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UK Instrumentation Lectures



Lecture 2 (today)

• Brief  look at why Silicon detectors* are used

• Outline of  the steps used to fabricate a microstrip detector
• PhotoLithography

• E-beam Lithography

• Resists 

• Applications of  E-beam  lithography

• Additive/Subtractive Processes

• Lift Off

• Etching

• Wet

• Dry (Plasma & ICP)

• FIB

• Doping

• Cleanrooms and Specifications

• New Detector geometries (3D, edgeless, TSV)
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* Other semiconductors are available

Outline of  Lectures 



• Additive
• Putting down metals 

• Adding to surface of  material in any way

• Subtractive
• Removal of  metals or dielectric layers from exposed areas

Two types of  process are possible 

after a lithography step
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What Now?



Metal Deposition
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The first task of  the processing is deposit metal on 

the surface of  your sample

There are a range of  systems that can do this:

• load-locked electron beam evaporation tools

• multi-target sputtering systems

Common metals deposited by evaporation include 

Au, Ti, Pd, Pt, Al, Ge, Ni and NiCr. 

Can deposit  ~10nm-150nm of  metal



Metal Deposition - Preparation

• Before or depositing or ‘flashing’ any metal on to a surface, the surface 
itself  must be very clean

• Example, Si will naturally form  an oxide layer on top over time, which 
would  be a barrier to the conducting material deposited on top

• We need to clean (etch) the surface of  the material before deposition

• Usually, for Si we use HF – Hydrofluoric Acid
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HF – An Aside
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• HF (Hydrofluoric Acid is a particularly nasty chemical
• Used for wet etch on Si

• But often used in samples to prepare/clean surface before metal 
deposition



Lesson?
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• As ‘boring’ as it may seem, aways pay attention to safety, and 
hazard issue cleanrooms

Control of  Substances Hazardous to Health (COSHH)
• COSHH is the law that requires employers to control substances that are 

hazardous to health. You can prevent or reduce workers exposure to 
hazardous substances by:

• finding out what the health hazards are;

• deciding how to prevent harm to health (risk assessment);

• providing control measures to reduce harm to health;

• making sure they are used ; 

• keeping all control measures in good working order; 

• providing information, instruction and training for employees and others; 

• providing monitoring and health surveillance in appropriate cases; 

• planning for emergencies. 



The most common additive process is lift-

off

substrate

Developed

resist
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Additive Processes



Above: bi-layer of  resist for e-beam resist

Right : Effect of  chemical soaks on photoresist
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Additive Processes



Improvement in lift-off  using (right) bi-layer resist
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Lift off  – Good + Bad



Lift off  is mostly used for defining metal layers.

• Advantages
• No strong/ corrosive chemicals

• Accurate edge definition

• Disadvantages
• Significant failure rate

• There are ways to improve the repeatability  
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Additive Processes



Etching using wet or dry chemistries

substrate

resist

SiO2
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Subtractive Processes



• Can be used to pattern most materials
• Metals, di-electrics, semiconductor materials

• Two separate processes are used

• Wet chemical etch (isotropic) or Dry plasma etch  (anisotropic)
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Subtractive Processes



• Wet etching: uses liquid chemicals to transfer pattern
• Acid or alkaline solutions used depend on material being 

patterned:

• HF for SiO2, KOH for Si, any alkali for Al etc

• Fast process with very well-known chemical processes 
available for most materials

• Wet etching is isotropic
• Etches at the same rate in all directions, unsuitable for very small 

features

• Not all materials have a suitable wet etch chemistry 
available

HCl wet etch
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Wet Etching



• Dry etching: uses a ‘dry’ plasma to remove unwanted material

• An RF discharge is used to crack a pressurised gas into a 
number of  reactive and neutral species

• The electrical field accelerates the ions toward the sample 
material, causing physical sputtering and chemical removal

Schematic of   reactive 

ion etching (RIE) 

plasma reactor
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Dry Etching



• Process is anisotropic
• Suitable for small or densely packed features

• Everything can be etched using plasma
• Even if  it is sometimes very slow

• Process is very hard on masks
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Dry Etching



• Process is anisotropic
• Suitable for small or densely packed features

• Everything can be etched using plasma
• Even if  it is sometimes very slow

• Process is very hard on masks
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Dry Etching



• Inductively Coupled Plasma

– High density plasma source for deep reactive ion etching 

of  materials

•Bosch Process

– Use of  alternative gases for cycles 

of  passivation and etching

• ICP used to produce denser plasma 

and faster etching
– Uses 2 RF discharges, one to excite the 

plasma & one to accelerate the ions

• Faster etch rates

• Tougher on mask material
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ICP Etching



Inductively Coupled Plasma
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• These machines have 1 major advantage

• They can operate in a ‘switched’ mode

– 1 Cycle etches the surface 

– 1 Cycle passivates the sidewalls

Typical Etch mechanisms:

sulfur-hexafluoride (SF6) or the combination of  

tetrafluoromethane (CF4) mixed with oxygen (O2).



