
TCAD simulation I
E. Giulio Villani

1Instrumentation Training Lectures, Oxford 30/05/2023



Overview

• Introduction, needs for TCAD simulations

• Transport regimes and related equations

• Discretization techniques: meshing

• Discretization of semiconductor equations: Scharfetter-Gummel technique

• Examples
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Introduction

• TCAD (Technology Computer Aided 
Design) divides into three groups:

• Process simulation, i.e. simulation of 
fabrication process steps (oxidation, 
implantation, diffusion…)

• Device simulation, i.e. simulation of 
the thermal/electrical/optical 
behavior of electronic devices,(IV,CV, 
frequency response…)

• Device modeling, i.e. creating 
compact behavioral models for 
devices for circuit simulation (SPICE, 
Cadence…)

Epitax growth N++ implant P++ implantSiO2 etch
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Introduction

• Reasons why TCAD simulations are 
needed:

• Market demands cycle of design 
to production of 18 months or 
less. Typically 2-3 months 
required for wafer tape out 
implies short time for 
development

• Reduce cost to run experiments 
on new devices and circuits

Shrinking product life cycles in semiconductor industry 

over time
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Introduction

• Main components of semiconductor 
device simulation include description 
of electronic structure, driving forces 
and transport phenomena

• The two kernels of semiconductor 
transport equations and fields that 
drive charge flow are coupled to each 
other and needs solving self-
consistently

Electronic 
structure/lattice 

dynamics

Transport equations Electromagnetic Fields

Device simulation
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Transport regimes

L: device length

le-e: electron-electron scattering length

le-ph: electron-phonon scattering length

: electron wavelength

• Usually only the quasi-static electric fields  
from the solution of Poisson’s equation are 
necessary for EM solutions

• Transport regime in semiconductors depends 
on length scale

Modern Silicon technology already requires 
tools to describe transport in quantum regime 
[D. K. Ferry and S. M. Goodnick, Transport in Nanostructures, 1997]
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Transport regimes

• Charge carrier dynamics in Si detectors
usually does not require QM

• Semiclassical laws of motions apply

• Drift-diffusion equations are valid, 
provided the electron gas is in thermal 
equilibrium with lattice temperature (Tn = TL)

𝑅~
ℎ

2𝜋

𝛾𝑣

<𝐼>
~ 1.2 𝑛𝑚 𝐼𝑜𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑑𝑖𝑢𝑠 𝑓𝑜𝑟 𝑀𝐼𝑃 𝑖𝑛 𝑆𝑖 (Segre’, Nuclei and 

Particles, Vol. II)

𝑛 =
𝑑𝐸

𝑑𝑥
𝜌

𝐿

𝐸𝑡ℎ

1

𝜋𝑅2𝐿
~2 ∙ 1019 𝑐ℎ𝑎𝑟𝑔𝑒 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑤𝑖𝑡ℎ𝑖𝑛 𝐼𝑜𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑑𝑖𝑢𝑠 𝑎𝑛𝑑

𝑛−1/3~3.6 𝑛𝑚

𝜆 ≤
ℎ

2𝑚𝑒𝑉𝑏

~ ቊ
0.38 𝑛𝑚 @10 𝑉

0.12 𝑛𝑚 @100 𝑉
𝐷𝑒 𝐵𝑟𝑜𝑔𝑙𝑖𝑒 𝑤𝑎𝑣𝑒𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑠

@ 𝑓𝑢𝑙𝑙 𝑑𝑒𝑝𝑙𝑒𝑡𝑖𝑜𝑛

5 Instrumentation Training Lectures, Oxford 30/05/2023



Drift diffusion model 

• The semiconductor equations derived 
from 1st moment of BTE are referred to as 
Drift Diffusion model

• The model consists of Poisson's 
equation, continuity and current density 
equations for electrons and holes

• They express charge and momentum 
conservation

• Their self-consistent solutions are 
obtained via discretization, using finite 
element methods (FEM) 

