Introduction into Electronics

(1) Reminder: Electrical circuits
(2) Analog electronics
(3) Digital electronics

Introduction into Electronics

(1) Reminder: Electrical circuits

Basic elements

AC resistance

$$
U(t)=U_{0} \sin (\omega t)
$$

Resistance:

$$
I_{R}=\frac{U_{R}}{R}
$$

Rotation of

02/05/2023

Capacitance:

U. Blumenschein, Introduction into Electronics

Inductance:

Networks

Networks

Resistance in series:

$R_{\text {total }}=R_{\mathrm{s}}=R_{1}+R_{2}+\cdots+R_{n}$

Resistance in parallel:

$$
\begin{aligned}
& \left\{\left\{_{R_{1}}\left\{R_{2}\right\} R_{\mathrm{n}}\right.\right. \\
& \frac{1}{R_{\text {total }}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\cdots+\frac{1}{R_{n}}
\end{aligned}
$$

Networks

Resistance in series:

Resistance in parallel:

$$
\begin{aligned}
& \left\{\left\{_{R_{1}}\left\{R_{2}\right\} R_{\mathrm{n}}\right.\right. \\
& \frac{1}{R_{\text {total }}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\cdots+\frac{1}{R_{n}}
\end{aligned}
$$

Networks

Resistance in series:

Resistance in parallel:

$$
\frac{1}{R_{\text {total }}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\cdots+\frac{1}{R_{n}}
$$

Impedance in AC circuits

$\hat{I}=\frac{\hat{U}}{Z}$
$Z=\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}$
Low pass

$$
X_{C}=\frac{1}{\omega_{a} C}
$$

Networks

Resistance in series:

Resistance in parallel:

$$
\frac{1}{R_{\text {total }}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\cdots+\frac{1}{R_{n}}
$$

Impedance in AC circuits

$\hat{I}=\frac{\hat{U}}{Z}$

$$
Z=\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}
$$

Low pass

$$
X_{C}=\frac{1}{\omega_{a} C}
$$

high pass

9
(2) Analog electronics

Diode: pn junction and biasing

Electrons cross the junction from n to p type \rightarrow depletion zone, barrier voltage

Diode: pn junction and biasing

Diode: forward biasing

Ideal diode (forward bias):

$$
\begin{aligned}
& I(U)=I_{\mathrm{S}} \cdot\left(e^{\frac{U}{U_{\mathrm{T}}}}-1\right) \\
& I_{\mathrm{S}} \text { : leakage current } \approx 1-100 \mu \mathrm{~A} \\
& U_{T}:=k T / e \approx 40 \mathrm{mV}
\end{aligned}
$$

Real diode (forward bias):
I(U) only >0
for $U>$ Barrier Voltage ($\approx 0.3-0.8 \mathrm{~V}$)

Differential resistance:

$$
r=\frac{d I}{d U}
$$

Current-voltage characteristic

Zener diodes: reverse biasing

Conventional diodes will typically be destroyed if operated with large reverse-bias voltages.

But a Zener diode is designed to be operated with reverse bias.

Resistance breaks down at the Zener voltage: tunneling of electrons From the p-type valence band into the n-type conduction band
\rightarrow Voltage stabilizer, reference voltage

Zener diodes: reverse biasing

Conventional diodes will typically be destroyed if operated with large reverse-bias voltages.

But a Zener diode is designed to be operated with reverse bias.

Resistance breaks down at the Zener voltage: tunneling of electrons From the p-type valence band into the n-type conduction band

\rightarrow Voltage stabilizer, reference voltage

Circuits with diodes (1)

Half-wave rectifier

Circuits with diodes (1)

Half-wave rectifier

Blocks negative half waves

Half-wave rectifier with smoothing capacitor

Half waves smoothened

Circuits with diodes (2)

Full-wave Bridge rectifier

Diodes are arranged such that the positive pole is always connected to the same point.
--> Inverts negative half waves

Circuits with diodes (2)

Full-wave Bridge rectifier

Diodes are arranged such that the positive pole is always connected to the same point.
--> Inverts negative half waves

Bridge rectifier with smoothing capacitance

Circuits with diodes (2)

Full-wave Bridge rectifier

Bridge rectifier with smoothing capacitance
 to the same point.

