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WHAT THIS LECTURE IS (AND WHAT IT IS NOT)

• This lecture is a somewhat light-hearted introduction to what FPGAs are, and 
why they are both brilliant and horrible

• Unfortunately, 1 hour does not give time to go into any depth – several 
months of hands-on work would be more realistic
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A NOTE ON TIMESCALES

• At 40MHz BX rate, a 4GHz CPU could 

perform 100 CPU operations (not 

enough to be useful) before having to 

pass to the next core

• Compare that to the O(10M) detector 

channels

• What technology can we use?
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PROGRAMMABLE DEVICES

• Application-specific integrated circuits 

(ASICs): optimised for fast processing,

design encoded into silicon

• “Pr gr        ASICS”:

Field-programmable gate arrays (FPGAs)
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AN ASIDE: THE HISTORY OF ELECTRONICS

• Digital electronics really started with the advent of the thermionic valve 
(c    q     y,     “v c        ”)
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THE HISTORY OF ELECTRONICS

Valve

transistors
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THE HISTORY OF ELECTRONICS
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THE HISTORY OF ELECTRONICS
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ASICS

Application Specific Integrated 

Circuit (ASIC)

APV25 - Imperial 

College, London
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ASICS

Application Specific Integrated 

Circuit (ASIC)

$

Qty

ASIC

Off-the-shelf

device

APV25 - Imperial 

College, London
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TWO PHILOSOPHIES: SPACE VS. TIME
Have each operation performed by

dedicated logic
and 

let signal propagate as a wave 
through the logic
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TWO PHILOSOPHIES: SPACE VS. TIME
Have each operation performed by

dedicated logic
and 

let signal propagate as a wave 
through the logic

18

Combinatorial

Fast, but messy, hard to 

understand, not scalable and 

low throughput



TWO PHILOSOPHIES: SPACE VS. TIME
Have each operation performed by

dedicated logic
and 

do that same operation
on every clock cycle
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Pipelined/Parallel

Slightly slower, but clean, easy 

to understand, scalable and 

high throughput
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TWO PHILOSOPHIES: SPACE VS. TIME
Have each operation performed by

dedicated logic
and 

do that same operation
on every clock cycle

Have each operation performed by
the same logic

performing
a different operation
on every clock cycle

SequentialPipelined/Parallel

A debate as old as 

electronic computing itself
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TWO PHILOSOPHIES: SPACE VS. TIME
Have each operation performed by

dedicated logic
and 

do that same operation
on every clock cycle

Have each operation performed by
the same logic

performing
a different operation
on every clock cycle

“      r         r  c     c      ng      r q  r             r g n      nk ng      n  

about numerical analysis and data management in order to secure efficient use.

In an environment which has represented the absence of the need to think as the 

  g     v r   ,             c          v n  g ”

Daniel Slotnick, 1967

SequentialPipelined/Parallel
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AND  HE S ORY DIVERGES…

Programmable Array Logic Microprocessor

Pack entire logic 

circuits in a chip

Perform all logical operations in 

one location, but sequentially

SequentialPipelined/Parallel
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AND  HE S ORY DIVERGES…

Programmable Array Logic Microprocessor

Pack entire logic 

circuits in a chip

Perform all logical operations in 

one location, but sequentially

Limited further 

discussion of 

microprocessors

SequentialPipelined/Parallel
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SUM-OF-PRODUCTS THEOREM

• Any Boolean operation may be expressed as

the OR of AND operations (Sum of products form)

• Or

the AND of OR operations (Product of sums form)
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(PLDS)

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

Unprogrammed

26



PROGRAMMABLE LOGIC DEVICES 
(PLDS)

Programmed
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PROGRAMMABLE LOGIC DEVICES 
(PLDS)

• Originally one-time programmable

• Later field reprogrammable

• W                 ? B        r          ny PLD …
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COMPLEX PLDS (CPLDS)
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PROGRAMMABLE INTERCONNECT MATRIX

30



AN ALTERNATIVE APPROACH

• Why bother with the complexity of the PLD cell?

• Replace the PLD cell with a simple SRAM:

• Data- n   c         “   r   ”

• Outputs the preloaded value for a given input
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AN ALTERNATIVE APPROACH

• Why bother with the complexity of the PLD cell?

