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OUTLINE
Semiclassical Transport
Boltzmann equation
Dri�-diffusion model
Energy Balance & Hydrodynamic Models
Semiconductor Physics
Thermodynamics of Semiconductors, Doping, Fermi Level, QFLs
The non-linear Poisson Equation
Generation, Recombination, Mobility, Diffusivity, Resistivity
Semiconductor Device Building Blocks
the pn junction
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GENERAL POINT ABOUT ACCURACY
Most of the mathematics we do here is only loosely coupled to reality - even sophisticated
and careful commercial device simulations typically get actual measured quantities wrong
by factors of 2 or more. With the basic equations we show here you will NOT get
quantitatively accurate calculations for real devices
However, most of the behaviours (e.g. with Temperature, Field etc) will be roughly right. So
it is useful to know these things to start developing a "feel" for how a device structure you
look at will behave.
This is only the beginning - it takes a long time of looking at device structures and thinking
carefully about how the various implants and applied potentials are meant to work to get
a real intuition for what a device will actually do.
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BEFORE WE BEGIN - SEMICONDUCTOR MODELLING
There are roughly 3 "levels" of semiconductor models:
Quantum Mechanical: work out some actual solution (or approximate solution) to
Schrodinger equation
Kinetic: Treat electrons as scattering semi-classical particles, with various processes going
on
fluid-dynamical: Treat electrons and holes as (compressible, charged) fluids that move in
response to applied fields
The fluid-dynamical models are accurate down to about ~500nm for the "Dri�-Diffusion"
model. Thus, for most semiconductor detector applications, they are adequate (at least in
the pixel regions!). Trouble can happen at the times between when an energetic particle
arrives and excites the lattice, and when the distribution settles down.
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Hierarchy & (image from Computational Electronics by Vasileska & Goodnick)
We will discuss (briefly!) the Boltzmann Transport Equation, and then concentrate on Dri�-
Diffusion (whilst mentioning in passing Hydrodynamic Equations)
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THE BOLTZMANN EQUATION
Recall, from last time, we have already given up on a fully quantum mechanical approach.
The semi-classical approach starts from the point of assuming that we can validly talk
about having single particle wavefunctions, which we can regard as having classical-like
dynamics.
We start by introducing the phase space distribution function of electrons, ,
which represents the probability of finding an electron at position , with momentum  at
time .
In the absence of applied fields or temperature gradients,  would be the Fermi-Dirac
distribution.
We then consider processes which can change the phase space distribution. We treat the
momentum and spatial axes of the phase space as separate (there goes Heisenberg's
uncertainty principle and any hope of including spin!)

f(r, p, t)
r p

t

f
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 - velocity;  - force

 - processes which depend on spatial variations in the distribution function (e.g.
mechanical crystal strain, temperature gradients, thermal diffusion).

 - responses to external force fields (i.e.  is the applied Lorentz force).
 - the net rate of scattering processes contributing to the phase space density

(interactions with the lattice, phonons).
 - particle number change via generation or recombination (e.g. optical absorption,

thermal generation).

v F
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There are some approaches to device simulation etc that aim to directly solve some
version of the Boltzmann equation, perhaps including quantum mechanical extensions.
However, this is currently only possible for nano-scale devices (i.e. not particle detectors!)
We can simplify the BTE substantially by using an approximation for the collision
functional. In principle there are very many scattering processes that need to be included,
but many are only separately relevant at small spatial, high field, or short time scales. Each
process can be calculated using Fermi's Golden Rule, and included in a collision functional
approximation.
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(image above from Computational Electronics by Vasileska & Goodwin - an excellent book
to read!)
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RELAXATION TIME APPROXIMATION

Assume that for all the scattering processes, no net scattering occurs in equilibrium. Out of
equilibrium, assume that the distribution function relaxes with a characteristic timescale 
back to the equilibrium distribution  when scattering occurs

This is a 1st order differential equation in  which can be solved to give:

All the physics of the scattering processes have to be approximated in . Quite a tall order,
but to be fair, we can allow it to be dependent on various things in indirect ways.
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THE DRIFT-DIFFUSION MODEL

First, recall some semi-classical transport basics from last time. We regard the velocity of
the electron to be its group velocity, that is:

The work  done by a force  in time  is . Equating this work to a
change in the energy of the electron then gives:

One can stretch the analogy even further, take another derivative to get "acceleration" and
recover the  form of Newton's 2nd law. Care must be taken, though, because the
transport is diffusive (Field proportional to velocity not acceleration), so "acceleration" is a
misleading term. It is safest to never use the word "acceleration" when discussing semi-
classical electron transport

v = E(k)
1

ℏ
∇k

δW F δt δW = F ⋅ vδt

δW = E(k) ⋅ δk = ℏv ⋅ δk ∴ F = ℏ∇k

∂k

∂t

F = ma
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We take moments in  of the BTE and integrate out the momentum dependence. To fully
understand each term in this, a more advanced source (e.g. Computational Electronics or
"Transport Equations for Semiconductors" by A. Jungel).
Starting with the 0th moment:

The integral in the LHS term is just the spatial part only distribution (we'll call it  for
electrons). We can move  inside the divergence on the RHS. And using fundamental
theorem of vector calculus, we can re-write the 2nd term on the RHS as well

v

∫ fdp = ∫ v ⋅ fdp + ∫ F ⋅ fdp − ∫ dp + ∫ sdp
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Since there is a finite number of particles, and a finite total momentum, the surface
integral on the RHS must vanish. All scattering processes preserve total particle number,
and thus the  term must also vanish. The integrand in the first term on the RHS is
the velocity multiplied by the spatial distribution, which we can define to be the electron
current,

and so the above complicated equation simplifies to:

which is a continuity equation for electrons. A similar procedure on holes (which have
opposite charge) yields:

f − f0

≡ q ∫ fv ⋅ dpJn
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Now (strap in) we take the 1st moment of the BTE. For electrons:

First, note that the equilibrium distribution function  is even in , and so multiplied by
an odd function  and integrated, it must vanish. The same logic applies to the term on the
LHS. If we assume that the generation-recombination processes do not depend on
electron momentum, the same logic also applies to the last term. The first term on the
RHS is equivalent to taking an (unnormalised) r.m.s average of the velocity. So, we now
have:

where the last step involved an integration by parts.
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Finally we can return to our old friend  to do more work:

and invoking the effective mass approximation, we end up with:

The external force  just comes from the electric field due to the potential  (again we're
pretending magnetism doesn't exist for a while). If we also pretend (for a second) that
kinetic theory applied to these electrons, then we could invoke equipartition theorem to
say that , again pretending that effective mass actually is a mass.

v = E(k)1
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We now have:

you may recall, that in the free electron model from last time, we defined a quantity called
mobility . If we squint a bit and pretend that's effective mass on the bottom we
would then have:

If we made the Boltzmann assumption earlier, we can now invoke the familiar Einstein-
Smoluchowski relations (i.e. that ). If we didn't, well, actually it turns out this
still works but the reason that it does needs a few dozen pages and a more careful
derivation (which you can find in Computational Electronics chapter 6). Anyway, we now
have:

= ∇n − ∇V ⋅ nJn

qτ Tkb
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τq2
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= q ∇n − q n∇VJn Dn μn
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All the equations, written out for electrons and holes, are:

which, together, constitute what is known as the Dri� Diffusion Model. When combined
with a bit more semiconductor statistics (we're getting to it now), this full equation system
is known as the van Roosbroeck system.

= −q n∇V + q ∇nJn μn Dn
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DRIFT DIFFUSION MODEL - COMMENTS

Why bother going through all that hideous derivation from the BTE? Well, mainly because
whilst dri� and diffusion are physically reasonable processes intuitively, it is nice to see
that they arise directly from a kinetic approach as the first approximation.
Do not underestimate the Dri� Diffusion model's complexity. Though we have done major
approximations to obtain it, it is still equivalent to two sets of fully compressible (though
luckily non-turbulent) fluid dynamics, coupled by a generation / recombination term.
Dri� Diffusion model is an excellent intuition tool - at any scale where quantum effects are
not dominant, it gets things basically right, though quantitatively it will be wrong in many
ways, and miss out many subtle effects in real semiconductors.
This system (with some extensions, and not for nanoscale devices) is what the commercial
TCAD tools (Sentaurus, Silvaco) you will learn about in other lectures are solving when
doing device simulation.
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BEYOND DRIFT DIFFUSION - HYDRODYNAMIC MODEL
One way to go beyond the Dri� Diffusion model is to simply take more moments of the
BTE, and solve more coupled equations. This approach can never truly overcome the limit
of semi-classical dynamics (because the BTE itself is a fundamentally classical kinetic
formulation), though it can capture various dynamics and scattering processes more
accurately.
In particular, the DD model relies on there being only one single temperature throughout
the system. Higher order (so-called "hydrodynamic" or "energy balance") models can
remove this limitation, and are much better therefore at modelling situations where the
electron gas' temperature is different to the lattice's, (e.g. hot-carrier injection in MOSFET
channels), or when there is a temperature gradient across the device.
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HYDRODYNAMIC MODEL DERIVATION

