime based on key parameters

Capital Expenditure

Operational **Ex**penditure

Concluding remarks

98

The FCC-ee study provides interesting opportunities and challenges in terms of magnet design. The unprecedented number of magnets imposes to include manufacturing aspects from the early design stage with a cost-optimized approach.

For the collider, this is done with simple compact low-consumption magnets. The design effort continues to further improve the magnet performance, integrating also the correction circuits needed for the controllability of the machine.

The design of the booster magnets is in progress addressing the challenges of cycled operation and low injection field.

For the feasibility study, the objective is to validate experimentally the key design features with model magnets and to optimize the lifetime cost of the magnet systems, so that feasibility is proven, and cost is properly estimated to help the decision makers at the next update of ESPP.

Thank you for your attention!

S FCC

Questions?

SPARE SLIDES

More than 100 scenarios developed & analysed

Multi-criteria approach covering 37 aspects

Legal and administrative aspects – 5 criteria

Connectivity - 2 criteria

Availability of services - 2 criteria

Accessibility of infrastructures - 6 criteria

Land plot related aspects - 9 criteria

Environnement – 8 criteria

Accelerator configuration – 3 criteria

Cost of construction

Risks linked to the construction

J. Gutleber

Surface site locations

- 1. PA Ferney Voltaire (FR, 01) experiment
- 2. PB Choulex (CH) technical
- 3. PD Nangy (FR, 74) experiment
- 4. PF Etaux/La Roche-sur-Foron (FR, 74) technical
- 5. PG Charvonnex/Groisy (FR, 74) experiment
- 6. PH Cercier/Marlioz (FR, 74) technical, RF
- 7. PJ Vulbens/Dingy en Vuache (FR, 74) experiment
- 8. PL Challex (FR, 01) technical, booster RF

Production volumes of LHC components

P. Lebrun

Experimental learning curves

LHC superconducting dipole magnets

• Unit cost c(n) of nth unit produced

 $c(n) = c(1) n^{\log_2 a}$

with a = « learning percentage », i.e. remaining cost fraction when production is doubled

<u>Cumulative cost of first nth units</u>

 $C(n) = c(1) n^{1+\log_2 a} / (1+\log_2 a)$

with C(n)/n = average unit cost of first nth units produced

Industry	ρ
Complex machine tools for new models	75%-85%
Repetitive electrical operations	75%-85%
LHC magnets	80%-85%
Shipbuilding	80%-85%
Aerospace	85%
Purchased Parts	85%-88%
Repetitive welding operations	90%
Repetitive electronics manufacturing	90%-95%
Repetitive machining or punch-press operations	90%-95%
Raw materials	93%-96%

Learning coefficients

Example - Collider Sextupole

Other powering solution depending on controllability

B. Wicki et al.

CAPEX – OPEX –

CAPE>

OPEX