
AN INTRODUCTION TO

FIELD PROGRAMMABLE
GATE ARRAYS

UK Advanced Instrumentation Course 2022

Andrew W. Rose, Imperial College London

awr01@imperial.ac.uk

mailto:awr01@imperial.ac.uk

WHAT THIS LECTURE IS (AND WHAT IT IS NOT)

• This lecture is a somewhat light-hearted introduction to what FPGAs are, and
why they are both brilliant and horrible

• Unfortunately, 1 hour does not give time to go into any depth – several
months of hands-on work would be more realistic

2

RECALL FROM
TRIGGER & DAQ LECTURES

3

RECALL FROM
TRIGGER & DAQ LECTURES

S … I r y fy n …

4

A NOTE ON TIMESCALES

• At 40MHz BX rate, a 4GHz CPU could

perform 100 CPU operations (not

enough to be useful) before having to

pass to the next core

• Compare that to the O(10M) detector

channels

• What technology can we use?

5

PROGRAMMABLE DEVICES

• Application-specific integrated circuits

(ASICs): optimised for fast processing,

design encoded into silicon

• “Pr gr ASICS”:

Field-programmable gate arrays (FPGAs)

6

AN ASIDE: THE HISTORY OF ELECTRONICS

• Digital electronics really started with the advent of the thermionic valve
(c q y, “v c ”)

7

THE HISTORY OF ELECTRONICS

Valve

transistors

8

THE HISTORY OF ELECTRONICS

Valve

transistors

First

solid-state

transistors

9

THE HISTORY OF ELECTRONICS

Valve

transistors

Solid-state

transistors

First

solid-state

transistors

10

THE HISTORY OF ELECTRONICS

First

multi-transistor

silicon

11

THE HISTORY OF ELECTRONICS

First

multi-transistor

silicon

Packaged

Logic

12

THE HISTORY OF ELECTRONICS

First

multi-transistor

silicon

Packaged

Logic

“M n ” r c r

board

13

ASICS

Application Specific Integrated

Circuit (ASIC)

APV25 - Imperial

College, London

14

ASICS

Application Specific Integrated

Circuit (ASIC)

$

Qty

ASIC

APV25 - Imperial

College, London

15

ASICS

Application Specific Integrated

Circuit (ASIC)

$

Qty

ASIC

Off-the-shelf

device

APV25 - Imperial

College, London

16

TWO PHILOSOPHIES: SPACE VS. TIME
Have each operation performed by

dedicated logic
and

let signal propagate as a wave
through the logic

17

Combinatorial

TWO PHILOSOPHIES: SPACE VS. TIME
Have each operation performed by

dedicated logic
and

let signal propagate as a wave
through the logic

18

Combinatorial

Fast, but messy, hard to

understand, not scalable and

low throughput

TWO PHILOSOPHIES: SPACE VS. TIME
Have each operation performed by

dedicated logic
and

do that same operation
on every clock cycle

19

Pipelined/Parallel

Slightly slower, but clean, easy

to understand, scalable and

high throughput

TWO PHILOSOPHIES: SPACE VS. TIME
Have each operation performed by

dedicated logic
and

do that same operation
on every clock cycle

Have each operation performed by
the same logic

performing
a different operation
on every clock cycle

SequentialPipelined/Parallel

20

TWO PHILOSOPHIES: SPACE VS. TIME
Have each operation performed by

dedicated logic
and

do that same operation
on every clock cycle

Have each operation performed by
the same logic

performing
a different operation
on every clock cycle

SequentialPipelined/Parallel

A debate as old as

electronic computing itself

21

TWO PHILOSOPHIES: SPACE VS. TIME
Have each operation performed by

dedicated logic
and

do that same operation
on every clock cycle

Have each operation performed by
the same logic

performing
a different operation
on every clock cycle

“ r r c c ng r q r r g n nk ng n

about numerical analysis and data management in order to secure efficient use.

In an environment which has represented the absence of the need to think as the

 g v r , c v n g ”

Daniel Slotnick, 1967

SequentialPipelined/Parallel

22

AND HE S ORY DIVERGES…

Programmable Array Logic Microprocessor

Pack entire logic

circuits in a chip

Perform all logical operations in

one location, but sequentially

SequentialPipelined/Parallel

23

AND HE S ORY DIVERGES…

Programmable Array Logic Microprocessor

Pack entire logic

circuits in a chip

Perform all logical operations in

one location, but sequentially

Limited further

discussion of

microprocessors

SequentialPipelined/Parallel

24

SUM-OF-PRODUCTS THEOREM

• Any Boolean operation may be expressed as

the OR of AND operations (Sum of products form)

• Or

the AND of OR operations (Product of sums form)

25

PROGRAMMABLE LOGIC DEVICES
(PLDS)

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

Unprogrammed

26

PROGRAMMABLE LOGIC DEVICES
(PLDS)

Programmed

27

PROGRAMMABLE LOGIC DEVICES
(PLDS)

• Originally one-time programmable

• Later field reprogrammable

• W ? B r ny PLD …

28

COMPLEX PLDS (CPLDS)

29

PROGRAMMABLE INTERCONNECT MATRIX

30

AN ALTERNATIVE APPROACH

• Why bother with the complexity of the PLD cell?

