TCAD simulation |

E. Giulio Villani




Overview

Introduction, needs for TCAD simulations

Transport regimes and related equations

Discretization techniques: meshing

Discretization of semiconductor equations: Scharfetter-Gummel technique

Examples

GesX UNIVERSITY OF




|ntrOdUCtiOﬂ l-

Epitax growth SiO, etch N** implant P** implant

* TCAD (Technology Computer Aided =
Design) divides into three groups: ‘

* Process simulation, i.e. simulation of
fabrication process steps (oxidation,
implantation, diffusion...)

* Device simulation, i.e. simulation of
the thermal/electrical/optical
behavior of electronic devices,(IV,CV,

frequency response...) ¢
B
* Device modeling, i.e. creating
compact behavioral models for c
devices for circuit simulation (SPICE, NPN

Cadence...)
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Introduction

e Reasons why TCAD simulations are
needed:

* Market demands cycle of design
to production of 18 months or
less. Typically 2-3 months
required for wafer tape out
implies short time for
development

* Reduce cost to run experiments
on new devices and circuits

Wafer starts 0.13 pm
per week

0.18 um

92 93 94 95 96 97 98 99 00 01 02
Time

Shrinking product life cycles in semiconductor industry
over time

e UNIVERSITY OF




Introduction

* Main components of semiconductor
device simulation include description
of electronic structure, driving forces
and transport phenomena

* The two kernels of semiconductor
transport equations and fields that
drive charge flow are coupled to each
other and needs solving self-
consistently

Electronic
structure/lattice
dynamics

|

 —
)

Transport equations

Electromagnetic Fields

Device simulation




Transport regimes

== Le-ph L1 P L1, P
L<A L<l,, L1,
Transport regime (Quantum Ballistic Fluid Fluid Diffusive
Scattering Rare Rare e—e (Many), e—ph (Few) Many
.“l‘ldt‘l:
Drrift-diffusion
* Usually only the quasi-static electric fields Hydrodynamic
. . ) . Monte Carlo
from the solution of Poisson’s equation are
necessary for EM solutions Schrodinger equation
Green's function
. . . Applications MNanowires, Ballistic Present time Present time Older ICs
* Transport regime in semiconductors depends superlattices | transistor ICs ICs der 1
on length scale
L: device length
L ] l...: electron-electron scattering length
Modern Silicon technology already requires lo.on: €lectron-phonon scattering length

tools to describe transport in quantum regime A: electron wavelength

[D. K. Ferry and S. M. Goodnick, Transport in Nanostructures, 1997]
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Transport regimes

h yv

R~E$N 1.2 [nm] Ionization radius for MIP in Si (Segre’, Nuclei and
Particles, Vol. Il)
. c e e dE. L 1 15 , . o ,
* Cha rge carrier dynamlcs in Si detectors =P pI ~2-10%° charge density within Ionization radius and
. h
usually does not require QM ‘ n=1/3~3.6[nm]

* Semiclassical laws of motions apply
1< h 0.38 [nm]@10 V

= J2mev, {0.12 [nm]@100 V

@ full depletion

De Broglie wavelength of carriers

* Drift-diffusion equations are valid,
provided the electron gas is in thermal
equilibrium with lattice temperature (T, =T)




Drift diffusion model

* The semiconductor equations derived
from 15t moment of BTE are referred to as
Drift Diffusion model

* The model consists of Poisson's
equation, continuity and current density
equations for electrons and holes

* They express charge and momentum
conservation

* Their self-consistent solutions are
obtained via discretization, using finite
element methods (FEM)

Of +u-Vef + 3 Vil = C[/]

div(z -gradv) =q-(n—p+ Ny — Np

on

d- L —_ B — i
IV I.rr rf di‘ rir

divd, +q-

Jon=q-n-pp-E+q-D,-gradn

J}.r =q-pjip- E—q- Ur., - grad g

BTE

Poisson

Continuity

Current density
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Discretization and meshing

* The device simulations process consists
of two steps:

1: The test volume is obtained through
grid generation (‘mesh generation’)

2: Solve the discretized differential
equations using Finite-Boxes method (box
integration method) . This method
integrates PDEs over the test volume.
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Discretization and meshing

* The meshing used in most finite elements
methods (FEM) relies on Delaunay
triangulations:

the interior of the circumsphere of each element
contains no mesh vertices.

