Introduction into Electronics

(1) Reminder: Electrical circuits

(2) Analog electronics

02/05/2023

U. Blumenschein, Introduction into Electronics

Introduction into Electronics

(1) Reminder: Electrical circuits

Basic elements

U. Blumenschein, Introduction into Electronics

AC resistance

Resistance:

 $U(t) = U_0 \sin(\omega t)$

Capacitance:

 $\hat{U}_{L} = \hat{I}_{L} X_{L}$ $X_{L} = \omega_{a} L$ U_{L} U_{L} $U_{L,m}$ $U_{L,m}$

02/05/2023

U. Blumenschein, Introduction into Electronics

Resistance in series:

 $R_{ ext{total}} = R_{ ext{s}} = R_1 + R_2 + \dots + R_n$

Resistance in parallel:

02/05/2023

U. Blumenschein, Introduction into Electronics

Impedance in AC circuits

Resistance in series:

 $R_{ ext{total}} = R_{ ext{s}} = R_1 + R_2 + \dots + R_n$

Resistance in parallel:

02/05/2023

U. Blumenschein, Introduction into Electronics

Impedance in AC circuits

Low pass

02/05/2023

 $R_{\text{total}} = R_{\text{s}} = R_1 + R_2 + \dots + R_n$

U. Blumenschein, Introduction into Electronics

 $rac{1}{R_{ ext{total}}} = rac{1}{R_1} + rac{1}{R_2} + \cdots + rac{1}{R_n}$

Impedance in AC circuits

 $R_{\text{total}} = R_{\text{s}} = R_1 + R_2 + \cdots + R_n$

Low pass

02/05/2023

U. Blumenschein, Introduction into Electronics

9

high pass

(2) Analog electronics

Diode: pn junction and biasing

D

Electrons cross the junction from n to p type \rightarrow depletion zone, barrier voltage

Diode: pn junction and biasing

Current-voltage characteristic

Diode: forward biasing

Ideal diode (forward bias):

$$I(U) = I_{\rm S} \cdot \left(e^{\frac{U}{U_{\rm T}}} - 1 \right)$$

 I_{S} : leakage current \approx 1-100 μ A U_{T} : = kT/e \approx 40 mV

Real diode (forward bias):

I(U) only > 0 for U > Barrier Voltage ($\approx 0.3-0.8V$)

$$r = \frac{dI}{dU}$$

Current-voltage characteristic

Zener diodes: reverse biasing

Conventional diodes will typically be destroyed if operated with large reverse-bias voltages.

But a Zener diode is designed to be operated with reverse bias.

Resistance breaks down at the Zener voltage: tunneling of electrons From the p-type valence band into the n-type conduction band

 \rightarrow Voltage stabilizer, reference voltage

Zener diodes: reverse biasing

Input voltage V1 Output ZD1 voltage V2 Forward Voltage Drop Reverse Breakdown Voltage

Conventional diodes will typically be destroyed if operated with large reverse-bias voltages.

But a Zener diode is designed to be operated with reverse bias.

Resistance breaks down at the Zener voltage: tunneling of electrons From the p-type valence band into the n-type conduction band

 \rightarrow Voltage stabilizer, reference voltage

Circuits with diodes (1)

Half-wave rectifier

Circuits with diodes (1)

Half-wave rectifier

Half-wave rectifier with smoothing capacitor

Blocks negative half waves

02/05/2023

U. Blumenschein, Introduction into Electronics

Circuits with diodes (2)

Full-wave Bridge rectifier

Diodes are arranged such that the positive pole is always connected to the same point.

--> Inverts negative half waves

Circuits with diodes (2)

Full-wave Bridge rectifier

Diodes are arranged such that the positive pole is always connected to the same point.

--> Inverts negative half waves

Bridge rectifier with smoothing capacitance

02/05/2023

U. Blumenschein, Introduction into Electronics

Circuits with diodes (2)

Full-wave Bridge rectifier

Diodes are arranged such that the positive pole is always connected to the same point.