Diodes are arranged such that the positive pole is always connected
--> Inverts negative half waves

Voltage regulation/limitation:

If the initial voltage becomes larger than the Zener voltage the Zener current Increases \rightarrow resistance drops

Transistors

- Active, controllable semiconductor devices.
- Amplify and switch signals and power
- Main types:
- Bipolar junction transistor (BJT)
- here: npn transistor
- pnp transistor: works in an analogous manner
- Field Effect Transistor (FET)
- MOSFET: NMOS/PMOS
- CMOS: combines NMOS an PMOS

Contemporary Integrated Circuits (IC) are in general not build from discrete transistors but need to understand the transistor principle to understand IC

Bipolar Junction Transistor

Bipolar Junction Transistor

Bipolar Junction Transistor

Emitter
heavily n-doped

$$
I_{E}=I_{C}+I_{B}
$$

$$
U_{C E}=U_{C B}+U_{B E}
$$

Bipolar Junction Transistor

Emitter
heavily n-doped

npn BJT: characteristics (1)

Input characteristics

npn BJT: characteristics (1)

Input characteristics

Saturation region:
Small changes in $U_{C E}$ lead to large change in I_{C} \rightarrow switches etc.

Output characteristics

Active region:
Small change in base current I_{B} lead to large change in collector current, nearly independent of $U_{C E}$
\rightarrow Current amplification etc.

npn BJT: characteristics (2)

- working point in active region

Selecting the working point

Example circuit

(Calculation: see appendix)

Voltage divider biasing

The voltage U_{B} across R_{2} forward-biases the BE junction

$$
U_{B}=U_{0} \cdot \frac{R_{2}}{R_{1}+R_{2}}-I_{B} \cdot \frac{R_{1} R_{2}}{R_{1}+R_{2}}
$$

If R_{1}, R_{2} are sufficiently small, the base current does not impact the base voltage

$$
I_{B} \cdot R_{1} \ll U_{0} \quad \rightarrow \quad U_{B} \approx U_{0} \cdot \frac{R_{2}}{R_{1}+R_{2}}
$$

Selecting the working point

Example circuit

Voltage divider biasing

The voltage U_{B} across R_{2} forward-biases the BE junction

$$
U_{B}=U_{0} \cdot \frac{R_{2}}{R_{1}+R_{2}}-I_{B} \cdot \frac{R_{1} R_{2}}{R_{1}+R_{2}}
$$

If R_{1}, R_{2} are sufficiently small, the base current does not impact the base voltage

$$
I_{B} \cdot R_{1} \ll U_{0} \quad \rightarrow \quad U_{B} \approx U_{0} \cdot \frac{R_{2}}{R_{1}+R_{2}}
$$

Stabilizing WP by adding emitter resistance R_{E}
Reduces $U_{B E}$ if base current I_{B} becomes too large.

Selecting the working point

Example circuit

Voltage divider biasing

The voltage U_{B} across R_{2} forward-biases the BE junction

$$
U_{B}=U_{0} \cdot \frac{R_{2}}{R_{1}+R_{2}}-I_{B} \cdot \frac{R_{1} R_{2}}{R_{1}+R_{2}}
$$

If R_{1}, R_{2} are sufficiently small, the base current does not impact the base voltage

$$
I_{B} \cdot R_{1} \ll U_{0} \quad \rightarrow \quad U_{B} \approx U_{0} \cdot \frac{R_{2}}{R_{1}+R_{2}}
$$

Stabilizing WP by adding emitter resistance R_{E}
Reduces $U_{B E}$ if base current I_{B} becomes too large.
Effect on AC signal can be mitigated by adding a capacitor in parallel
$\rightarrow R_{E} \| R_{C}$ reduced for high frequencies, $R \approx R_{E}$ for low frequencies

FET

BJT not suited for Integrated Circuits (IC): base currents would overheat the IC
\rightarrow use FETs: similar operation as with BJT but:

- controlled with negligible currents
- smaller area
- transfer characteristics more linear
- less noise

Example n-channel MOSFET (Metal-Oxide-Silicon FET):

- p-doted substrate
- n-doted channels: Source, Drain
- Gate isolated from substrate by e.g. SiO_{2}
$\circ \rightarrow$ no Gate-Source/Drain currents

N-channel MOSFET: operation

- No source drain current

N-channel MOSFET: operation

- No source drain current

- Electrons from p-doted substrate drawn towards positively charged gate
$\circ \rightarrow$ channel allows for S-D current I_{D}

N-channel MOSFET: operation

- No source drain current

- Electrons from p-doted substrate drawn towards positively charged gate
$\circ \rightarrow$ channel allows for S-D current I_{D}

Typically, smaller transconductance than BJT (transconductance = output current /input voltage on case of FET \approx drain current/ gate-source voltage)

