
Scalable booting for
System-on-Chip

in ATLAS L1CT
Giulio Muscarello



ATLAS Level 0 
Central Trigger 
for Phase 2

Many more SoCs foreseen

Currently: 13 ATCA boards (lab + 
experiment)

8 MUCTPI, 5 LTI, 2 custom Krias

Phase 2: est. 50 ATCA boards in 
the experiment

1 CTP, 2 MUCTPI, 48 LTI

SoC@CERN: 2k SoCs!

Approx. 50% CMS, 25% ATLAS

http://cds.cern.ch/record/2847967


SoC workflow

This seminar will touch three aspects:

• Bootloader and kernel compilation
Building with a common base (same CPU) and different hardware "flavors"

• Booting
Determining what kernel to download, where to read the filesystem from, etc.

• Host configuration
Keeping list of users, software packages, etc. up to date



Bootloader 
compilation



Ideal toolchain

.xsa 
design

First-stage bootloader

U-Boot

Linux kernel

Petalinux



The problem of external hardware

Problem: the boards have both on-chip and "external" devices

• On-chip devices (CPUs, clocks, etc.)
Vivado knows about them, can generate the correct instructions for the 
bootloaders/kernel/etc.

• On-board devices (connected via buses like I2C, SPI, SGMII, etc.)
Vivado doesn't know that e.g. you connected an EEPROM on I2C!
You need to somehow supply this information to the bootloader and Linux

How does the system know what to initialize?

• On desktops, ACPI/PCI automatically enumerates devices

• On SoCs, a device tree must be built in or loaded



Device tree

A device tree is a description of a hierarchy of 
devices.

Each device typically has:

• A class (I2C controller)

• An address, whether in memory or
on a bus (0xff020000)

• A compatible driver (Cadence driver)

• Other properties, e.g. interrupts

• Can contain children, especially if it is a bus

Vivado generates a base device tree,
to which we add external buses and devices.

// I2C controller

i2c0: i2c@ff020000 {

  compatible = "cdns,i2c-r1p14";

  status = "okay";

  interrupt-parent = <&gic>;

  interrupts = <0 17 4>;

  // An I2C multiplexer at address 0x74

  i2c-mux@74 {

    compatible = "nxp,pca9548";

    i2c@0 {

      // On channel 0, at address 0x54, there's an EEPROM

      mac_eeprom: eeprom@54 {

        compatible = "atmel,24c08";

      };

    };

  };

};



Actual toolchain

.xsa 
design

First-stage bootloader
No tweaks needed

U-Boot
Requires device tree for 

Ethernet/I2C/etc.
Has some code patches

Has a booting script

Linux kernel
Requires device tree
Has config options

Device tree addition
Additional settings

U-Boot code patches
U-Boot script

…
...

Petalinux



Scaling to several types of boards
The workflow for each board type is mostly the same, but 
there are small differences due to external hardware, internal 
quirks to be patched, etc.

How do we manage these similar-but-not-identical 
workflows?

• One repository per board type: lots of duplication, things go 
out of sync :(

• Common repository with board-specific patches: minimal 
duplication, centralized workflow :)

See our actual workflow on the right: "boards/common" 
contains the shared U-Boot and Linux build, and 
"boards/muctpi" has the board-specific device tree



soc/petalinux-template

A Petalinux workflow hosted on GitLab that:

• Starts from a basic, CPU-only template

• Applies some "shared" patches (eg. adding features to the 
bootloader)

• Applies board-specific patches

• Builds the project automatically

Adding a new type of board is "just" a matter of writing the board-
specific patches: the rest comes for free!

https://gitlab.cern.ch/soc/petalinux-template
https://gitlab.cern.ch/soc/petalinux-template


SoC I.G. 
features

L1CT 
patches

Board-
specific 
patches

soc/petalinux-template

The template enhances cooperation: the SoC I.G. provides a baseline image 
with common features for the benefit of all, and individual groups fork it and 
add their own patches (or alternatively cherry-pick features)

Currently in the template:

• IPMC communication

• DHCP Client ID in U-Boot

Recently open sourced – you're welcome to try it out and give feedback!

https://gitlab.cern.ch/soc/petalinux-template


Location-aware 
booting



Booting overview

After initializing the hardware, we want to download the kernel and use a remote filesystem so we can 
update more easily, not have storage requirements on the SoC, etc.

1. Hardware initialization
This is done "locally", you just copy the boot files to internal flash/SD card

2. Network setup
Esp. in the experiment: how does the board identify itself?

3. Kernel download and startup
How does it select the correct kernel? How is it updated?

4. Remote filesystem mount over NFS
Where does the filesystem live?

Where is this logic implemented?

• Currently in U-Boot, a "simple" bootloader by Xilinx

• Sysadmins want to move to GRUB, a general-purpose bootloader



Identifying boards

How do you serve the correct configuration to a board?

• In labs/interactive usage, the user cares about a specific, unique 
board: board identity
MAC address X is of type "LTI" and needs settings "ABC"

• In the experiment, we rely on shelf location: shelf identity
Shelf X, slot Y is of type "LTI" and needs settings "ABC"

Board identity via MAC is well understood and used, no problem 
here

But how is shelf identity read? And how is it used in identification?