--> Inverts negative half waves

Voltage regulation/limitation:

If the initial voltage becomes larger than the Zener voltage the Zener current Increases \rightarrow resistance drops

Bridge rectifier with smoothing capacitance

02/05/2023

U. Blumenschein, Introduction into Electronics

Transistors

- Active, controllable semiconductor devices.
- Amplify and switch signals and power
- Main types:
 - **Bipolar junction transistor (BJT)**
 - o here: npn transistor
 - pnp transistor: works in an analogous manner
 - Field Effect Transistor (FET)
 - MOSFET: NMOS/PMOS
 - CMOS: combines NMOS an PMOS

Contemporary Integrated Circuits (IC) are in general not build from discrete transistors but need to understand the transistor principle to understand IC

E: Emitter

1 0

3 O

10

3 ()

2 (

2 ()

D: Drain

S: Source

G: Gate

B: Basis

C: Kollektor

 $B \xrightarrow{U_{CB}} I_{C}$ $I_{E} \xrightarrow{U_{CB}} I_{E}$ $I_{E} = I_{C} + I_{B}$ $U_{CE} = U_{CB} + U_{BE}$

С

Base-Emitter diode: operated in forward direction \rightarrow electrons drift into the base \rightarrow some electrons reach the p-n transition region of the **Base-Collector diode**

 \rightarrow increase collector current I_c

 I_{C} X $U_{\rm CE}$ В $I_{\rm E}$ $I_E = I_C + I_B$ $U_{CE} = U_{CB} + U_{BE}$

С

Emitter heavily n-doped

heavily n-doped

U. Blumenschein, Introduction into Electronics

 $I_{B}/U_{BE} \rightarrow \text{control} \rightarrow I_{C}$

02/05/2023

npn BJT: characteristics (1)

Input characteristics

npn BJT: characteristics (1)

Input characteristics **Output characteristics** iB (mA)0.4 mA X mA 20 0.3 similar to diode (CB characteristic 15 $I_{\rm B}$ 0.2 0.2 $v_{CE} > 1 V$ 10 В 0.1 5 ICEO $i_B = 0$ iì 10 15 20 5 0.5 0 $v_{CE}(\mathbf{V})$ v_{BE} Input characteristics Output characteristics Active region: Saturation region: Small change in base current I_B Small changes in U_{CF} lead

to large change in I_C \rightarrow switches etc. lead to large change in collector current, nearly independent of U_{CE} \rightarrow Current amplification etc. С

 $I_{\rm C}$

CE

 $I_{\rm E}$

F

+

npn BJT: characteristics (2)

• working point in active region

Selecting the working point

Example circuit

(Calculation: see appendix)

Voltage divider biasing

The voltage $U_{\rm B}$ across $\rm R_2$ forward-biases the BE junction

$$U_B = U_0 \cdot \frac{R_2}{R_1 + R_2} - I_B \cdot \frac{R_1 R_2}{R_1 + R_2}$$

If R_1 , R_2 are sufficiently small, the base current does not impact the base voltage

$$I_B \cdot R_1 \ll U_0 \quad \Rightarrow \quad U_B \approx U_0 \cdot \frac{R_2}{R_1 + R_2}$$

Selecting the working point

Example circuit

Voltage divider biasing

The voltage $U_{\rm B}$ across $\rm R_2$ forward-biases the BE junction

$$U_B = U_0 \cdot \frac{R_2}{R_1 + R_2} - I_B \cdot \frac{R_1 R_2}{R_1 + R_2}$$

If R_1 , R_2 are sufficiently small, the base current does not impact the base voltage

$$I_B \cdot R_1 \ll U_0 \quad \Rightarrow \quad U_B \approx U_0 \cdot \frac{R_2}{R_1 + R_2}$$

Stabilizing WP by adding emitter resistance R_E

Reduces U_{BE} if base current I_B becomes too large.