Operational amplifier (op amp)

Difference amplifier with two inputs and one output

Operational amplifier (op amp)

Difference amplifier with two inputs and one output

Characteristics:

- Output voltage proportional to the difference between the input voltages: very high amplification (> 10000-100000)

Operational amplifier (op amp)

Difference amplifier with two inputs and one output

Characteristics:

- Output voltage proportional to the difference between the $U_{\mathrm{a}}=v_{0} \cdot\left(U^{+}-U^{-}\right)$ input voltages: very high amplification (> 10000-100000)
- If used with negative feedback (U_{a} connected with U -) the op amp regulates $\mathrm{U}+=\mathrm{U}-$
- Negligible input current (into the op amp)
- The maximum output voltage is the power supply voltage

negative feedback

Op amp circuits

Inverting amplifier

[2] $\rightarrow \quad I_{1}=\frac{U_{\mathrm{e}}-U^{-}}{Z_{1}}=\frac{U^{-}-U_{\mathrm{a}}}{Z_{2}}=I_{2}$
${ }^{[1]} \rightarrow \quad U^{-}=0 \mathrm{~V}$ (virtual ground)

$$
\rightarrow \quad U_{\mathrm{a}}=-\frac{Z_{2}}{Z_{1}} U_{\mathrm{e}}
$$

Op amp circuits

Inverting amplifier

[2] $\rightarrow \quad I_{1}=\frac{U_{\mathrm{e}}-U^{-}}{Z_{1}}=\frac{U^{-}-U_{\mathrm{a}}}{Z_{2}}=I_{2}$
${ }^{[1]} \rightarrow \quad U^{-}=0 \mathrm{~V}$ (virtual ground)

$$
\rightarrow \quad U_{\mathrm{a}}=-\frac{Z_{2}}{Z_{1}} U_{\mathrm{e}}
$$

Non-inverting amplifier

Negative feedback from voltage divider:

$$
\begin{aligned}
{[1] \rightarrow \quad U_{e} } & =U-=\frac{Z_{1}}{Z_{1}+Z_{2}} U a \\
& \rightarrow \quad U_{\mathrm{a}}=\left(\frac{Z_{2}}{Z_{1}}+1\right) U_{\mathrm{e}}
\end{aligned}
$$

- If used with negative feedback (U_{a} connected with U -) the op amp regulates $\mathrm{U}_{+}=\mathrm{U}$ -
- Negligible input current (into the op amp)
[1]
[2]

Op amp circuits

Integrator

Virtual ground offset by input current
\rightarrow op amp passes a current that charges the capacitor to maintain the virtual ground

$$
I_{R}=\frac{U_{e}}{R} \approx I_{c}
$$

Op amp circuits

Integrator

Virtual ground offset by input current
\rightarrow op amp passes a current that charges the capacitor to maintain the virtual ground

$$
I_{R}=\frac{U_{e}}{R} \approx I_{c}
$$

Capacitor equation:

- Differential: $I=C \frac{d U}{d t}$
- Integrated: $U=\frac{1}{C} \int I d t \quad\left(^{*}\right)$

Op amp circuits

Integrator

Virtual ground offset by input current
\rightarrow op amp passes a current that charges the capacitor to maintain the virtual ground
$I_{R}=\frac{U_{e}}{R} \approx I_{c}$
with(*):
$U_{a}=-\frac{1}{R C} \int_{0}^{t} U_{e} d t$

- Differential: $I=C \frac{d U}{d t}$
- Integrated: $U=\frac{1}{C} \int I_{C} d t\left({ }^{*}\right)$
\rightarrow The output voltage is proportional to the time integrated input voltage

Op amp circuits

Integrator

Virtual ground offset by input current
\rightarrow op amp passes a current that charges the capacitor to maintain the virtual ground
$I_{R}=\frac{U_{e}}{R} \approx I_{c}$
with(*):
$U_{a}=-\frac{1}{R C} \int_{0}^{t} U_{e} d t$
\rightarrow The output voltage is proportional to the time integrated input voltage
(3) Digital electronics

Digital electronics

Work with only two voltage levels (depend on type and input/output)

- High: 1, typically 2-5V
- Low: 0, typically 0-1.5V
- Hexadecimal 4-bit groups:

0000	0	0100	4	1000	8	1100	C
0001	1	0101	5	1001	9	1101	D
0010	2	0110	6	1010	A	1110	E
0011	3	0111	7	1011	B	1111	F

Example:

- Decimal: 2023
- Binary: 0000011111100111
- Hexadecimal: 07E7
- Boolean algebra: truth tables