 The Delaunay triangulation of a discrete point

set P in general corresponds to the dual graph
of the Voronoi diagram for P

the set of all locations x closest to P; than to any
other point of the grid

The Delaunay triangulation with all '.I e §
the circumcircles and their centres | A\

Ipi(Pprle= 3x
xcfl A
Ix—xi| =[x —xj] ¥V PP € Ppy A
|x— x| < [x —x¢| VP €Ppr. P € Po

Connecting the centres of the circumcircles
produces the Voronoi diagram (in red).

0; ={x | |x—xﬁ|¢_2|x—xj| YV i#j, x €}




Discretization and meshing

e Correct Delaunay triangulation
guarantees element-volume
conservation, important in many
problems (diffusion, charge generation,
et cetera)

* Delaunay triangulation maximizes the
minimum angle.

P,

Voronoi boxes do not overlap (each

circumcircle does not include a point of

another triangle). Each can be uniquely P &

assigned to its corresponding grid points. vv
3

Voronoi boxes do overlap (each circumcircle
does include a point of another triangle).
Each cannot be uniquely assigned to its
corresponding grid points. Wrong volumes
calculated

P1=V1+V5+V6

Py

P; =V3+ Ve + Vg

e UNIVERSITY OF

“2) OXFORD




Discretization and meshing

Discretization of equations imposes
some constraints on spatial and
temporal mesh size

Mesh size should be smaller than
Debye length (i.e. the characteristic
length for screening of field by
charges) where charge variations in
space have to be resolved

W
S
gail
W
SN
g

—

RER
S

ekgT
= |22Zn Debye length

Lp

N = 103[ecm™3]: Ly ~ 1.3 [um]@T = 300 [K]
N =10Y[cm™3]: Lp = 13 [nm]@T = 300 [K]
N = 10'%[cm~3]: L, ~ 1.3 [nm]@T = 300 [K]




Discretization and meshing

SS . . . .
Tqr~—— Dielectric relaxation time
eNu

N = 103[cm™3], u, = 1400 [[em™3V~1s7t|@T = 300 [K]: 74, ~ 400 [ps]
* Also temporal ‘mesh’ size should be

smaller than the dielectric relaxation N = 10"[cm™], uy, » 1350 [[em™*V ™ s 7 |@T = 300 [K]: 74, ~ 4.8 [ps]
time tg, (i.e. time it takes to charge
fluctuations to decay under the field

they produce) 0hn _ An(t =0)

ot tar

_ _ ., An(0)
* Time interval At bigger than t , might An (At) = An (0) — At o

give unrealistic transient results
(‘oscillations’ in estimated transient
currents)
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Box integration method

* Discretization of Poisson’s and
continuity equations is done via Box

Integration method
div (e -grad) =q-(n—p+ N4 —Np) = f D-dS = jpdV

* The LHS of equations is transformed via

Gauss’ theorem and integrated over a divl,—q- o =q R
Voronoi box Q, of point P,
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Box integration method

* Example of Poisson’s discretization

i,j, k:nodal indices

L; Lj, Ly: side vectors

e Assume that the electric potential is L;, Lj, Ly: magnitude side vectors
linearly varying over each elementary

H e
domain u: @:normalized potential

" kT




Box integration method

 Components of D vector along sides L
* Flux of D vector associated to node k:

* Discretization of RHS is obtained by
multiplying the node value of charge by
the area of the portion of the Voronoi box
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Box integration method

D;y:projection along grid line

_ A:.:areaof K —Vbox
E DiAix = prVk le U
k

* Summing over all points P, of Voronoi
boxes

d
z]n,ikAik = e(Ry + Enk)vk
%

e Same approach to discretize continuity
equations for electrons and holes

d
z]p,ikAik =e(Ry + Epk)vk
X
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Scharfetter-Gummel discretization

* In case of no strong generation- : :
recombination current density varies little L L, J
within each domain