Just kidding, we won't be doing this. See Computational Electronics, chapter 5.
The idea is basically this: define a quantity  that is proportional to various powers of

 (proportional with arbitrary constants at each power, because we want  to represent
e.g. carrier density, current density, etc etc). The 0th and 1st  give us something that
reduces to DD model, but if we le� out some of the assumptions on collision functional etc,
we would have:

$$ \frac{\partial \mathbf{J}n}{\partial t} = \frac{2 q}{m^*} \sum_i \frac{\partial W{ij}}{\partial
x_i} + \frac{n q^2}{m^*} \mathbf{E} - \le�<\frac{1}{\tau_m}\right> \mathbf{J}_n$$ where 
is the so-called "energy density tensor".

ϕ(p)
p ϕ
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The 2nd moment would give us:

which has introduced another quantity called the "energy flux" . Each balance
equation introduces another, ever more esoteric term. At some point we choose an
approximation for the collision functional and thus the  terms, and this will determine to
which level of energy balance equation we will solve. Solving an infinite number of balance
equations, would be equivalent to solving the BTE directly. In practice, it seems, most
commercial simulators don't go beyond Energy Flux (3rd moment). At this point, the
simulation is accurate enough until you hit the quantum level where totally different
approaches are needed.

= −∇ ⋅ + E ⋅ J − ⟨ ⟩ (W − )
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SEMICONDUCTOR PHYSICS - THERMODYNAMICS
In the simplest case, we can use the parabolic band approximation for density of states
(from last time). So, we have the density of states in the conduction band (with conduction
band edge ):

and effective density of states in the valence band (with valence band edge ):

The Fermi-Dirac occupation function is given by (where  is the Fermi energy):

Ec
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BOLTZMANN APPROXIMATION

Yep, more stuff confusingly called "Boltzmann". Anyway, hopefully you have seen before
that, at high temperatures (typically we say temperatures such that  :

Note the following derivations don't actually properly rely on this approximation. Unlike
other approximations we have taken, you can form the full Dri� Diffusion model without
doing this (and it has some improvement in accuracy for so-called "hot carrier" and high
applied bias situations). The solutions end up being not closed-form but in terms of the
Fermi-Dirac integral, though, and the formulae are a bit more complicated. For full details,
see e.g. Sze pp. 17-21

E − > 3 TEf kb
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CARRIER DENSITY

First thing to work out is the carrier densities  for electrons and  for holes. We use the

convention of a bar above a quantity meaning that quantity divided by , i.e. .
The carrier densities are given simply by:

and

n p

Tkb ≡Ef̄

Ef

Tkb
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¯ Ē ∫

Ev

0
−Ev

−−−−−√



05/05/2023, 09:49 Semiconductors II (Band Theory II)

localhost:1948/semiconductors2.md#/ 27/64

The integrals turn out to equate to constants - they are the form of the Gamma function
(under the Boltzmann approximation, anyway), and we end up with the important
equations for carrier densities:

The above expressions are important because most of the following results are derived
from simple manipulation of them.
Note that we had to assume a simplistic (parabolic) form of the density of states to get this
to work. In part, this is why we hold on to the parabolic band & effective mass
approximations so much!

where  and  are called the "effective density of states" and
depend on Temperature. They may be semi-empirical or use the
full parabolic approximation

n = (T )Nc e−( − )Ec̄ Ef̄

p = (T )Nv e−( − )Ef
¯ Ev̄

Nc Nv
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INTRINSIC DENSITY

The above definitions imply that the product  is given by:

with  the band gap. We call the quantity  the intrinsic concentration or intrinsic
density, and it allows us to write new equations for  and  that are more o�en used
(because this quantity  is relatively easy to actually measure).

where  is called the intrinsic Fermi Level, i.e. the Fermi level of an intrinsic
semiconductor (which just means without any doping - see later)

np

np = ≡ = ; ∴ =NcNve
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We can solve the above equation for the location of the Fermi Level:

The Fermi level therefore moves (pretty slowly) with temperature. Slowly enough that you
can't really make an insulator into a semiconductor without it melting. But fast enough
that this contributes a large part of the variation in carrier concentrations with
temperature. The band gap itself also varies (again, slowly) with temperature (a
reasonably good model is the Varshni Equation).

