

Run-II monojet / mono-V analysis, part 8

Bruno Lopes SPRACE

Search for new particles in events with energetic jets and large missing transverse momentum in proton-proton collisions at $\sqrt{s} = 13 \text{ TeV}$, part 8

Bruno Lopes SPRACE

Recap...

Nas últimas apresentações, estudamos o último artigo publicado da análise, que inclui:

- Descrição dos modelos analisados
- □ Critérios de seleção das regiões de controle e de sinal
- □ Curvas de exclusão para cada modelo

E também começamos a ver o analysis note. Já vimos:

- Definições dos objetos físicos
- □ Correções (reweighting) devido a vários efeitos
- □ Seleção de eventos
- Estratégia de extração de sinal

HOJE: resultados

Fit: combina dados de 2017 e 2018 e as categorias monojet e mono-V

Monojet e mono-V são ortogonais, mas algumas incertezas são correlacionadas
 Incertezas experimentais descorrelacionadas entre os anos, teóricas correlacionadas

• Incertezas de calibração de energia dos jatos e determinação da luminosidade são correlacionadas

Concordância: há apenas alguns desvios de até 2σ , destacados nos plots. A categoria mono-V é dominada por incertezas estatísticas.

Região de sinal, monojet

CR do fóton, monojet

CR de 2 muons, monojet

CR de 2 elétrons, monojet

CR de 1 muon, monojet

CR de 1 elétron, monojet

Região de sinal, mono-V

CR do fóton, mono-V

CR de 2 muons, mono-V

CR de 2 elétrons, mono-V

CR de 1 muon, mono-V

CR de 1 elétron, mono-V

Contagens de eventos: pré-fit

Monojet				
	2017		2018	
Região	МС	Dados	МС	Dados
Fóton	444000	405000	629000	554000
1 muon	308000	306000	442000	394000
1 elétron	201000	191000	293000	256000
2 muons	33700	32000	44900	40600
2 elétrons	27100	24000	37800	31700
Sinal	434000	??	500000	??

Contagens de eventos: pré-fit

Mono-V, tight				
	2017		2018	
Região	МС	Dados	МС	Dados
Fóton	3230	3300	4510	4490
1 muon	3590	3690	4990	4780
1 elétron	2420	2360	3390	3160
2 muons	242	243	326	348
2 elétrons	205	195	305	266
Sinal	3320	??	3770	??

Contagens de eventos: pós-fit, $\mu = 0$

Monojet				
	2017		2018	
Região	МС	Dados	МС	Dados
Fóton	406000	405000	554000	554000
1 muon	306000	306000	394000	394000
1 elétron	191000	191000	256000	256000
2 muons	32000	32000	40500	40600
2 elétrons	24100	24000	31600	31700
Sinal	422000	??	464000	??

Contagens de eventos: pós-fit, $\mu = 0$

Mono-V, tight				
	2017		2018	
Região	MC	Dados	МС	Dados
Fóton	3290	3300	4490	4490
1 muon	3670	3690	4790	4780
1 elétron	2370	2360	3170	3160
2 muons	246	243	334	348
2 elétrons	195	195	280	266
Sinal	3530	??	3950	??

Contagens de eventos: pós-fit, μ livre

Monojet				
	2017		2018	
Região	МС	Dados	МС	Dados
Fóton	406000	405000	554000	554000
1 muon	306000	306000	394000	394000
1 elétron	191000	191000	256000	256000
2 muons	32000	32000	40500	40600
2 elétrons	24100	24000	31600	31700
Sinal	422000	??	464000	??

Contagens de eventos: pós-fit, μ livre

Mono-V, tight				
	2017		2018	
Região	MC	Dados	MC	Dados
Fóton	3290	3300	4490	4490
1 muon	3670	3690	4790	4780
1 elétron	2370	2360	3170	3160
2 muons	246	243	334	348
2 elétrons	195	195	280	266
Sinal	3530	??	3950	??

Unblinding

Estado final: $p_{\rm T}^{\rm miss}$ + jatos

- $\Box\,$ Cuidado especial com fontes patológicas de $p_{\rm T}^{\rm miss}$
- □ Parcialmente obtido com regiões de controle e critérios de seleção

Construído um dataset com 1/5 dos dados (< 2016), não deveria revelar sinal algum.

 \Box Ferramentas disponíveis para testar contribuições patológicas a $p_{\rm T}^{\rm miss}$:

- Distribuição angular do $p_{\mathrm{T}}^{\mathrm{miss}}$
- Distribuição da fração de energia dos jatos
- Distribuição angular dos jatos
- Comparação do PF com outros métodos de reconstrução
- Número de vértices

Efeito HEM: todos os eventos na região afetada são vetados.

Os dados de 2016, publicados na análise anterior, são incluídos e tratados da mesma forma que 2017 e 2018.

- □ Também separado monojet de mono-V (algoritmo diferente em 2016?)
- A maioria das incertezas experimentais são descorrelacionadas
- Incertezas teóricas são descorrelacionadas
- Definições desta análise são adaptadas, se necessário (como?)

Higgs portal

Bruno Lopes - Run-II monojet / mono-V analysis, part 8

Higgs portal

Category	Year	Expected signal strength limit	Observed signal strength limit
	2016	64.7%	73.8%
Monojet	2017	59.0%	43.0%
	2018	55.1%	107.9%
	2016	-	-
Mono V(lovy munity)	2017	96.5%	86.2%
Mono-v(low-purity)	2018	90.6%	200.1%
	2016	-	-
Mono-V (high-purity)	2017	55.5%	60.2%
	2018	56.5%	79.6%
	2016	54.5%	53.5%
Mono-V	2017	53.3%	49.3%
	2018	49.4%	71.6%
	combined	25,3%	27.8%

□ O mediador pode ser tanto vetorial quanto axial

- □ Constante de acoplamento definida como 0.25 com os quarks leves e 1.0 com a matéria escura
- \square Para $m_{\rm DM} \sim 1 \, {
 m GeV}$, é esperado excluir massas do mediador de até 2.35 TeV (reduz quando aumenta a massa da DM)
- □ Além das massas, é feita uma análise variando as constantes de acoplamento

Variando acoplamento com DM

Variando acoplamento com SM

- □ Ambas as constantes de acoplamento definidas como 1.0
- Utilizado apenas o monojet
- Massa da matéria escura fixada em 1 GeV
- \Box Vale no gráfico: $m_{\rm med}\sim 2m_{\rm top}$, produção via loop.

Bruno Lopes - Run-II monojet / mono-V analysis, part 8

Modelo simplificado com mediador no canal t

Modelo ADD

- \Box LQ acopla com o quark up e neutrinos, constante de acoplamento λ
- \Box Decai sempre em $u \nu_e$
- \Box A intensidade do sinal é interpretada como função de λ
- □ Consideradas produção simples e em pares