• Replace the PLD cell with a simple SRAM:

• Data- n c “ r ”

• Outputs the preloaded value for a given input

31

AN ALTERNATIVE APPROACH

• Why bother with the complexity of the PLD cell?

• Replace the PLD cell with a simple SRAM:

• Data- n c “ r ”

• Outputs the preloaded value for a given input

The Field Programmable Gate Array

(FPGA)

32

FIELD PROGRAMMABLE GATE
ARRAYS (FPGAS)

• ‘S ’ Pr gr L g c
Blocks

• Massive Fabric of
Programmable Interconnects

33

EVOLUTION OF
FEATURES IN

FPGAS

34

EVOLUTION OF
FEATURES IN

FPGAS

Who wants to waste all the LUTs as RAM?

35

EVOLUTION OF
FEATURES IN

FPGAS

Who wants to waste all the LUTs for

multiplication?

Big chips need dedicated clocking!

36

EVOLUTION OF
FEATURES IN

FPGAS

37

EVOLUTION OF
FEATURES IN

FPGAS

Who wants to waste LUTs AND re-invent

industry-standard blocks?

38

EVOLUTION OF
FEATURES IN

FPGAS

Who wants to waste LUTs AND re-invent

industry-standard blocks?

39

A NOTE ON I/O

• Traditionally, many hundreds of general-purpose pins (Gen I/O) up to a few
hundred MHz

• Latest generation Gen I/O up to 1.8Gbps

• Programmable logic standards

• Since 2002, FPGAs have been adding dedicated Multi-gigabit transceivers

• Arms race - Ever more and ever faster

40

COMBINATORIAL
LOGIC BLOCK

41

COMBINATORIAL
LOGIC BLOCK

• Registers on the output of every cell

• Perfect for pipelined logic

42

INTEGRATED DIGITAL SIGNAL PROCESSING

43

INTEGRATED DIGITAL SIGNAL PROCESSING

• So many registers

• Perfect for pipelined logic

44

BIGGES XILINX “ULTRASCALE+” DEVICES

• Upwards of 2million logic cells

• All clocked at up to 500MHz

• Up to O(1015) operations/second

• 1 PetaBOp

• Upwards of 6000 DSPs

• All pipelined

• Fully programmable

45

BIGGES XILINX “ULTRASCALE+” DEVICES

• Upwards of 2million logic cells

• All clocked at up to 500MHz

• Up to O(1015) operations/second

• 1 PetaBOp

• Upwards of 6000 DSPs

• All pipelined

• Fully programmable

4.2 Tb/s!!!!

46

BIGGES XILINX “ULTRASCALE+” DEVICES

• Upwards of 2million logic cells

• All clocked at up to 500MHz

• Up to O(1015) operations/second

• 1 PetaBOp

• Upwards of 6000 DSPs

• All pipelined

• Fully programmable

• So what is the catch?

4.2 Tb/s!!!!

47

FPGAS: WHA ’S HE CA CH?

• Incredibly hard to program efficiently

• Thinking in a parallel, pipelined-fashion is exceptionally difficult

• A handful of real experts in CMS

• Efficient use depends on efficiently structured data

48

FPGAS: WHA ’S HE CA CH?

• Incredibly hard to program efficiently

• Thinking in a parallel, pipelined-fashion is exceptionally difficult

• A handful of real experts in CMS

• Efficient use depends on efficiently structured data

49

“ r r c c ng r q r r g n nk ng n

about numerical analysis and data management in order to secure efficient use.

In an environment which has represented the absence of the need to think as the

 g v r , c v n g ”

Daniel Slotnick, 1967

R
e

c
a

ll:

FPGAS: WHA ’S HE CA CH?