Selecting the working point

Example circuit

Voltage divider biasing

The voltage $\rm U_B$ across $\rm R_2$ forward-biases the BE junction

$$U_B = U_0 \cdot \frac{R_2}{R_1 + R_2} - I_B \cdot \frac{R_1 R_2}{R_1 + R_2}$$

If R₁, R₂ are sufficiently small, the base current does not impact the base voltage

$$I_B \cdot R_1 \ll U_0 \quad \Rightarrow \quad U_B \approx U_0 \cdot \frac{R_2}{R_1 + R_2}$$

Stabilizing WP by adding emitter resistance R_E

Reduces U_{BE} if base current I_B becomes too large. Effect on AC signal can be mitigated by adding a capacitor in parallel $\rightarrow R_E \mid \mid R_C$ reduced for high frequencies, $R \approx R_E$ for low frequencies

FET

BJT not suited for Integrated Circuits (IC): base currents would overheat the IC

 \rightarrow use FETs: similar operation as with BJT but:

- \circ controlled with negligible currents
- \circ smaller area
- \circ $\,$ transfer characteristics more linear $\,$
- \circ less noise

Example n-channel MOSFET (Metal-Oxide-Silicon FET):

- \circ p-doted substrate
- $\circ~$ n-doted channels: Source, Drain
- $\,\circ\,\,$ Gate isolated from substrate by e.g. SiO_2
 - $\circ \rightarrow$ no Gate-Source/Drain currents

N-channel MOSFET: operation

• No source drain current

N-channel MOSFET: operation

• No source drain current

- Electrons from p-doted substrate drawn towards positively charged gate
- $\circ \rightarrow$ channel allows for S-D current I_D

N-channel MOSFET: operation

• No source drain current

- Electrons from p-doted substrate drawn towards positively charged gate
- $\circ \rightarrow$ channel allows for S-D current I_D

Typically, smaller transconductance than BJT (transconductance = output current /input voltage on case of FET ≈ drain current/ gate-source voltage)

Operational amplifier (op amp)

Difference amplifier with two inputs and one output

 $V_{S^{+}}$

Outpu

Vs-

50 Ω **<**

Q20

Operational amplifier (op amp)

Difference amplifier with two inputs and one output

Characteristics:

 Output voltage proportional to the difference between the input voltages: very high amplification (> 10000-100000)

Operational amplifier (op amp)

Difference amplifier with two inputs and one output

Characteristics:

- Output voltage proportional to the difference between the input voltages: very high amplification (> 10000-100000)
- If used with negative feedback (U_a connected with U-) the op amp regulates U+ = U- [1]
- Negligible input current (into the op amp) [2]
- The maximum output voltage is the power supply voltage

negative feedback

Inverting amplifier

[2]
$$\rightarrow I_1 = \frac{U_e - U^-}{Z_1} = \frac{U^- - U_a}{Z_2} = I_2$$

[1] $\rightarrow U^- = 0 V$ (virtual ground)

$$\Rightarrow \quad U_{\rm a} = -\frac{Z_2}{Z_1} \, U_{\rm e}$$

 \rightarrow

Inverting amplifier

[2]
$$\rightarrow I_1 = \frac{U_e - U^-}{Z_1} = \frac{U^- - U_a}{Z_2} = I_2$$

[1] $\rightarrow U^- = 0 \text{ V}$ (virtual ground)

$$\rightarrow U_{\rm a} = -\frac{Z_2}{Z_1} U_{\rm e}$$

 If used with negative feedback (U_a connected with U-) the op amp regulates U+ = U- [1]
 Negligible input current (into the op amp) [2]

Non-inverting amplifier

Negative feedback from voltage divider:

$$[1] \rightarrow U_e = U - = \frac{Z_1}{Z_1 + Z_2} Ua$$

$$\rightarrow U_a = \left(\frac{Z_2}{Z_1} + 1\right) U_e$$

02/05/2023

Integrator

Virtual ground offset by input current
→ op amp passes a current that charges the capacitor to maintain the virtual ground

$$I_R = \frac{U_e}{R} \approx I_c$$

Integrator

Virtual ground offset by input current
→ op amp passes a current that charges the capacitor to maintain the virtual ground

$$I_R = \frac{U_e}{R} \approx I_c$$

Capacitor equation: - Differential: $I = C \frac{dU}{dt}$ - Integrated: $U = \frac{1}{c} \int I dt$ (*)

02/05/2023

Integrator

Virtual ground offset by input current
→ op amp passes a current that charges the capacitor to maintain the virtual ground

$$I_R = \frac{U_e}{R} \approx I_c$$

$$U_a = -\frac{1}{RC} \int_0^t U_e \, dt$$

→ The output voltage is proportional to the time integrated input voltage

Integrator

Virtual ground offset by input current
→ op amp passes a current that charges the capacitor to maintain the virtual ground

$$I_R = \frac{U_e}{R} \approx I_c$$

with(*):

$$U_a = -\frac{1}{RC} \int_0^t U_e \, dt$$

→ The output voltage is proportional to the time integrated input voltage

(3) Digital electronics

Digital electronics

Example:

 \cap

Ο

 \cap

Work with only two voltage levels (depend on type and input/output)

- High: 1, typically 2-5V
- \circ Low : 0, typically 0-1.5V
- Hexadecimal 4-bit groups:

0000	0	0100	4	1000	8	1100	\mathbf{C}
0001	1	0101	5	1001	9	1101	D
0010	2	0110	6	1010	Α	1110	Ε
0011	3	0111	7	1011	В	1111	\mathbf{F}

• Boolean algebra: truth tables AND OR

			Οň
x	y	$x \wedge y$	$x \lor y$
0	0	0	0
1	0	0	1
0	1	0	1
1	1	1	1

$\neg x$					
1					

0

1

NOT

Decimal: 2023

Hexadecimal: 07E7

Binary: 0000 0111 1110 0111

Laws:

- Associativity
- Commutativity
- Distributivity

U. Blumenschein, Introduction into Electronics

Logical operations

Full table of symbols, including secondar operations

CMOS-based NAND gate

Flip flops (latches) are digital circuits with two stable states \rightarrow store information

Flip flops (latches) are digital circuits with two stable states \rightarrow store information

Flip flops (latches) are digital circuits with two stable states \rightarrow store information

Flip flops (latches) are digital circuits with two stable states \rightarrow store information

Flip flops (latches) are digital circuits with two stable states \rightarrow store information

Flip flops (latches) are digital circuits with two stable states \rightarrow store information

Simple SR Latch

stable situation

Flip flops (latches) are digital circuits with two stable states \rightarrow store information

Simple SR Latch

stable situation: The output has become independent of the "set" voltage

Flip flops (latches) are digital circuits with two stable states \rightarrow store information

Simple SR Latch

Likewise, setting the reset to 1 and the set to 0, will lead to the inverse stable Situation

stable situation

Flip flops (latches) are digital circuits with two stable states \rightarrow store information

Simple SR Latch

stable situation

Likewise, setting the reset to 1 and the set to 0, will lead to the inverse stable Situation If the second inputs are 0, Q does not change latch is "opaque" \rightarrow Gated or clocked SR latch

Flip flops (latches) are digital circuits with two stable states \rightarrow store information

Simple SR Latch

Clocked SR Latch

clk provides "1" in a clocked way

Flip flops (latches) are digital circuits with two stable states \rightarrow store information

D- Latch: only "set" input needed, due to inverter

symbol:

Truth table:

С	D	Q	Q	Comment
0	Х	Q _{prev}	\overline{Q}_{prev}	No change
1	0	0	1	Reset
1	1	1	0	Set

Flip flops (latches) are digital circuits with two stable states \rightarrow store information

D- Latch: only "set" input needed, due to inverter

symbol:

Flip flops (latches) are digital circuits with two stable states \rightarrow store information

D- Latch: only "set" input needed, due to inverter

symbol:

Flip flops (latches) are digital circuits with two stable states \rightarrow store information

D- Latch: only "set" input needed, due to inverter

symbol:

Flip flops (latches) are digital circuits with two stable states \rightarrow store information

D- Latch: only "set" input needed, due to inverter

symbol:

Voltage divider biasing

Revisiting Voltage divider biasing circuit

Reminder: The voltage U_B across R_2 forward-biases the BE junction

Here: can use **nodal analysis**: Apply Kirchhoff's current law (KCL) at **node 2**

Reminder the $I_B - U_B$ relation does not follow Ohms law but a diode-like input characteristics (which for this exercise, we pretend not to know)

U1:
$$U_1 = U_0 - U_B$$
 (1)
U2 KCL: $I_1 = I_2 + IB$ (2)

Voltage divider biasing

Revisiting Voltage divider biasing circuit

Reminder: The voltage U_B across R_2 forward-biases the BE junction

Here: can use **nodal analysis**: Apply Kirchhoff's current law (KCL) at **node 2**