Jo=qn- -y, E+q-D, gradn

 Still this implies an exponential
dependence of electron / hole density J3,=q-p-up-E—q-D,- gradz
with position along grid’s edge

e _ kgT

u = ks T Dy = Hn

e

* Using previous discretization method
would require very dense mesh:
Scharfetter-Gummel technique includes I
such dependence, requiring less grid

pOintS [D. L. Scharfetter and H. K. Gummel, “Large-signal analysis
of a silicon read diode oscillator,” IEEE Trans. Electron Devices, vol. ED- . dn du

16, pp. 64-77, Jan. 1969] . ]nk '_

eD,,[Vn — nVu] from],
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Scharfetter-Gummel discretization

e Assume u varies linearly along the edge
and current density =~ constant over the
domain

 Define reduced current and assume and
average diffusion along the edge

* Obtain first order equation in n along
the edge

u] —U;
u= Iy +u; = aply +y;
Ly
gt = K D,,.=<D,;, D,; >
nk- eDny’ nk ni» “nj
dn




Scharfetter-Gummel discretization

Ly Ly
* Integrate from node i to node j, i.e. for f exp(—agly) jnx = j exp(—aklk)<ﬂ —nay | d
|k=[0, Lk] 0 0 dlk

Ly d
= | or Cwadma,
* Obtain expression relating potential and 0
carriers concentration

. 1
ke e (L= exp( =) = exp(—wg)ny —m Wi = Uy — U,

nj n;

)

ik = a +
Jnk k(exp(uji)—l exp(—u;;)-1




Scharfetter-Gummel discretization

e Obtain the flux of current density
relative to node k 1

. Ujin; Ui n;
Jnk

Ly (eXp(uji)_l exp(u;;)-1

* Scharfetter -Gummel discretization ,

requires less fine mesh as the exponential jnie = 7= (BQyi)nj — B(wij)ny) - Bernoulli function B(x): = exp(;:ﬁ
dependence of carriers concentration is k

included in the discretization scheme

V- ok
* It also depends on boundary values, i.e. d; d
’ = eDy; — (B(uj)n; — B(uy; + eD... =L (B(u:)n:
2D and 3D cases can be reduced to local eDni 7, (B, (e)mc) + €D L; (B (e,
1D cases — B(uki)ng)
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28800 [um]

9000 [um]

Simulation examples

\_ LGAD (WITH GL) | PiN (WITHOUT GL)

SUBS EFIT;\;(E::Mh I Oxidation ZE?:EEE: I;’} ‘:
* Exam P les from Sy NOPSYS TCAD ( more on ITE P31 IMPLANT (7,27) TE drive in i Resit dopo » I
this from N. Owen lectures) —

idation T I;sis: e-po- — : DRIVEIN [GL implant Resist depo
- T e oy

. . . . . . LGAD only I
* Beside electrical simulations, simulation — ""AJ.V;.;'N"' — —

Of p rocesses Of d evi ce fa b ri Cat i on | S LTO DENSIFICATION com;fr(i::sr::i::tume Eledrit:ldse;x:(};:l we (B e
p O S S I b I e REMES;:-II‘IAI\:JGL:-(I_)II;SEVICE IV plots Charge collection ‘ » TCAl;:omparisor::est
oo I

e Most Of the typical fabrication process Simulated process steps for LGAD fabri::laticiln
steps can be simulated Nwell-GR we

P-epi
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SIMS Depth Profile
Sample #Slot 1, Piece 1, Rpt

——SIMS Run |

= =TCAD 7 TILT 27 ROT Pears

Simulation examples

Concentration (A.U.)

2
Depth (nm)

SIMS and Pearson IV distribution — 31P

Te2v - SPROCESS comp.

* High energy implants of ions can be e st
simulated, either analytically or via MC

=—0nm,SIMS Run |

S = =TCAD Onm 7 TILT 27 ROT Pears

\\ =O=TCAD Onm 7 TILT 27 ROT MCHR

== 0nm, SIMS Run Il

* Creation of defects following implantation can
be simulated

Concentration (A.U.)