• Incredibly hard to program efficiently

• Thinking in a parallel, pipelined-fashion is exceptionally difficult

• A handful of real experts in CMS

• Efficient use depends on efficiently structured data

• The chip is just the start – needs to be attached to something

• You are also responsible for the infrastructure

50

HOW TO PRESERVE YOUR
SANITY USING FPGAS

• Keep your data-flow fully flow-forwards

• No iterations

• or at least

• Flatten your loops

51

PROTOTYPE CMS TRACKING TRIGGER:
KALMAN FILTER

52

PROTOTYPE
CMS

TRACKING
TRIGGER:
KALMAN

FILTER

53

PROTOTYPE CMS TRACKING TRIGGER:
KALMAN FILTER

The maths is a relatively simple part of a more complex whole

54

PROTOTYPE CMS TRACKING TRIGGER:
KALMAN FILTER

Kalman Filter is iterative

55

PROTOTYPE CMS TRACKING TRIGGER:
KALMAN FILTER

Kalman Filter must handle combinatorics

56

PROTOTYPE CMS TRACKING TRIGGER:
KALMAN FILTER

Kalman Filter data-flow is data-dependent

57

AN ASIDE ON HIGH-LEVEL SYNTHESIS

• Due to an arbitrary decision by DoE/DARPA/U.S. Govt, FPGA vendors moved
C->FPGA compilers from a curiosity to a top-priority

• Reinforced by push for heterogeneous, energy-efficient computing

• Flattens loops, deals with pipelining for you

• Very simple to get started

• “H rr , c n g r f r r ng f r r ”

• From practical experience

• We see very inefficient usage of resources

• H r n r n “ c r n ”

• Requires many pre- r c r r c v n r c c “ y n ”

• So, how do you program massively parallelized devices efficiently?

58

HARDWARE DESCRIPTION LANGUAGES

• Need a language to describe hardware

• Novelly – c “H r r D cr n L ng g ” (HDL)

• Also called FIRMWARE

• Two popular languages are VHDL , VERILOG

• E y r rn ng… H r r!

59

HARDWARE DESCRIPTION LANGUAGES

• Describe Logic as collection of Processes operating in Parallel

• Language Constructs for Synchronous Logic

• Compiler (Synthesis) Tools recognise certain code constructs and generates
appropriate logic

• Not all constructs can be implemented in FPGA!

60

architecture behavioural of test is

begin

process(x, y)

begin

-- compare to truth table

if ((x='1') and (y='1')) then

F <= '1’;

else

F <= '0’;

end if;

end process;

G <= x or y;

end behavioural;

library ieee;

use ieee.std_logic_1164.all;

entity test is

port(

x: in std_logic;

y: in std_logic;

F: out std_logic;

G: out std_logic);

end test;

Must write code with

understanding of how

it will be implemented.

EXAMPLE

• Can also enter code via schematic entry:

• Easier to navigate, but not vendor independent

• Will there ever be a standard graphical programming language?

61

HOW TO YOU KNOW IT WORKS?

• Simulate design extensively!

• Much quicker than debugging inside the FPGA

62

63

TESTBENCH SUITE“Ev n y”

64

TESTBENCH SUITEClock-by-clock summary

End-of-event summary

65

DESIGNING LOGIC WITH FPGAS

• High level Description of Logic Design (HDL)

• Synthesise into a Netlist

• Boolean Logic Representation

• Target FPGA Device

• Translate

• Mapping

• Routing

• Bit File for FPGA

66

CONFIGURING AN FPGA

• Millions of SRAM cells holding LUTs and Interconnect Routing

• Volatile Memory: Lose configuration when board power is turned off.

• Keep bit patterns describing the SRAM cells in non-Volatile Memory
e.g. PROM or memory card

• Configuration
takes ~ secs

SRAM

Configuration data in

Configuration data out

= I/O pin/pad

= SRAM cell

67

I DOESN’ WORK: HOW O DEBUG

• Simulate, simulate & simulate again!

• Much quicker than debugging inside the FPGA

• Route out signal to periphery

• Few debug pins always handy

• Can connect UART for uC debug (StdIn/StdOut)

• Use chipscope

• Rebuild design with embedded logic analyser

• Can be a bit like quantum mechanics

• If you look (i.e. make a measurement) your code can behave differently

• Chipscope presence can affect the original design

68

FLOORPLAN OF FIRMWARE IN MP7
69

FLOORPLAN OF FIRMWARE IN MP7

C
o

m
m

u
n

ic
a

ti
o

n
D

A
Q

MGTs and DAQ buffers

MGTs and DAQ buffers

70

WHEN & WHY SHOULD I
(NOT) USE AN FPGA?

• FPGAs are expensive (high-end £10k-100k cf. £100)

• FPGAs are power-hungry

• Programming FPGAs is like designing logic circuits not like programming
sequential microcontrollers

• Large firmware build-times are tens of hours or days

• Floating-point ops and iterative algorithms awkward in FPGAs (That said, you
“c n r ” c n, , f c r , c n n)

• FPGAs best for high through-put, low- and/or fixed-latency operations

71

CONCLUSION

• FPGAs are intrinsically parallel

• Modern FPGAs are exceptionally powerful

• FPGAs are a monumental PAIN IN THE BACKSIDE to program

• Partly due to the clunky, verbose HDLs

• Mainly due to the difficulty of conceptualizing massively parallel logic and
pipelined logic

• Get them right and you can do magic

• Get them wrong and you unleashed a world of pain on yourself

72

THE FUTURE OF THE FPGA?