= = + lnEf Ei

+Ec Ev

2

Tkb

2

Nv

Nc
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LAW OF MASS ACTION

The kinetics of electrons & holes are simple. Whenever we create an electron, we also
create a hole! Thus, for an intrinsic piece of material, we must have

An alternative expression for the Fermi level is:
n = p = ni

= + T lnEF Ei kb
n

ni
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QUASI-FERMI LEVELS ("IMREFS")
Everything we have talked about up to now in terms of thermodynamics assumed
equilibrium (meaning, no applied external field). Imagine if there is such a field, that can
impart energy to electrons and holes.
Thinking in terms of our dri�-diffusion model, electrons and holes can thermalise very
rapidly (meaning, the energy distribution function within a band can return to something
that looks like equilibrium within a few scattering times (i.e. picoseconds). The bands can
only "talk to each other" via generation and recombination processes, and these take on
the order of the carrier lifetime, which is between nanoseconds & milliseconds in most
devices.
Even when the system is quite far from equilibrium, because of this mismatch in
timescales, there can exist a quasi thermal equilibrium state for electrons and holes
separately. So, even though we cannot define a single Fermi level for the system out of
equilibrium, we can define Quasi Fermi Levels (also known as "Imrefs").
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We can adapt our previous relations for  and  to include QFLs very simply. Suppose
we're applying a voltage  which therefore imparts energy  to all the carriers. By
definition, we no longer have a Fermi level (which is an equilibrium concept), but if the
energy change is not too large, we can assume a similar distribution for electrons and
holes separately.

 and  are the QFLs for electrons and holes, respectively.
The new "law of mass action" is:

so we can see that if  we recover the original situation. It is o�en convenient
to choose the zero reference energy level to be , and then the above become even
simpler.

n p
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DOPING
When we add dopant to the semiconductor, we are (conceptually) adding impurity levels
in the band gap either near the conduction (for n-type) or valence (for p-type) bands.

The semiconductor is now called "extrinsic". In equilibrium, we can solve for the
concentrations by adding the condition of charge neutrality, that is:
p + − n − = 0N+

D N−
A
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going back to our (equilibrium) equations for  and , we find for the extrinsic case (and
assuming all donors and acceptors are ionised for now):

The above expressions are rarely used, because in practice we usually have much more of
one type of dopant than the other present. For n-type we usually have ,
which leads to:

n p
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if we additionally have that  then the expressions are even simpler:

vice versa for . Note that in an extrinsic situation the carrier with the high
concentration is called (unsurprisingly) the majority carrier and the other the minority
carrier. Importantly, (including in particle physics detectors) it is very o�en the minority
carriers we care about.

≫ND NA

n = ; p =ND

n2
i

ND

≫NA ND
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CARRIER FREEZE OUT
At low temperatures, there can be insufficient energy to ionize all the dopants (referred to
as "carrier freeze out"). At high temperatures, the intrinsic density  increases, and
eventually will become higher than the extrinsic (dopant induced) concentrations. Below
plot from "Modern Semiconductor Devices for Integrated Circuits" by Chenming Hu.

ni



05/05/2023, 09:49 Semiconductors II (Band Theory II)

localhost:1948/semiconductors2.md#/ 37/64

THE NON-LINEAR POISSON EQUATION
Recall that in the dri� diffusion model, we had the potential  and the carrier densities 
and  included. But, also, above we showed that the influence of an external potential was
to modify the carrier distribution functions. Poisson's equation must (as always) be
satisfied:

where  and  are donor and acceptor densities, respectively.
substituting in the thermodynamic definitions of the densities (and referencing all
energies relative to ), we find:

(note the  on the LHS and the  terms on the RHS, this is a powerfully nasty non-
linear equation now!)