• Replace the PLD cell with a simple SRAM:

• Data- n   c         “   r   ”

• Outputs the preloaded value for a given input

The Field Programmable Gate Array

(FPGA)
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FIELD PROGRAMMABLE GATE 
ARRAYS (FPGAS)

• ‘S     ’ Pr gr        L g c 
Blocks

• Massive Fabric of 
Programmable Interconnects
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EVOLUTION OF 
FEATURES IN 

FPGAS
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EVOLUTION OF 
FEATURES IN 

FPGAS

Who wants to waste all the LUTs as RAM?
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EVOLUTION OF 
FEATURES IN 

FPGAS

Who wants to waste all the LUTs for 

multiplication?

Big chips need dedicated clocking!
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EVOLUTION OF 
FEATURES IN 

FPGAS
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EVOLUTION OF 
FEATURES IN 

FPGAS

Who wants to waste LUTs AND re-invent 

industry-standard blocks?
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EVOLUTION OF 
FEATURES IN 

FPGAS

Who wants to waste LUTs AND re-invent 

industry-standard blocks?
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A NOTE ON I/O

• Traditionally, many hundreds of general-purpose pins (Gen I/O) up to a few 
hundred MHz

• Latest generation Gen I/O up to 1.8Gbps

• Programmable logic standards

• Since 2002, FPGAs have been adding dedicated Multi-gigabit transceivers

• Arms race - Ever more and ever faster 
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COMBINATORIAL 
LOGIC BLOCK
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COMBINATORIAL 
LOGIC BLOCK

• Registers on the output of every cell

• Perfect for pipelined logic
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INTEGRATED DIGITAL SIGNAL PROCESSING
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INTEGRATED DIGITAL SIGNAL PROCESSING

• So many registers

• Perfect for pipelined logic
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BIGGES  XILINX “ULTRASCALE+” DEVICES

• Upwards of 2million logic cells

• All clocked at  up to 500MHz

• Up to O(1015) operations/second

• 1 PetaBOp

• Upwards of 6000 DSPs

• All pipelined

• Fully programmable
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BIGGES  XILINX “ULTRASCALE+” DEVICES

• Upwards of 2million logic cells

• All clocked at  up to 500MHz

• Up to O(1015) operations/second

• 1 PetaBOp

• Upwards of 6000 DSPs

• All pipelined

• Fully programmable

• So what is the catch?

4.2 Tb/s!!!!
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FPGAS: WHA ’S  HE CA CH?

• Incredibly hard to program efficiently

• Thinking in a parallel, pipelined-fashion is exceptionally difficult

• A handful of real experts in CMS

• Efficient use depends on efficiently structured data
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FPGAS: WHA ’S  HE CA CH?

• Incredibly hard to program efficiently

• Thinking in a parallel, pipelined-fashion is exceptionally difficult

• A handful of real experts in CMS

• Efficient use depends on efficiently structured data

• The chip is just the start – needs to be attached to something

• You are also responsible for the infrastructure
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HOW TO PRESERVE YOUR 
SANITY USING FPGAS

• Keep your data-flow fully flow-forwards

• No iterations

• or at least 

• Flatten your loops
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PROTOTYPE CMS TRACKING TRIGGER:
KALMAN FILTER
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PROTOTYPE 
CMS

TRACKING 
TRIGGER:
KALMAN 

FILTER
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PROTOTYPE CMS TRACKING TRIGGER:
KALMAN FILTER

The maths is a relatively simple part of a more complex whole
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PROTOTYPE CMS TRACKING TRIGGER:
KALMAN FILTER

Kalman Filter is iterative
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PROTOTYPE CMS TRACKING TRIGGER:
KALMAN FILTER

Kalman Filter must handle combinatorics

56



PROTOTYPE CMS TRACKING TRIGGER:
KALMAN FILTER

Kalman Filter data-flow is data-dependent

57



AN ASIDE ON HIGH-LEVEL SYNTHESIS

• Due to an arbitrary decision by DoE/DARPA/U.S. Govt, FPGA vendors moved 
C->FPGA compilers from a curiosity to a top-priority

• Reinforced by push for heterogeneous, energy-efficient computing

• Flattens loops, deals with pipelining for you

• Very simple to get started

• “H rr  ,    c n g     r   f   r          r   ng f r   r ”

• From practical experience

• We see very inefficient usage of resources

• H r      n  r   n  “         c      r       n ”

• Requires many pre- r c    r   r c  v       n  r c  c          “     y     n ”

