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OUTLINE

• How bandstructure arises from basic QM

▪ Free Electron Gas

▪ Bloch's Theorem

▪ NFEM approach & Tight Binding Approach

• Important Properties of bandstructure

▪ Quasiparticles, crystal Momentum

▪ Density of States

▪ Electrons & Holes

• parabolic band approximation & effective mass

• Phonons

• Silicon & GaAs bandstructures

Hopefully, much of this is (perhaps not recent!) revision
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INTRO

In this lecture we will look at the (very light touch) basics of how bandstructure appears

from simple quantum mechanical considerations.

We will then discuss the parabolic band approximation which is relevant for >90% of

semiconductor detector work (if you are working on the CDMS experiment you will need

another lecture...)

Once we have bandstructure, we can then start doing actual "semiconductor physics"

but we won't talk about that until lecture #2.

This is probably the "drier" part, stick around and it gets more relevant a�er we cover the

background. Please feel free to put up hands throughout for questions.

There is a lot of detail we won't even touch on, but is important and relevant. The last

slide gives a good selection of books to look into this further!
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BLOCH'S THEOREM

A simple (but quite profound) result arising from the assumption of translational

symmetry in the solid state. Bloch's theorem states:

PROOF

We do the proof in 1D for clarity, but extension to 3D is pretty easy! Define a translation

operator  such that:

where  is the lattice constant. Clearly  is a unitary operator.

Solutions to the Schrödinger equation in a periodic potential

take the form:

where  is a function with the same periodicity as the

potential

|ψ⟩ = u(r)eik⋅r

u(r)

T̂ n

|ψ(r)⟩ = |ψ(r + na)⟩T̂ n

a T̂ n
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Because the potential is periodic, this operator must commute with the Hamiltonian

(and therefore energy eigenstates are also translation eigenstates).

Consider:

If the eigenvalues of  are given by  then the above implies:

which is satisfied, for example, by:

Using normalization, we have:

i.e.  = 1 and hence  for some .

|ψ(r)⟩ = |ψ(r + na + ma)⟩ = |ψ(r)⟩T̂ nT̂ m T̂ n+m

T̂ n λn

=λnλm λn+m

= A ; z ∈ Cλn ezna

⟨ψ|ψ⟩ = ⟨ψ   ψ⟩ = ⟨ψ|ψ⟩ ; ∴ ⟨ψ|ψ⟩ =∣
∣T̂

†

n T̂ n λnλ∗
n | |λn

2

| |λn =λn eikna k ∈ R
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The above allows us to write:

which can be satisfied for states  which can be written:

since  commutes with the Hamiltonian, these states are clearly also the eigenstates of

the Hamiltonian.

|ψ(r)⟩ = |ψ(r)⟩T̂ n eikna

|ψ⟩
|ψ(r)⟩ = u(r); iff u(r) = u(r + na)eikr

T̂ n
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FREE ELECTRON MODEL

The Drude-Sommerfeld (free electron) model is a combination of the classical Drude

conductivity model with fermi-dirac statistics. Electrons are assumed independent.

Consider the equation of motion of each particle in a classical gas, acted on by an

external Lorentz force (forget magnetic force for now), and which scatter back to zero

momentum with a timescale .τ

⟨p(t + δt)⟩ = (1 − ) ⟨p(t)⟩ − qE
δt

τ

= −qE −
d ⟨p⟩

dt

p

τ
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defining current density in terms of electron velocity as , we then find

so the conductivity  is :

NOTE that in this model we have the (average) electron velocity  proportional to

electric field . This is due to the diffusive nature of the transport: the scattering back to

zero breaks the usual pattern of Force being proportional to field. We then can define

another quantity  called mobility by:

J = −qnv

J = E
τnq2

m
σ

σ =
n τq2

m

v

E

μ

v = μE

μ = ∴ σ = μqn
qτ

m
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NEARLY FREE ELECTRON METHOD (NFEM)

• Assume periodic potential is weak then Bloch's theorem and insight from free electron

gas imply that the electron wavefunctions are modified plane waves. The Hamiltonian is

assumed to be that for a free electron plus a weak periodic perturbation representing the

crystal lattice

• Still Assume independent electrons we are not dealing with superconductivity or

spintronics here! For non-cryogenic semiconductors, assuming electrons don't directly

interact with each other is fine. (Bandstructure as a concept doesn't really work if this

doesn't apply)

Again we'll look in 1D but logic extends to 3D easily. Bloch's theorem tells us that the

wavefunctions will be periodic, so we can write them as a Fourier series.

|ψ(x)⟩ = (x) = (k)eikxuk eikx ∑
p

cp e
2πipx

a
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The potential  is (by definition) also periodic, so that:

Assuming nearly free electrons, we can consider single particle states  obeying the

TISE:

and noting that:

(r)V̂

V (x) = ∑
p

Vpe
2πipx

a

(x)ψk

(− + ) | ⟩ = | ⟩
ℏ2

2m
∇2 V̂ ψk Ek ψk

− |ψ⟩ = (k)
∇2

2
eikx ∑

p

cp

(k +
2πp

a
)2

2
e

2πipx

a

(x) |ψ⟩ = (k)V̂ eikx ∑
p

∑
q

cp Vqe
2πi(p+q)x

a
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we simply substitute into the TISE to get:

a simple re-labelling of variables then gets us:

The only way to satisfy this equation for all values of  is if each of the  terms separately

vanishes, and hence:

( − ) (k) + (k) = 0∑
p

(k +ℏ2 2πp

a
)2

2m
Ek cp e

2πipx

a ∑
q

∑
p

Vqcp e
2πi(p+q)x

a

( − ) (k) + (k) = 0∑
p

(k +ℏ2 2πp

a
)2

2m
Ek cp e

2πipx

a ∑
q

∑
p

Vqcp−q e
2πipx

a

x p

( − ) (k) + (k) = 0
(k +ℏ2 2πp

a
)2

2m
Ek cp ∑

q

Vqcp−q
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THE CENTRAL EQUATION

this is one of the most common ways to write what is called the central equation which

gives us constraints between the allowed Fourier coefficients of the Bloch wavefunctions

and the Fourier coefficients of the periodic potential.