0 0.2 04 0.6 0.8 1 1.2 1.4
Depth (um)

SIMS, Pearson IV distribution and MC run — 11B
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Simulation examples

e At least with As, MC (SRIM) and
SPROCESS predictions on doping seem
to agree within = 20%

* Note: SRIM assumes amorphous Si,
<100> used for SPROCESS, but 1D

SRIM (Stopping and Range of lons in Matter,
http://www.srim.org/)

Atoms/cmA3/Fluence

/A
250x10° 1 o9 |
I._________“_lv“

o] =g
|® .‘\‘ 37 :
2001 [F V] oo
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s\
150 x
V 0%g
1004 o ‘g0
¢ |\
& @
T /2 Ny
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SRIM

As 50 keV
As 100 keV
As 150 keV

| SPROCESS
1 As 50 keV
1 As 100 keV

T T

0 50

Fit Type: least squares fit
Function: gauss

T T T
100 150 200
z [nm]

Model: —— fAt_SPROCESS50keV_As_normflu_Tle
¥ data: @ root:SPROCESS50keV_As_normflu_lel4

Coefficient values £ one standard deviation
y0  =5384.4 * 2.58e+03
A =2.1879e+05 £ 5.46e+03
*0 =40.009 £ 0.44
width =?0.693 + 1.ART

Fit Type: least squares fit
Function: gauss

T

250

Fit Type: least squares fit
Function: gauss
Maodel: - fit_SPROCESS1 50keV_As_normflu_1
¥ data: @ root:SPROCESS150keV_As_normflu_lel4
Coefficient values * one standard deviation
yO =783.8 = 1.28e+03
A =BB673 = 1.88e+03
x0 =109.32 + 0.866
width =54.005 = 1.66

Model: At_SPROCESS100keV_As_normflu_1
Y data: —@— root:SPROCESS100keV_As_normflu_lel4

Coefficient values * one standard deviation
y0  =2570.2 £ 1.48e+03
A =1.2472e+05 * 2.65e+03
x0 =74.679 £ 0.615
width =36.607 = 1.05
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Simulation examples

e Electrical simulation of a CMOS sensors
(OVERMOS)

A TCAD model of fabrication process of
OVERMOS has been developed to
investigate and predict the performances
of the sensor

-
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-
—
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LEUR AL LAY
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AP R AR
AR SR ENE
1016108 0 0
CRRELE N AL E Y

-

1240

Photograph of OVERMOS test structure and simulated cell

40um
| [.

40um

Photograph of OVERMOS cell and .gds layout
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SiPoly to simulate non
reflective BC Vbias

Simulation examples

* Internal field configuration vs. bias and |
temperature " GND

Xsection showing potential
and depletion Vbias =10V

e DC and AC characteristics can be
obtained from the simulated model

Surface plot of x-field and
depletion Vbias =10V




Simulation examples

AMPTEK A250CF LeCROY WR

o2
XY stage lum res

° Cha rge collection iS Simulated using Test setup for charge collection measurement
laser light injection and compared with
test results

\\'—

Charge Collected [fC]

500

400

e Laser beamis 5 x5 um2 around 4.5 ns
pulse width, 1064 nm wavelength, ==
~10p] s aeak

150 NP1z 12 11 100

300

9 8 6 0

0

5 4 3 74 1

5
20 g 30
40

* These values are introduced in the

Si mu | ator Charge is injected via laser at three different locations on cell. Results
are mirrored to obtain a map of collected charge vs. position
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Simulation examples - — R —
5007 P e ?EEE
. 4 =Oh10= 166 131 21
g <Oh25= 153 166 -8.4
* Effects of SiO, reflection and attenuation of __
IR light can be implemented oo
* Quantum yield of optical generation, y |l
polarization, tilting, pulse width et cetera TTom de b e b e
can all be included in the simulation Transient of charge collection measurement and simulation

e TCAD simulations of non-irradiated
OVERMOS reproduce experimental results,
both in DC and in CC, with maximum
discrepancy of the order of ~20%

Sasd UNIVERSITY OF

</ OXFORD



TCAD and simulation |

* Introduction to simulation

* Needs and transport regimes

* Meshing and discretization. Intro to DD
model discretization. SG method

* Some examples of TCAD simulations:
process and electrical device
simulations, charge collection

Thank you

giulio.villani@stfc.ac.uk
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