• So, how do you program massively parallelized devices efficiently?
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HARDWARE DESCRIPTION LANGUAGES

• Need a language to describe hardware 

• Novelly – c        “H r   r  D  cr     n L ng  g ” (HDL)

• Also called FIRMWARE

• Two popular languages are VHDL , VERILOG

• E  y       r     rn ng… H r          r!
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HARDWARE DESCRIPTION LANGUAGES

• Describe Logic as collection of Processes operating in Parallel

• Language Constructs for Synchronous Logic

• Compiler (Synthesis) Tools recognise certain code constructs and generates 
appropriate logic

• Not all constructs can be implemented in FPGA!
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architecture behavioural of test is

begin

process(x, y)

begin

-- compare to truth table

if ((x='1') and (y='1')) then

F <= '1’;

else

F <= '0’;

end if;

end process;

G <= x or y;

end behavioural;

library ieee;

use ieee.std_logic_1164.all;

entity test is

port( 

x: in std_logic;

y: in std_logic;

F: out std_logic; 

G: out std_logic);

end test;  

Must write code with

understanding of how 

it will be implemented. 

EXAMPLE

• Can also enter code via schematic entry: 

• Easier to navigate, but not vendor independent

• Will there ever be a standard graphical programming language?
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HOW TO YOU KNOW IT WORKS?

• Simulate design extensively!

• Much quicker than debugging inside the FPGA
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TESTBENCH SUITE“Ev n        y”
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TESTBENCH SUITEClock-by-clock summary

End-of-event summary
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DESIGNING LOGIC WITH FPGAS

• High level Description of Logic Design (HDL)

• Synthesise into a Netlist

• Boolean Logic Representation

• Target FPGA Device 

• Translate

• Mapping

• Routing

• Bit File for FPGA
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CONFIGURING AN FPGA

• Millions of SRAM cells holding LUTs and Interconnect Routing

• Volatile Memory: Lose configuration when board power is turned off.

• Keep bit patterns describing the SRAM cells in non-Volatile Memory
e.g. PROM or memory card

• Configuration
takes ~ secs

SRAM

Configuration data in

Configuration data out

= I/O pin/pad

= SRAM cell
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I  DOESN’  WORK:  HOW  O DEBUG

• Simulate, simulate & simulate again!

• Much quicker than debugging inside the FPGA

• Route out signal to periphery

• Few debug pins always handy

• Can connect UART for uC debug (StdIn/StdOut)

• Use chipscope

• Rebuild design with embedded logic analyser

• Can be a bit like quantum mechanics

• If you look (i.e. make a measurement) your code can behave differently

• Chipscope presence can affect the original design
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FLOORPLAN OF FIRMWARE IN MP7
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FLOORPLAN OF FIRMWARE IN MP7
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MGTs and DAQ buffers

MGTs and DAQ buffers
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WHEN & WHY SHOULD I 
(NOT) USE AN FPGA?

• FPGAs are expensive (high-end £10k-100k cf. £100)

• FPGAs are power-hungry

• Programming FPGAs is like designing logic circuits not like programming 
sequential microcontrollers

• Large firmware build-times are tens of hours or days 

• Floating-point ops and iterative algorithms awkward in FPGAs (That said, you 
“c n r  ”         c n,   ,  f c  r  ,    c n      n )

• FPGAs best for high through-put, low- and/or fixed-latency operations
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CONCLUSION

• FPGAs are intrinsically parallel

• Modern FPGAs are exceptionally powerful

• FPGAs are a monumental PAIN IN THE BACKSIDE to program

• Partly due to the clunky, verbose HDLs

• Mainly due to the difficulty of conceptualizing massively parallel logic and 
pipelined logic

• Get them right and you can do magic

• Get them wrong and you unleashed a world of pain on yourself
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THE FUTURE OF THE FPGA?

• Heterogenous computing on chip

• But is it suitable for our typical 

applications in particle physics?

• Is it suitable for future applications? 

• Hardware Triggers? Probably not –

designed as co-processor

• Accelerated HLTs? Maybe – but GPUs 

  r    k  y…
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THANK YOU
Any questions?
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UP AGAINS   HE SPEED OF LIGH …

• Wait for the signal to 
propagate

• “S  -of-  g c”    r  c 

• Limits clock speed

• Do less each clock-cycle

• Compensated for by much 
higher clock speeds
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