

June 2023

Advanced UK Instrumentation Training 2022

Diamond Detectors

Alexander Oh University of Manchester

Advanced UK Instrumentation Training 2022

Part

Part 2

Outline

- Diamond basics and detector principle
- Diamond strip and pixel detectors
- Radiation Hardness
- 3D Diamond detectors
- Current and future diamond detector installations

ors

Thanks for the material from the RD42 and ADAMAS collaborations!

PART 1

MANCHESTER

- Introduction to Diamond detectors
 - properties
 - principle of operation
- Strip and Pixel detectors
- Radiation tolerance
- High rate capability

1

Challenges Ahead

ersity	MANCHESTER 1824			
Viulla		Diamond	Silicon	
Ę	Band Gap [eV]	5.5	1.1	
	Average Ionisation Density for MIP [eh/µm]	36	81	current

7

versity hester			10
	Diamond	Silicon	
F Band Gap [eV]	5.5	1.1	
Average Ionisation Density for MIP [eh/µm]	36	81	current
Displacement Energy [eV]	43	25	
Thermal Conductivity [W/cm.K]	10-20	1.5	Room temperature
Atomic Number	6	14	Tissue equivalence

/ersity hester				11
		Diamond	Silicon	
^É Ba	nd Gap [eV]	5.5	1.1	
Aver	age Ionisation	36	81	current
Density	/ for MIP [eh/µm]			→ Lower signal
Displa	icement Energy [eV]	43	25	
Thern	nal Conductivity [W/cm.K]	10-20	1.5	Room temperature
Ato	omic Number	6	14	Tissue equivalence
Ele	ctron Mobility [cm²/V.s]	1900-3800	1350	Fast signal
Hole N	lobility [cm ² /V.s]	2300-4500	480	J

Natural and synthetic diamond

The University of Manchester Natural diamonds have a high defect concentration

- Grow in different structure to synthetic diamonds
- Compete with jewellery market

MANCHESTER

There are radiation sensors using natural diamond

Diamond

- 1941 Diamond as particle detector (Stetter)
- 1953- CVD process, synthesis of diamond (Eversole)
- ~1980 polycrystalline CVD diamond.
- 1994 first diamond strip detector
- 1996 first diamond pixel detector
- 2011 first 3D diamond detector

 Chemical Vapour Deposition (CVD) of diamond in the graphit phase space.

Η

- Hydrogen terminated substrate surface
- Methan and Hydrogen gas are heated with microwaves to form a plasma
- Η Η H• H• H-C Ĥ Η Η Η Η Η Η Η Η Η Η Η Η Η

Radicals form

 Hydrogen atoms are replaced with Carbon

- SP2 bonds (graphite) are weaker then SP3 bonds (diamond)
- Hydrogen radicals will etch away graphite, but leave diamond
- A diamond film is grown

Development of CVD Diamond for detector applications

- Today two <u>main manufacturers</u> of detector grade diamond
 - ElementSix Ltd
 - Iarge polycrystalline wafers
 - single crystal diamonds
 - II-VI Semiconductors
 - Iarge polycrystalline wafers
 - relatively recent entry
- Alternative sources
 - Diamond on Iridium (Dol) (Audiatec, Germany)
 - Hetero-epitaxially grown -> large area
 - Highly oriented crystallites.

June 2023

Advanced UK Instrumentation Training 2022

Principle of detector operation

MANCHESTER

 MIP signal is measured, expressed in charge collection distance defined as δ[μm]=Q_m[e] / 36 [e/μm]

- More accurately the "Schubweg" (λ)
 - Relation between
 MIP signal efficiency ε,
 "collection distance" δ,
 and "Schubweg" λ:

(
$$\lambda$$
). $\epsilon = \frac{Q_m}{Q_0}$
 $\delta = Q_m/36 \ [e\mu m^{-1}]$
 $\epsilon = 2\lambda [1 - \lambda/d \cdot (1 - \exp(-d/\lambda))]$

Development of CVD Diamond for detector applications

- Impressive progress over the last 20 years.
- Current state of the art for polycrystalline CVD diamond
 δ ~ 250 μm (~9000 e/MIP) commercially available.

Development of CVD Diamond for detector applications

- Impressive progress over the last 20 years.
- Single crystal diamond ~ 100% efficient
- Diamond on iridium ~ 97% efficient

Strip Detectors

- First position sensitive diamond detectors where strip detectors.
- Many prototypes tested starting around 1994

• The charge signal is picked up by the strip(s) next to the particle track.

• The charge is shared by multiple strips if the charge collection is incomplete.

• The position of the particle track can be reconstructed by calculating the charge weighted impact point (Center of Gravity)

A Diamond Testbeam Telescope

~10ke mean signal

Residual versus Track Position

The University of Manchester

Uniformity in Charge Collection of CVD Diamonds

Measured with MIPS

•Polycrystalline CVD diamond exhibits nonuniform signal response due to crystallite structure.