• Heterogenous computing on chip

• But is it suitable for our typical

applications in particle physics?

• Is it suitable for future applications?

• Hardware Triggers? Probably not –

designed as co-processor

• Accelerated HLTs? Maybe – but GPUs

 r k y…

73

THANK YOU
Any questions?

74

UP AGAINS HE SPEED OF LIGH …

• Wait for the signal to
propagate

• “S -of- g c” r c

• Limits clock speed

• Do less each clock-cycle

• Compensated for by much
higher clock speeds

75

	Slide 1: An Introduction to Field Programmable Gate Arrays
	Slide 2: What this lecture is (and what it is not)
	Slide 3: Recall From Trigger & DAQ lectures
	Slide 4: Recall From Trigger & DAQ lectures
	Slide 5: A Note on timescales
	Slide 6: Programmable devices
	Slide 7: An aside: The history of electronics
	Slide 8: The history of electronics
	Slide 9: The history of electronics
	Slide 10: The history of electronics
	Slide 11: The history of electronics
	Slide 12: The history of electronics
	Slide 13: The history of electronics
	Slide 14: ASICs
	Slide 15: ASICs
	Slide 16: ASICs
	Slide 17: Two philosophies: Space vs. Time
	Slide 18: Two philosophies: Space vs. Time
	Slide 19: Two philosophies: Space vs. Time
	Slide 20: Two philosophies: Space vs. Time
	Slide 21: Two philosophies: Space vs. Time
	Slide 22: Two philosophies: Space vs. Time
	Slide 23: And the story diverges…
	Slide 24: And the story diverges…
	Slide 25: Sum-of-products theorem
	Slide 26: Programmable Logic Devices (PLDs)
	Slide 27: Programmable Logic Devices (PLDs)
	Slide 28: Programmable Logic Devices (PLDs)
	Slide 29: Complex PLDs (CPLDs)
	Slide 30: Programmable Interconnect matrix
	Slide 31: An alternative approach
	Slide 32: An alternative approach
	Slide 33: Field Programmable Gate Arrays (FPGAs)
	Slide 34: Evolution of features in FPGAs
	Slide 35: Evolution of features in FPGAs
	Slide 36: Evolution of features in FPGAs
	Slide 37: Evolution of features in FPGAs
	Slide 38: Evolution of features in FPGAs
	Slide 39: Evolution of features in FPGAs
	Slide 40: A note on I/O
	Slide 41: Combinatorial Logic Block
	Slide 42: Combinatorial Logic Block
	Slide 43: Integrated Digital Signal Processing
	Slide 44: Integrated Digital Signal Processing
	Slide 45: Biggest Xilinx “Ultrascale+” Devices
	Slide 46: Biggest Xilinx “Ultrascale+” Devices
	Slide 47: Biggest Xilinx “Ultrascale+” Devices
	Slide 48: FPGAs: What’s the Catch?
	Slide 49: FPGAs: What’s the Catch?
	Slide 50: FPGAs: What’s the Catch?
	Slide 51: How to preserve your sanity using FPGAs
	Slide 52: Prototype CMS Tracking Trigger: Kalman Filter
	Slide 53: Prototype CMS Tracking Trigger: Kalman Filter
	Slide 54: Prototype CMS Tracking Trigger: Kalman Filter
	Slide 55: Prototype CMS Tracking Trigger: Kalman Filter
	Slide 56: Prototype CMS Tracking Trigger: Kalman Filter
	Slide 57: Prototype CMS Tracking Trigger: Kalman Filter
	Slide 58: An aside on High-Level Synthesis
	Slide 59: Hardware Description Languages
	Slide 60: Hardware Description Languages
	Slide 61: Example
	Slide 62: How to you know it works?
	Slide 63
	Slide 64: Testbench Suite
	Slide 65: Testbench Suite
	Slide 66: Designing Logic with FPGAs
	Slide 67: Configuring an FPGA
	Slide 68: It doesn’t work: How to debug
	Slide 69: Floorplan of firmware in MP7
	Slide 70: Floorplan of firmware in MP7
	Slide 71: When & why should I (not) use an FPGA?
	Slide 72: Conclusion
	Slide 73: The Future of the FPGA?
	Slide 74: Thank you
	Slide 75: Up against the speed of light…