Reminder the $I_B - U_B$ relation does not follow Ohms law but a diode-like input characteristics (which for this exercise, we pretend not to know)

U1:
$$U_1 = U_0 - U_B$$
 (1)
U2 KCL: $I_1 = I_2 + IB$ (2)

(1) & (2)
$$\rightarrow \frac{U_0 - UB}{R_1} = \frac{U_B}{R_2} + I_B \rightarrow U_0 - UB = UB \frac{R_1}{R_2} + IB R_1 \rightarrow U_B \frac{R_1 + R_2}{R_2} = U_0 - IB R_1$$

 $\rightarrow U_B = U_0 \frac{R_2}{R_1 + R_2} - I_B \frac{R_1 R_2}{R_1 + R_2}$

02/05/2023

U. Blumenschein, Introduction into Electronics

Differential amplifier R_2 12 R₁ 11 U • Ua $U_{2\bullet}$ R₁ R_2 -

[1]
$$U_{-} = U_{+} = U$$

[2] $I_{1} = \frac{U_{1} - U}{R_{1}} = I_{2} = \frac{U - Ua}{R_{2}}$
 $\Rightarrow \frac{U_{1}R_{2}}{R_{1}} - \frac{UR_{2}}{R_{1}} = U - Ua$
 $\Rightarrow U_{a} = U \frac{R_{2} + R_{1}}{R_{1}} - U_{1}\frac{R_{2}}{R_{1}}$ (*2)

• If used with negative feedback (U_a connected with U-) the op amp regulates U+ = U-[1]

• Negligible input current (into the op amp) [2]

Differential amplifier I_1 I_1 I_2 I_2 I_1 I_1 I_2 I_2

• Ua

[1]
$$U_{-} = U_{+} = U$$

[2] $I_{1} = \frac{U_{1} - U}{R_{1}} = I_{2} = \frac{U - Ua}{R_{2}}$
 $\Rightarrow \frac{U_{1}R_{2}}{R_{1}} - \frac{UR_{2}}{R_{1}} = U - Ua$
 $\Rightarrow U_{a} = U \frac{R_{2} + R_{1}}{R_{1}} - U_{1}\frac{R_{2}}{R_{1}}$ (*)

$$\longrightarrow U = U_2 \frac{R_2}{R_1 + R_2}$$
 (voltage divider) (**

 If used with negative feedback (U_a connected with U-) the op amp regulates U+ = U- [1]

Negligible input current (into the op amp) [2]

 R_2

U

R₁

Differential amplifier

[1]
$$U_{-} = U_{+} = U$$

[2] $I_{1} = \frac{U_{1} - U}{R_{1}} = I_{2} = \frac{U - Ua}{R_{2}}$
 $\Rightarrow \frac{U_{1}R_{2}}{R_{1}} - \frac{UR_{2}}{R_{1}} = U - Ua$
 $\Rightarrow U_{a} = U \frac{R_{2} + R_{1}}{R_{1}} - U_{1} \frac{R_{2}}{R_{1}}$ (*)

$$U = U_2 \frac{R_2}{R_1 + R_2}$$
 (voltage divider) (**)

**) in (*)

$$\rightarrow U_a = U_2 \frac{R_2}{R_1 + R_2} \frac{R_1 + R_2}{R_1} - U_1 \frac{R_2}{R_1}$$

$$\rightarrow \quad U_{\mathbf{a}} = \frac{R_2}{R_1} \ (U_2 - U_1)$$

 If used with negative feedback (U_a connected with U-) the op amp regulates U+ = U- [1]

Negligible input current (into the op amp) [2]

Schmitt trigger: positive feedback

If U_a rises, the difference between U_a and U_+ will rise. This causes U_a to rise even further until maximum output voltage (given by the power supply voltage) is reached

 $U_{\rm a} = v_0 \cdot (U^+ - U^-)$

02/05/2023

Schmitt trigger: positive feedback

If U_a rises, the difference between U_a and U_+ will rise. This causes U_a to rise even further until maximum output voltage (given by the power supply voltage) is reached

Example: $U_{max} = 14V$, $R_1 = 10\Omega$, $R_2 = 4\Omega$ If $U_a = 14V$, $U_+ = 4V$. If U_e exceeds 4V, $U_- > U_+$ and U_a flips to -14V