6

𝐵𝑇𝐸

𝑃𝑜𝑖𝑠𝑠𝑜𝑛

𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑑𝑒𝑛𝑠𝑖𝑡𝑦

𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑖𝑡𝑦
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Discretization and meshing

• The device simulations process consists 
of two steps:

1: The test volume is obtained through 
grid generation  (‘mesh generation’ )

2: Solve the discretized differential 
equations using Finite-Boxes method (box 
integration method) . This method 
integrates PDEs over the test volume.
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• The meshing used in most finite elements 
methods (FEM) relies on Delaunay 
triangulations:

the interior of the circumsphere of each element 
contains no mesh vertices.

• The Delaunay triangulation of a discrete point 
set P in general corresponds to the dual graph 
of the Voronoi diagram for P

the set of all locations x closest to Pi than to any 

other point of the grid

The Delaunay triangulation with all 

the circumcircles and their centres

Discretization and meshing

Connecting the centres of the circumcircles 

produces the Voronoi diagram (in red).
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𝑃𝑖 = 𝑉𝑖

𝑃1 = 𝑉1 + 𝑉5 + 𝑉6

𝑃3 = 𝑉3 + 𝑉5 + 𝑉6

Voronoi boxes do not overlap (each 
circumcircle does not include a point of 
another triangle). Each can be uniquely 
assigned to its corresponding grid points. 

Voronoi boxes do overlap (each circumcircle 
does include a point of another triangle). 
Each cannot be uniquely assigned to its 
corresponding grid points. Wrong volumes 
calculated

• Correct Delaunay triangulation 
guarantees element-volume 
conservation, important in many 
problems (diffusion, charge generation, 
et cetera)

• Delaunay triangulation maximizes the 
minimum angle. 

Discretization and meshing
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• Discretization of equations imposes 
some constraints on spatial and 
temporal mesh size

• Mesh size should be smaller than 
Debye length (i.e. the characteristic 
length for screening of field by 
charges) where charge variations in 
space have to be resolved

𝐿𝐷 =
𝜀𝑠𝑘𝐵𝑇

𝑒2𝑁
𝐷𝑒𝑏𝑦𝑒 𝑙𝑒𝑛𝑔𝑡ℎ

𝑁 = 1013[𝑐𝑚−3]: 𝐿𝐷 ≈ 1.3 𝑢𝑚 @𝑇 = 300 𝐾
𝑁 = 1017[𝑐𝑚−3]: 𝐿𝐷 ≈ 13 𝑛𝑚 @𝑇 = 300 𝐾
𝑁 = 1019[𝑐𝑚−3]: 𝐿𝐷 ≈ 1.3 𝑛𝑚 @𝑇 = 300 [𝐾]

Discretization and meshing
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• Also temporal ‘mesh’ size should be 
smaller than the dielectric relaxation 
time tdr (i.e. time it takes to charge 
fluctuations to decay under the field 
they produce)

• Time interval Δ𝑡 bigger than tdr might 
give unrealistic transient results 
(‘oscillations’ in estimated transient 
currents)

𝜏𝑑𝑟~
𝜀𝑠

𝑒𝑁𝜇
𝐷𝑖𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 𝑟𝑒𝑙𝑎𝑥𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒

𝑁 = 1013[𝑐𝑚−3], 𝜇𝑛 ≈ 1400 [𝑐𝑚−3𝑉−1𝑠−1 @𝑇 = 300 𝐾 : 𝜏𝑑𝑟 ≈ 400 𝑝𝑠

𝑁 = 1015[𝑐𝑚−3], 𝜇𝑛 ≈ 1350 [𝑐𝑚−3𝑉−1𝑠−1 @𝑇 = 300 𝐾 : 𝜏𝑑𝑟 ≈ 4.8 [𝑝𝑠]

𝜕Δ𝑛

𝜕𝑡
=

Δ𝑛(𝑡 = 0)