S

x	AND	OR	
x	y	$x \wedge y$	$x \vee y$
$\mathbf{0}$	$\mathbf{0}$	0	0
$\mathbf{1}$	$\mathbf{0}$	0	1
$\mathbf{0}$	$\mathbf{1}$	0	1
$\mathbf{1}$	$\mathbf{1}$	1	1

NOT
\boldsymbol{x} $\neg \boldsymbol{x}$ $\mathbf{0}$ 1 $\mathbf{1}$ 0

Laws:

- Associativity
- Commutativity
- Distributivity

Logical operations

Full table of symbols, including secondar operations

Inverter$y=\bar{x}$x y 0 1 1 0		

Simple diode-based AND gate

CMOS-based NAND gate

Flip Flop: SR Iatch

Flip flops (latches) are digital circuits with two stable states \rightarrow store information
Simple SR Latch

Flip Flop: SR latch

Flip flops (latches) are digital circuits with two stable states \rightarrow store information

Simple SR Latch

Flip Flop: SR latch

Flip flops (latches) are digital circuits with two stable states \rightarrow store information
Simple SR Latch

Flip Flop: SR latch

Flip flops (latches) are digital circuits with two stable states \rightarrow store information
Simple SR Latch

Flip Flop: SR latch

Flip flops (latches) are digital circuits with two stable states \rightarrow store information
Simple SR Latch

Flip Flop: SR latch

Flip flops (latches) are digital circuits with two stable states \rightarrow store information
Simple SR Latch

stable situation

Flip Flop: SR latch

Flip flops (latches) are digital circuits with two stable states \rightarrow store information
Simple SR Latch

stable situation: The output has become independent of the "set" voltage

Flip Flop: SR latch

Flip flops (latches) are digital circuits with two stable states \rightarrow store information

Simple SR Latch

Likewise, setting the reset to 1 and the set to 0 , will lead to the inverse stable Situation
stable situation

Flip Flop: SR latch

Flip flops (latches) are digital circuits with two stable states \rightarrow store information

Simple SR Latch

stable situation

Likewise, setting the reset to 1 and the set to 0 , will lead to the inverse stable Situation
If the second inputs are $0, Q$ does not change latch is "opaque"
\rightarrow Gated or clocked SR latch

Flip Flop: SR latch

Flip flops (latches) are digital circuits with two stable states \rightarrow store information

Simple SR Latch

Clocked SR Latch

clk provides " 1 " in a clocked way

D-latch and serial register

Flip flops (latches) are digital circuits with two stable states \rightarrow store information
D- Latch: only "set" input needed, due to inverter

symbol:

Truth table:

C	D	Q	$\overline{\mathbf{Q}}$	Comment
0	X	$Q_{\text {prev }}$	$\bar{Q}_{\text {prev }}$	No change
1	0	0	1	Reset
1	1	1	0	Set

D-latch and serial register

Flip flops (latches) are digital circuits with two stable states \rightarrow store information
D- Latch: only "set" input needed, due to inverter
D

symbol:

.... can be used to construct serial shift register

D-latch and serial register

Flip flops (latches) are digital circuits with two stable states \rightarrow store information
D- Latch: only "set" input needed, due to inverter
D

symbol:

.... can be used to construct serial shift register

D-latch and serial register

Flip flops (latches) are digital circuits with two stable states \rightarrow store information
D- Latch: only "set" input needed, due to inverter
D

symbol:

.... can be used to construct serial shift register

D-latch and serial register

Flip flops (latches) are digital circuits with two stable states \rightarrow store information
D- Latch: only "set" input needed, due to inverter
D

symbol:

.... can be used to construct serial shift register

Appendix

Voltage divider biasing

Reminder: The voltage U_{B} across R_{2} forward-biases the BE junction

Here: can use nodal analysis:
Apply Kirchhoff's current law (KCL) at node 2
Reminder the $I_{B}-U_{B}$ relation does not follow Ohms law but a diode-like input characteristics (which for this exercise, we pretend not to know)

U1: $\quad U_{1}=U_{0}-\mathrm{U}_{\mathrm{B}}$
U2 KCL: $I_{1}=I_{2}+I B$

Voltage divider biasing

Revisiting Voltage divider biasing circuit

Reminder: The voltage U_{B} across R_{2} forward-biases the BE junction

Here: can use nodal analysis:
Apply Kirchhoff's current law (KCL) at node 2
Reminder the $I_{B}-U_{B}$ relation does not follow Ohms law but a diode-like input characteristics (which for this exercise, we pretend not to know)