V n

p
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The above is called the Non-Linear Poisson Equation (of course "Linear Poisson equation
with non-linear source term" would be more accurate). It is the penultimate piece of the
van-Roosbroeck system puzzle. The final piece comes from checking what happens when
we substitute the thermodynamic definition of  into the DD current equation. First note
that:

and then we get:

invoking the Einstein relation again , we have:

a similar relation applies to holes. In other words, the currents are given by the QFLs in the
DD model.

n

∇n = (∇V − ∇ )n
q

Tkb
ϕn

= −q n∇V + q (∇V − ∇ )nJn μn Dn

q

Tkb
ϕn

μ T = Dqkb
= −q n∇V + q (∇V − ∇ )n = −q n∇Jn μn μn ϕn μn ϕn
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So, finally, how to solve a semiconductor problem (one way):
1. solve the NLPE in equilibrium (where  ) to get a self-consistent potential . In

equilibrium this also tells you  and . No need to solve continuity as no net current flows
in equilibrium

2. Apply some small bias, solve NLPE again to get a potential . This potential will no longer
be consistent with the continuity equations. So, solve the continuity equations to get 
and  (or equivalently, to get  and ). As a by-product, you will learn  and . Keep
solving until these two sets of equations are consistent

3. Apply some more bias, repeat step 2, and keep applying more bias until you reach the
desired conditions
The above is called Gummel's Method, and it is still a common flow in modern device
simulation (though others are available).

= = 0ϕn ϕp V

n p

V

ϕn

ϕp n p Jn Jp
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GENERATION & RECOMBINATION
Having thrown away most of quantum mechanics and complicated scattering processes to
get the DD model, we need to re-inject some physical reality to get good matches to real
behaviour. One place we do this is in the generation & recombination terms. There are
many possible effects to include (see le� from Computational Electronics).
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Most important (for detector physics!!) are: photogeneration, thermal generation, SRH
G/R, impact ionization. (Note that the processes responsible for generating primaries from
high energy particles e.g. Bragg scattering, compton scattering, pair production are not
included here!).
Most unintuitive is that direct band to band recombination is very slow in silicon, because
it requires phonon interactions to account for the crystal momentum conservation.
Intuition about Recombination - electrons & holes must be in the same place (spatially) to
recombine. Therefore expect most recombination mechanisms rate to depend on product

. In thermal equilibrium, there is no net recombination, and in thermal equilibrium,
, therefore the recombination rate:

This is true for SRH, thermal generation, Auger, etc etc.

np

np = n2
i

u ∝ np − n2
i
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SRH GENERATION / RECOMBINATION
Most important recombination mechanism in Silicon. "Trap" levels (arising due to
impurities or radiation damage) capture/emit electrons or holes, and then later
capture/emit the other species. The phonon accounting is much easier than direct
recombination / generation because the trap level can "hold on" to the electron for quite a
while. These trap levels are typically "deep" (i.e. near the middle of the band gap, not like
impurity levels for doping)
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DIFFUSIVITY & MOBILITY
Perhaps the most important extension to DD model to get some realistic results is allowing
the mobility (and diffusivity) to depend on other quantities, in particular the applied Field.
What is observed is that electrons exhibit "velocity saturation" in semiconductors. A�er
they reach a certain velocity, it becomes harder and harder to get faster. This is due to a
combination of band structure effects and energy loss mechanisms like phonons and (in
the extreme case) impact ionisation. There are literally hundreds of different empirical and
theoretical mobility models around, but the simplest reasonably good one is probably the
Caughey-Thomas formula using the Canaali measurements:

=μi

μi,0

(1 + )( )
|E|μi,0

vsat

βi
1

βi
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Mobility in Silicon (solid lines are electrons, dashed lines are holes)
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RESISTIVITY
Recall from last time that we could relate conductivity (via Drude model) to carrier density:

Thus, conductivity (more commonly, resistivity) is a useful quantity to measure in
semiconductors. It is not quite the same conceptually as the resistivity of a metal (where
you can't alter  much by applying voltages!).
As you'll hear in other lectures, high resistivity is crucial to many modern particle (& astro)
detector devices, because it allows us to obtain maximum depletion for minimum applied
bias & thus leakage current. The resistivity of the wafer depends critically on
manufacturing processes (see other lectures).