ATCA shelf

A shelf manager is a powerful tool that we won't cover here: it controls power, sensors, fans...

Key point: the IPMC exposes a serial protocol (SIPL) for getting information and executing commands

The bootloader can figure out the board's location with a serial message



Booting 
sequence

1.Bootloader: hardware initialization

2.DHCP: identifies with central servers,
receives network configuration

3.PXE: receives booting configuration

4.Linux: mounts file system, runs software

Looks a lot like ATLAS netbooted nodes:
can reuse existing knowledge and infrastructure,
makes sysadmins happy

DHCP Client ID is used to encode shelf identity – 
varying levels of support



The case for 
location-aware
booting

In short, shelf identity 
determines configuration

Very flexible:

• Scales up to 1000s of 
devices thanks to easy 
classification of nodes

• Scales down to single 
boards when needed

• Can hot-swap boards



Location-aware booting in ATLAS L1CT

As of today:

• Shelf identity with DHCP is enabled on all boards
DHCP Client ID is supported in the lab-run DHCP server but not with CERN/ATLAS DHCP
Works reliably for us, but requires to run our own DHCP
Marc Dobson from SoC Interest Group is in talks with CERN IT for Client ID support

• PXE is enabled on Phase-2 devices
Works well with a local DHCP server, looking into running on GPN

• Phase-1 devices use a legacy mechanism (uEnv.txt)
Reason: replicate what is in the experiment. Evaluate PXE during next YETS

Overall: satisfied with DHCP+PXE as it is a more standard configuration

Thanks to DHCP+PXE we can automate booting configuration (in our case, from a central 
CSV description of devices)



Host 
configuration



Host configuration

We create a filesystem image on Git containing users, TDAQ services and settings, etc.

Deploying updates is non-trivial:

• Overwriting a live system is risky and convoluted
Eg. systemd services need to be reloaded/restarted, udev has its own reload procedure

• Rebooting with a new image works and is very simple
But users don't like rebooting (for good reason!)

• Either way, you overwrite local modifications
Problematic in the lab, not so much in the experiment



The case for declarative configuration

Would be nice to just declare your target configuration and let some tool handle the rest
Something like a closed loop control: compare target with current state and act on difference
This paradigm is called declarative (as opposed to imperative, open-loop control: e.g. shell scripts)



Host configuration

Specify what you want, not what to do

Puppet detects differences and applies the 
necessary changes

• Simpler specification
How would you rewrite the config on the left 
as a robust script?

• Simpler updates
Safe* to run on a live system, no matter how 
dirty/out of date

• Greater visibility
--dry-run will compare states and tell you 
why the host is misconfigured

user {

'gmuscare':

ensure   => present,

home    => '/home/gmuscare',

shell    => '/bin/bash',

uid     => 151154,

gid     => 1307,

}

ssh_authorized_key {

'my-ssh-key':

ensure   => present,

user    => 'gmuscare',

type    => 'ssh-rsa',

key     => 'AAAAB3NzaC1...'

}



Host configuration in L1CT

Thanks to Puppet we manage centrally and dynamically:

… on all boards, in the lab. In the experiment we want a "good" base image

Puppet has worked very well for bringing systems to a common, working state

We can preview changes thanks to "dry runs": ideal for the lab

Not always obvious how to integrate with systemd, more experience required

Users, 
authentication

Udev rules FPGA bitfiles
TDAQ 

configuration

IPMI sensor 
collection

Memory 
monitor

Uptime 
monitor

Jupyter



Outlook

• Test our changes: what can break? How can it be made robust?

• Gather experience on how to do things "the right way" and exchange information with 
teams using similar tools

• Cooperate with ATLAS and CMS sysadmins on a common scheme for Phase 2
• UEFI (see presentation by Quentin)
• Split FIT image into a common kernel and a device tree

• Improve integration with CERN infrastructure
• ATCN: Phase 2 devices will not require a bastion host

• LDAP authentication: use "CERN credentials"
• Icinga2 monitoring
• What else? Gather feedback from users

• Open source our work to other SoC users



Conclusions

• Scalable systems must be
highly automated:
replace/resize/etc. seamlessly

• Industry-standard solutions 
address our needs

• Experimentation in lab successful: 
we can iterate faster and more 
efficiently

• We are still gathering experience

Questions?


	Slide 1: Scalable booting for System-on-Chip in ATLAS L1CT
	Slide 2: ATLAS Level 0 Central Trigger for Phase 2
	Slide 3: SoC workflow
	Slide 4: Bootloader compilation
	Slide 5: Ideal toolchain
	Slide 6: The problem of external hardware
	Slide 7: Device tree
	Slide 8: Actual toolchain
	Slide 9: Scaling to several types of boards
	Slide 10: soc/petalinux-template
	Slide 11: soc/petalinux-template
	Slide 12: Location-aware booting
	Slide 13: Booting overview
	Slide 14: Identifying boards
	Slide 15: ATCA shelf
	Slide 16: Booting sequence
	Slide 17: The case for location-aware booting
	Slide 18: Location-aware booting in ATLAS L1CT
	Slide 19: Host configuration
	Slide 20: Host configuration
	Slide 21: The case for declarative configuration
	Slide 22: Host configuration
	Slide 23: Host configuration in L1CT
	Slide 24: Outlook
	Slide 25: Conclusions