•Similar patterns observed as with photon beam measurement

Irradiated Strip Detectors

Proton Irradiation

35% improvement in resolution

The University of Manchester

Pixel Detectors

- Several prototypes of Diamond pixel detectors have been developped and tested since around 1996.
- Read-out chips use ROC (CMS), FE-I4 (ATLAS)
- More recently tested 3D pixel detectors (see later).
- Some historic examples in the following.

•

Diamond Pixel Detectors

ATLAS FE/I Pixels (AI)

- Atlas pixel pitch $50\mu m \times 400\mu m$
- Over Metalisation: Al
- ✦ Lead-tin solder bumping at IZM in Berlin ↓ Indium bumping at UC Davis

CMS Pixels (Ti-W)

- CMS pixel pitch $125\mu m \times 125\mu m$
- ✦ Metalization: Ti/W
- \rightarrow Bump bonding yield \approx 100 % for both ATLAS and CMS devices

June 14, 2004 - Hiroshima, Japan

Recent Advances in Diamond Detector Development (page 19)

Ohio State University

5th Int'l STD Symposium June 14, 2004 - Hiroshima, Japan Advanced UK Instrumentation Training 2022

Recent Advances in Diamond Detector Development (page 20)

Harris Kagan **Ohio State University** June 2023

3

Advanced UK Instrumentation Training 2022

Ohio State University

The University of Manchester

MANCHESTER

•

Spatial Resolution – Short Direction Number per 33 microns Number per 4 microns σ=14μm 400 200 0 -0.2 -0.1 0 0.1 0.2

Results from Atlas Diamond Pixel Detectors

Small pixel resolution (mm)

- Efficiency = 80%
- Resolution = digital

Spatial Resolution – Long Direction

Results from Atlas Diamond Pixel Detectors

Tommaso Lari (INFN) Alexander Oh (CERN) Norbert Wermes (University Bonn)

- Large track residuals
- Non-uniformity of response qualitatively reproduces by modeling

Radiation Tolerance

MANCHESTER

Tests of Radiation Tolerance

- Irradiate with proton, pions and neutrons.
 - Energies within the expected radiation profile at HL-LHC.
 - HL-LHC fluence requirement about 2e10¹⁶ neq.

	Proton 🛠	Pion 🛠	Neutron🛠
Energy	25MeV – 24GeV	300 MeV	1-10 MeV
Fluence	1.27e16 p cm ⁻²	6e14 π cm ⁻²	1.3e16 n cm ⁻²

Radiation Tolerance: Characterization

- Typical Landau Spectra after irradiation of pCVD.
- For pCVD see reduction of **FWHM / MP** with irradiation.
 - Expected from polycrystalline nature of material!
 - Single crystal material almost flat.

Radiation Tolerance: Characterization

- Resistivity
 - No dose dependence.
 - Due to large bandgap no significant temperature dependence at RT or below.

Radiation Tolerance: Characterization

- Damage factor k is determined for each sample.
- pCVD diamonds are offset by λ₀ to account for initial finite carrier lifetime.
- Final damage factor averaged over all samples.

Radiation Hardness

- Describe radiation damage using Norget-Robinson-Torrens theorem to predict displacements per atom (DPA).
 - (M. Guthoff et al., arXiv:1308.5419)
 - Diamond displacement energy: 43.3 eV
 - Reasonable agreement for E>100MeV.

Radiation Tolerance

24 GeV protons

- $k_{\lambda} = 0.67 \pm 0.04 \times 10^{-18} \text{ cm}^2 \mu \text{m}^{-1}$
- polycrystalline diamond sample offset by $\Phi \sim 5 \times 10^{15}$ to account for existing traps.
- Poly and single crystal diamond show consistent damage constants.

L. Baeni ETHZ Thesis https://www.research-collection.ethz.ch/handle/20.500.11850/222412

Radiation Tolerance

Summary of RD42 irradiation results:

Particle Species	Relative Damage Constant, κ
24 GeV p	1
800 MeV p	1.54 ± 0.13
70 MeV p	2.5 ± 0.4
25 MeV p	4.5 ± 0.6
fast neutrons	4.5 ± 0.5

50

Radiation Tolerance: Comparison to Si

- k factors typically 2-3 times higher for Silicon.
- A comparison to Si needs to take into account:
 - leakage current
 - capacitance
- Possible figure of merit Signal to noise ratio:

High rate capability

High Rate tests

- Tests the pulse height as function of particle rate.
- Test single and poly crystalline diamond.
- Irradiated and un-irradiated.

MANCHESTER

High Rate tests

- single and poly sample irradiated with 5×10¹³ reactor n.
- Tested with 250MeV pions.

Pulse height (AU)

Advanced UK Instru

- Slight rate dependence observed in irradiated single crystal sample.
- No rate dependence observed for irradiated **polycrystalline** sample.

Rate (Hz/cm2)

The University of Manchester

END OF PART 1

- In part 2 next week we look at:
 - 3D Diamond detectors
 - Application of diamond detectors in HEP