σ = nq + pqμn μp

n
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PHYSICS OF THE PN JUNCTION
Finally! We can discuss what happens when we put together two differently doped
semiconductor regions:

The important thing to realise is that the Fermi level will equilibrate accross the device...
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The carriers flow as shown above, and meet at the centre of the junction, where
recombination happens. This recombination serves to create a region of unscreened
dopants (called a "depletion region"). When the junction is put in reverse bias, the size of
this region increases. The following slides show a simple 1D simulation of solving the DD
model that I put together for a reverse biased pn junction with .
They include basic SRH recombination and Klaassen mobility model.

= = c 3NA ND 1016 m−
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DEPLETION LAYER APPROXIMATION

It is possible using a little extra simplification to calculate an approximate analytical
solution to Poisson's equation which gives the width of the depletion region and the built
in potential (which is useful for a lot of things in particular IV measurements). We don't
have time to go into full details but basically the potentials are quadratic and the depletion
width  is given by:

with

the built in potential

W

W = ( + )
2ϵ

q
V0

1

Na

1

ND

− −−−−−−−−−−−−−−−

√

= lnV0
Tkb

q

NAND

n2
i
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BREAKDOWN - ZENER EFFECT & AVALANCHE
A thing you will become intimately familiar with if you test or operate any silicon detectors
is breakdown. That is, when you reverse bias a pn junction too far and it eventually starts
conducting. There are two mechanisms:

1. Zener breakdown - in heavily doped & narrow depletion regions, what is happening is the
field inside junction has become high enough to enable some electrons to quantum
mechanically tunnel through the potential barrier. This is called the Zener effect.

2. Avalanche breakdown - in wider, lower doped regions, a random thermal fluctuation or
optical generation may release a minority carrier into the depletion region, which will
accelerate due to the high field. If the region is wide enough and it reaches a high enough
velocity, it will have enough energy to cause impact ionisation, releasing further carriers.
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PHYSICS OF THE MOS CAPACITOR
The MOS capacitor is an incredibly important device building block for MOSFET transistors
and some detectors (e.g. CCDs).

The models we talked about earlier didn't really include insulating layer boundary
conditions, so I won't go into detail on simulation etc. It is important to understand the
four "operating regions" of the device, though. This diagram shows an n-channel MOS
capacitor.
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1. accumulation - pretty useless for detectors and not shown in diagram above. Applying a
voltage less than the flatband voltage leads to the gate attracting holes. Only a small
difference below  is needed such that essentially all the potential is dropped across
the insulator, the majority holes "screening out" the potential entirely from the
semiconductor

2. flatband - setting the potential on the gate exactly right to have no free charges in the
device at all.

3. depletion - apply more voltage, majority carriers are pushed away from the gate, forming a
depletion region (similar to pn junction though mathematically slightly different). This can
be used to collect signal charges (e.g. like in a CCD or modern CMOS camera).

4. inversion - the magic happens. The band gets bend so much at the insulator interface that
generation of minority carriers starts happening at the interface. This is both how the
channel is formed in a MOSFET, and how a CCD can keep electrons buried in a packet
below the surface so they don't recombine.

VFB
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IMPORTANT THINGS WE MISSED OUT
actual detailed physics of the generation & recombination processes. This is especialy
crucial e.g. when thinking about radiation damage. Hopefully another lecture in this series
covers it in more detail.
any consideration of frequency dependence particularly crucial in the MOS capacitor
system
The Klaassen model of mobility the most widely used and best "basic" mobility model
discretization and solution process of the DD model really just for enthusiasts but is very
interesting and helps to understand what the TCAD is actually doing (would need several
more hours though!)
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RECOMMENDED READING
Solid State Physics - Ashcro� & Mermin - absolutely comprehensive presentation of solid
state physics including band structure
Computational Electronics: Semiclassical and Quantum Device Modeling and
Simulation - Vasileska & Goodnick - the absolute best text to follow on how to model &
treat semiconductors
Physics of Semiconductor Devices - Simon Sze - reference text on operations of various
types of semiconductor devices
Understanding Semiconductor Devices - Sima Dimitrijev - alternative and comprehensive
presentation of semiconductor physics from a devices perspective
Transport Equations for Semiconductors - Ansgar Jungel - deep dive discussion into
Boltzmann transport and higher order semi-classical models
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THANKS
This is only the 2nd year of AITL so there may still be many errors and problems with the
slides, sorry about that!
Any comments, questions & corrections greatly received:
daniel.weatherill@physics.ox.ac.uk

Speaker notes

mailto:daniel.weatherill@physics.ox.ac.uk