𝑡𝑑𝑟

Δ𝑛 Δ𝑡 = Δ𝑛 0 − Δ𝑡
Δ𝑛(0)

𝑡𝑑𝑟

Discretization and meshing
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Box integration method

• Discretization of Poisson’s and 
continuity equations is done via Box 
Integration method

• The LHS of equations is transformed via 
Gauss’ theorem and integrated over a 
Voronoi box Ωk of point Pk

𝑖

𝑗𝑘

≡ න 𝐷 ∙ 𝑑𝑆 = න 𝜌𝑑𝑉
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• Example of Poisson’s discretization

• Assume that the electric potential is 
linearly varying over each elementary 
domain

𝐿𝑗

𝐿𝑘

𝐿𝑖

𝑖 𝑗

𝑘

𝑑𝑗

𝑑𝑘

𝑑𝑖

𝑖, 𝑗, 𝑘: 𝑛𝑜𝑑𝑎𝑙 𝑖𝑛𝑑𝑖𝑐𝑒𝑠

𝑳𝒊, 𝑳𝒋, 𝑳𝒌: 𝑠𝑖𝑑𝑒 𝑣𝑒𝑐𝑡𝑜𝑟𝑠

𝐿𝑖 , 𝐿𝑗, 𝐿𝑘: 𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 𝑠𝑖𝑑𝑒 𝑣𝑒𝑐𝑡𝑜𝑟𝑠

𝑢 ≔
𝑒

𝑘𝐵𝑇
𝜑: 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙

Box integration method
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• Components of D vector along sides Li,j,k

• Flux of D vector associated to node k:

• Discretization of RHS is obtained by 
multiplying the node value of charge by 
the area of the portion of the Voronoi box

𝐿𝑗

𝐿𝑘

𝐿𝑖

𝑖 𝑗

𝑘

𝑑𝑗

𝑑𝑘

𝑑𝑖

𝑘𝐵𝑇

𝑒
𝜀𝑠

1

𝐿𝑖
𝑢𝑗 − 𝑢𝑘

𝑘𝐵𝑇

𝑒
𝜀𝑠

1

𝐿𝑗
𝑢𝑘 − 𝑢𝑖

𝑘𝐵𝑇

𝑒
𝜀𝑠

1

𝐿𝑘
(𝑢𝑖 − 𝑢𝑗)

𝑘𝐵𝑇

𝑒
𝜀𝑠[

𝑑𝑖

𝐿𝑖
𝑢𝑗 − 𝑢𝑘 + 

𝑑𝑗

𝐿𝑗
𝑢𝑖 − 𝑢𝑘 ]   𝐹𝑙𝑢𝑥 𝑜𝑓 𝐷

Box integration method
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• Summing over all points Pk of Voronoi 
boxes

• Same approach to discretize continuity 
equations for electrons and holes

෍

𝑘

𝐷𝑖𝑘𝐴𝑖𝑘 = 𝜌𝑘𝑉𝑘

෍

𝑘

𝐽𝑛,𝑖𝑘𝐴𝑖𝑘 = 𝑒(𝑅𝑘 +
𝑑

𝑑𝑡
𝑛𝑘)𝑉𝑘

෍

𝑘

𝐽𝑝,𝑖𝑘𝐴𝑖𝑘 = 𝑒(𝑅𝑘 +
𝑑

𝑑𝑡
𝑝𝑘)𝑉𝑘

𝐴𝑖𝑘: 𝑎𝑟𝑒𝑎 𝑜𝑓 𝐾 − 𝑉𝑏𝑜𝑥
𝐷𝑖𝑘: 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛 𝑎𝑙𝑜𝑛𝑔 𝑔𝑟𝑖𝑑 𝑙𝑖𝑛𝑒

Box integration method

𝑖

𝑗𝑘
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Scharfetter-Gummel discretization

• In case of no strong generation-
recombination current density varies little 
within each domain

• Still this implies an exponential 
dependence of electron / hole density 
with position along grid’s edge

• Using previous discretization method 
would require very dense mesh: 
Scharfetter-Gummel technique includes 
such dependence, requiring less grid 
points [D. L. Scharfetter and H. K. Gummel, “Large-signal analysis 
of a silicon read diode oscillator,” IEEE Trans. Electron Devices, vol. ED-

16, pp. 64–77, Jan. 1969].