U1: $\quad U_{1}=U_{0}-\mathrm{U}_{\mathrm{B}}$
(1) \& (2) $\rightarrow \frac{U_{0}-U B}{R_{1}}=\frac{U_{B}}{R_{2}}+I_{B} \rightarrow U_{0}-U B=U B \frac{R_{1}}{R_{2}}+I B R_{1} \rightarrow U_{B} \frac{R_{1}+R_{2}}{R_{2}}=U_{0}-I B R_{1}$

$$
\rightarrow \quad U_{B}=U_{0} \frac{R_{2}}{R_{1}+R_{2}}-I_{\mathrm{B}} \frac{R_{1} R_{2}}{R_{1}+R_{2}}
$$

Op amp circuits

Differential amplifier

$$
\begin{aligned}
& \text { [1] } U_{-}=U_{+}=U \\
& \text { [2] } I_{1}=\frac{U_{1} U}{R 1}=\mathrm{I}_{2}=\frac{U-U a}{R 2} \\
& \rightarrow \frac{U_{1} R_{2}}{R_{1}}-\frac{U R_{2}}{R_{1}}=\mathrm{U}-\mathrm{Ua} \\
& \rightarrow U_{a}=U \frac{R_{2}+R_{1}}{R_{1}}-\mathrm{U}_{1} \frac{R_{2}}{R_{1}}\left(^{*}\right)
\end{aligned}
$$

- If used with negative feedback (U_{a} connected with U -)
the op amp regulates $\mathrm{U}+=\mathrm{U}$ -
- Negligible input current (into the op amp) [2]

Op amp circuits

Differential amplifier

[^0]
Op amp circuits

Differential amplifier

- If used with negative feedback (U_{a} connected with U -) the op amp regulates $\mathrm{U}+=\mathrm{U}$ -
- Negligible input current (into the op amp) [2]

$$
\begin{aligned}
& \text { [1] } U_{-}=U_{+}=U \\
& \text { [2] } I_{1}=\frac{U_{1}-U}{R 1}=\mathrm{I}_{2}=\frac{U-U a}{R 2} \\
& \rightarrow \frac{U_{1} R_{2}}{R_{1}}-\frac{U R_{2}}{R_{1}}=\mathrm{U}-\mathrm{Ua} \\
& \rightarrow U_{a}=U \frac{R_{2}+R_{1}}{R_{1}}-\mathrm{U}_{1} \frac{R_{2}}{R_{1}}
\end{aligned}
$$

$$
U=U_{2} \frac{R_{2}}{R_{1}+R_{2}} \quad \text { (voltage divider) }\left({ }^{* *)}\right.
$$

$$
\left(^{* *}\right) \text { in }\left({ }^{*}\right)
$$

$$
\rightarrow \quad U_{a}=U_{2} \frac{R_{2}}{R_{1}+R_{2}} \frac{R_{1}+R_{2}}{R_{1}}-\mathrm{U}_{1} \frac{R_{2}}{R_{1}}
$$

$$
\rightarrow \quad U_{\mathrm{a}}=\frac{R_{2}}{R_{1}}\left(U_{2}-U_{1}\right)
$$

Op amp circuits

Schmitt trigger: positive feedback

If U_{a} rises, the difference between $U_{\text {_ }}$ and U_{+}will rise. This causes U_{a} to rise even further until maximum output voltage (given by the power supply voltage) is reached

$$
U_{\mathrm{a}}=v_{0} \cdot\left(U^{+}-U^{-}\right)
$$

Op amp circuits

Schmitt trigger: positive feedback

$$
U_{\mathrm{a}}=v_{0} \cdot\left(U^{+}-U^{-}\right)
$$

If U_{a} rises, the difference between $U_{\text {_ }}$ and U_{+}will rise. This causes U_{a} to rise even further until maximum output voltage (given by the power supply voltage) is reached

Example: $\mathrm{U}_{\max }=14 \mathrm{~V}, \mathrm{R}_{1}=10 \Omega, \mathrm{R}_{2}=4 \Omega$ If $U_{a}=14 \mathrm{~V}, \mathrm{U}+=4 \mathrm{~V}$. If U_{e} exceeds 4 V , $\mathrm{U}_{-}>\mathrm{U}_{+}$and U_{a} flips to -14 V

[^0]: - If used with negative feedback (U_{a} connected with U -) the op amp regulates $\mathrm{U}_{+}=\mathrm{U}$ -
 - Negligible input current (into the op amp) [2]