ICP Etching



• FIB: uses Focused Ion beam (Ar) to remove (with precision) 
areas of  a sample

• Most commonly ASICs

• An example below is a CMOS chip where the wrong connect 
made in one of  the metal layers below the oxide layer

• Remove oxide layer

• ‘Cut’ metal track
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Focus Ion Beam (FIB)



• How do reduce our leakage current and noise sourced from our 
surfaces?

• How do we isolate our doped areas?

Introduce an insulator

SiO2
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Next Step



• Thermal growth
• Increases thickness of  natural oxide

• Deposition
• Uses a chemical process to produce thick layers of  SiO2
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SiO2 layers



Final Stage

• We’ve made our metal contacts

• We’ve made out oxide regions

• We’ve etched out bulk silicon

• What’s left?

Doping
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n- bulk Si

p+ doped

Heavily doped p+ layer 

~1018 cm-3 concentration of  boron 

(B)

n+ doped

phosphorous (P) doped to produce 

n+ region 
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Doping Silicon



• Gas diffusion

• Diffusion from a solid

• Ion implantation

Three main methods 
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Doping Silicon



Mass 

separator

Ion implantation

Ion source creates +ve charged ions

Electric field accelerates ions

E

Heavy impurities

Light impurities

Dopant

B Magnetic field causes 

ion trajectories to bend
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Doping Silicon



• Implant geometry is very precise
• In all three dimensions

• Dopant element is uncontaminated
• Single chosen element due to mass separation

• Higher concentrations are possible than other 
methods of  doping
• Infinite source and no reliance on thermal processes to 

move dopant into Si

Implants are produced using ion implantation
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Doping Silicon



• In very, very, clean rooms
• Appropriately  called ‘cleanrooms’

• How clean?
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Were does this all happen?



Class 10 000 area (Bio, Photochemical, MEMS, Photolith cabinets)
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Cleanrooms



New Geometries

• Several new types of  detectors are under research for their use as 
particle detectors 
• All utilise fabrication techniques

• 3D Detectors

• Edgeless Detectors

• Thru Silicon Vias (TSV)
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3D Detectors

• A 3D detector is a photodiode with closely-spaced electrode columns. This leads to very
fast charge collection and low depletion voltages.

• Due to their high radiation tolerance, 3D detectors are being developed as pixel
detectors for the HL-LHC.

• Different 3D structures are being designed in collaboration with other institutions,
simulated, and tested with LHC-speed readout electronics
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Edgeless Detectors

• To minimize the dead areas between the end of the detecting area and the cut

edge, the dead areas is “Scribed”, then “Cleaved”, then “Passivated” to readuces

edge effects
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TSV (Thru Silicon Vias)

• A through-silicon via (TSV) is a vertical electrical connection (via)(Vertical 
Interconnect Access) passing completely through a silicon wafer or die. 

• TSVs are a used to create 3D packages and 3D integrated circuits
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HDI Example: TSV



• All of  these processes are carried out for every single detector.
• Each wafer will go through multiple lithography/ metal and SiO2

deposition  steps.

• Multiple etching steps are also used

• A wafer will go through over 100 individual steps before it is 
complete
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All Together Now..



• One single failure at any stage can cause a wafer to be discarded.
• A single grain of  dust can destroy an entire wafer
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All Together Now..



• Most of  you won’t be doing any fabrication
• This is an attempt to make you appreciate it

• You will all probably be analysing data gathered using detectors 
fabricated this way 
• That bit is your problem ;)
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In Conclusion


	Slide 1: Device Fabrication  (or how the detectors for your experiment get made) - Part 2
	Slide 2
	Slide 3
	Slide 4: Metal Deposition
	Slide 5: Metal Deposition - Preparation
	Slide 6: HF – An Aside
	Slide 7: Lesson?
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19: Inductively Coupled Plasma
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24: Final Stage
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31: New Geometries
	Slide 32: 3D Detectors
	Slide 33: Edgeless Detectors
	Slide 34: TSV (Thru Silicon Vias)
	Slide 35
	Slide 36
	Slide 37
	Slide 38