𝑢 ≔
𝑒

𝑘𝐵𝑇
𝜑 𝐷𝑛 ≔

𝑘𝐵𝑇

𝑒
𝜇𝑛

𝐽𝑛 ≔ 𝑒𝐷𝑛[∇𝑛 − 𝑛∇𝑢]

𝐽𝑛𝑘 ≔ 𝑒𝐷𝑛[
𝑑𝑛

𝑑𝑙𝑘
− 𝑛

𝑑𝑢

𝑑𝑙𝑘
]

from 𝐽𝑛

𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛 𝑎𝑙𝑜𝑛𝑔 𝐿𝑘~ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

𝐿𝑗

𝐿𝑘

𝐿𝑖

𝑖 𝑗

𝑘

𝑑𝑗

𝑑𝑘

𝑑𝑖
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• Assume u varies linearly along the edge 
and current density ≃ constant over the 
domain 

• Define reduced current and assume and 
average diffusion along the edge

• Obtain first order equation in n along 
the edge

Scharfetter-Gummel discretization

𝑢 =
𝑢𝑗 − 𝑢𝑖

𝐿𝑘
𝑙𝑘 + 𝑢𝑖 = 𝑎𝑘𝑙𝑘 + 𝑢𝑖

𝑗𝑛𝑘: =
𝐽𝑛𝑘

𝑒𝐷𝑛𝑘
, 𝐷𝑛𝑘 ≔< 𝐷𝑛𝑖 , 𝐷𝑛𝑗 >

𝑗𝑛𝑘 =
𝑑𝑛

𝑑𝑙𝑘
− 𝑛𝑎𝑘

𝐿𝑗

𝐿𝑘

𝐿𝑖

𝑖 𝑗

𝑘

𝑑𝑗

𝑑𝑘

𝑑𝑖
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• Integrate from node i to node j, i.e. for 
lk=[0, Lk]

• Obtain expression relating potential and 
carriers concentration

Scharfetter-Gummel discretization

න

0

𝐿𝑘

exp(−𝑎𝑘𝑙𝑘) 𝑗𝑛𝑘 = න
0

𝐿𝑘

exp(−𝑎𝑘𝑙𝑘)
𝑑𝑛

𝑑𝑙𝑘
− 𝑛𝑎𝑘 𝑑 𝑙𝑘

= න
0

𝐿𝑘 𝑑

𝑑𝑙𝑘
(exp(−𝑎𝑘𝑙𝑘)𝑛)𝑑𝑙𝑘

𝑗𝑛𝑘
1

𝑎𝑘
(1 − exp( −𝑢𝑗𝑖) = exp(−𝑢𝑗𝑖)𝑛𝑗 − 𝑛𝑖

𝑗𝑛𝑘 = 𝑎𝑘(
𝑛𝑗

exp(𝑢𝑗𝑖)−1
+

𝑛𝑖

exp(−𝑢𝑗𝑖)−1
)

𝐿𝑗

𝐿𝑘

𝐿𝑖

𝑖 𝑗

𝑘

𝑑𝑗

𝑑𝑘

𝑑𝑖
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, 𝑢𝑗𝑖 = 𝑢𝑗 − 𝑢𝑖
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𝑗𝑛𝑘 =
1

𝐿𝑘
(

𝑢𝑗𝑖𝑛𝑗

exp(𝑢𝑗𝑖)−1
−

𝑢𝑖𝑗𝑛𝑖

exp(𝑢𝑖𝑗)−1
)

𝑗𝑛𝑘 =
1

𝐿𝑘
(𝐵(𝑢𝑗𝑖)𝑛𝑗 − 𝐵(𝑢𝑖𝑗)𝑛𝑖) 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝐵 𝑥 : =

𝑥

exp 𝑥 − 1

• Obtain the flux of current density 
relative to node k

• Scharfetter –Gummel discretization 
requires less fine mesh as the exponential 
dependence of carriers concentration is 
included in the discretization scheme

• It also depends on boundary values, i.e. 
2D and 3D cases can be reduced to local 
1D cases

𝐿𝑗

𝐿𝑘

𝐿𝑖

𝑖 𝑗

𝑘

𝑑𝑗

𝑑𝑘

𝑑𝑖

∇ ∙ 𝐽𝑛𝑘

= e𝐷𝑛𝑖

𝑑𝑖

𝐿𝑖
(𝐵(𝑢𝑗𝑘)𝑛𝑗 − 𝐵 𝑢𝑘𝑗)𝑛𝑘 + e𝐷𝑛𝑖

𝑑𝑗

𝐿𝑗
(𝐵(𝑢𝑖𝑘)𝑛𝑖

− 𝐵(𝑢𝑘𝑖)𝑛𝑘)

Scharfetter-Gummel discretization
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• Examples from Synopsys TCAD (more on 
this from N. Owen lectures)

• Beside electrical simulations, simulation 
of processes of device fabrication is 
possible

• Most of the typical fabrication process 
steps can be simulated 

Simulated process steps for LGAD fabrication

p++

P-epi

Nwell-GR Nwell

Simulation examples
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Simulation examples

• High energy implants of ions can be 
simulated, either analytically or via MC

• Creation of defects following implantation can 
be simulated

SIMS and Pearson IV distribution  – 31P

SIMS, Pearson IV distribution and MC run – 11B
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Simulation examples

• At least with As, MC (SRIM) and 
SPROCESS predictions on doping seem 
to agree within ≈ 20%

• Note: SRIM assumes amorphous Si, 
<100> used for SPROCESS, but 1D 

SRIM (Stopping and Range of Ions in Matter, 
http://www.srim.org/)
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• Electrical simulation of a CMOS sensors 
(OVERMOS)

• A TCAD model of fabrication process of 
OVERMOS has been developed to 
investigate and predict the performances 
of the sensor

Simulation examples

Photograph of OVERMOS test structure and simulated cell

Photograph of OVERMOS cell and .gds layout

40um

4
0

u
m
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Simulation examples

• Internal field configuration vs. bias and 
temperature

• DC and AC characteristics can be 
obtained from the simulated model

3D simulated cell
Xsection showing potential 
and depletion  Vbias = 10 V

GND

Vbias

SiPoly to simulate non 
reflective BC

Surface plot of x-field and 
depletion  Vbias = 10 V

T = 300 K
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• Charge collection is simulated using 
laser light injection and compared with 
test results

• Laser beam is 5 x 5 um2  around 4.5 ns 
pulse width, 1064 nm wavelength, 
~ 10 𝑝𝐽

• These values are introduced in the 
simulator

Test setup for charge collection measurement

Simulation examples

Charge is injected via laser at three different locations on cell. Results 
are mirrored to obtain a map of collected charge vs. position
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• Effects of SiO2 reflection and attenuation of 
IR light can be implemented

• Quantum yield of optical generation, 
polarization, tilting, pulse width et cetera 
can all be included in the simulation

• TCAD simulations of non-irradiated
OVERMOS reproduce experimental results,
both in DC and in CC, with maximum
discrepancy of the order of 20%

Simulation examples

Transient of charge collection measurement and simulation
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• Introduction to simulation
• Needs and transport regimes
• Meshing and discretization. Intro to DD 

model discretization. SG method
• Some examples of TCAD simulations: 

process and electrical device 
simulations, charge collection

27
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