As might seem obvious, analytic (or even simple numeric) solutions of this are all but

impossible for realistic situations. There are whole fields of theoretical condensed

matter physics devoted to solving this problem. Modern approaches are dominated by

Density Functional Theory, or the Hartree-Fock approximation (way beyond the scope of

today). However, there are two useful cases to look at now.

( − ) (k) + (k) = 0
(k +ℏ2 2πp

a
)2

2m
Ek cp ∑

q

Vqcp−q
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THE EMPTY LATTICE

If the lattice is empty, we have

and so all the  vanish and the central equation now reads:

To have non-trivial solutions for the electron wavefunction (i.e. for  not to all

vanish) we then obtain the dispersion relationship

i.e. the free electron result but periodic in k-space.

V (x) = 0
Vm

( − ) (k) = 0
(k +ℏ2 2πp

a
)2

2m
Ek cp

(k)cp

(k) =En

(k +ℏ2 2πp

a
)2

2m
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THE KRONIG-PENNEY MODEL

O�en, this model is solved via directly solving the TISE, which can be done in the case of

an infinitely repeating narrow "top hat" potential. A very related solution using the

machinery of the central equation can solve the problem in the case of an infinitely

repeating delta function potential in 1D.

We write the potential as:

whose Fourier series representation is given by:

(i.e. all the  in the central equation are equal to a constant )

V (x) = A δ(x − na)∑
n=−∞

∞

V (x) =
A

a
∑

n

e
2πnix

a

Vq
A
a
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The central equation then reduces to:

From our original definition of the wavefunction, we note that:

where  is the periodic (Bloch) function part of the wavefunction. Substituting in and re-

arranging, we obtain:

( − ) (k) + (k) = 0
(k +ℏ2 2πp

a
)2

2m
Ek cm

A

a
∑

n

cn

(k) = ψ(x = 0) = u(x = 0)∑
n

cn

u

(k) = u(0)cp

2m

ℏ2

A
a

− (k +
2mEk

ℏ2

2πp

a
)2
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If we use the "trick" of again summing both sides over all , we can then see that:

from which we can now drop the  on both sides. Hopefully at this point you can see

that this can be solved quite simply numerically. What is less obvious, is that it has an

analytical solution. Using the definition of the infinite sum of the cotangent (and ~20

lines of algebra not shown here!) the above leads to:

clearly, there are values of  for which no valid solution of  exists!

This solution can also be substituted back into the central equation to iteratively find the

Fourier coefficients of the wavefunction  (for semiconductor physics work, we

actually don't care too much about those!)

p

u(0) = u(0)
a

A
∑

p

2m

ℏ2

− (k +
2mEk

ℏ2

2πp

a
)2

u(0)

cos(ka) = cos( ) + sin( )2mEk
− −−−−

√

ℏ

A

ℏ

m

2Ek

− −−−√ 2mEk
− −−−−

√

ℏ
k Ek

(k)cp
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QUICK GRAPH OF NFEM BANDSTRUCTURE WITH  POTENTIALδ
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CONSEQUENCES OF NFEM & BANDSTRUCTURE

• (side note): analogous with X-ray diffraction, scattering amplitudes are proportional to

the structure factor. Systematic absences and also 0 motif factors can allow band gaps to

"close up" in 3D for some particular symmetry directions in particular structures (Silicon

X-point is the quintissential example - see later).

• Because of the discrete translational symmetry, all states can be "folded" back into the

1st Brillouin zone. In 1D, this is the reciprocal space between  and . In higher

dimensions, it is constructed as the Wigner-Seitz cell / Voronoi cell of the reciprocal

lattice (ask if interested).

all peturbative periodic potentials (except the empty lattice!)

introduce band gaps! This can be thought of in terms of Bragg

scattering of the electron wavefunctions off the Brillouin zones

− π
a

π
a
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TIGHT BINDING APPROACH / LCAO

Start from the opposite picture to NFEM: electron states are tightly coupled to atom

states and move around by "hopping" between sites.

Assume that the potential around a particular site can be approximated as a Linear

Combination of Atomic Orbitals (LCAO). Then the eigenfunctions of the Hamiltonian,

similarly are a linear combination of the energy eigenstates of those orbitals (think of

mixinfg the spherical harmonic eigenfunctions for the Hydrogenic model).

In reality, the best basis to use for this method in the solid state context are probably the

Wannier Functions - way beyond our purposes today. For the purposes of simplicity we

will also assume the orbitals are orthogonal, but this is not necessary for the model to

work.

Again, we will look at a 1D chain of atoms and derive the band structure
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SINGLE ORBITAL

We start by considering a single atomic orbital  where  labels the atom number

associated with that orbital.

Clearly, atomic orbitals by themselves don't obey Bloch's theorem. But we can make a

total linear combination of them obey it by using the ansatz:

(exercise for the reader: prove that this does satisfy Bloch's theorem!)

Using the variational method to find the ground state, we have:

| ⟩ϕn n

|ψ⟩ = | ⟩∑
n

eikna ϕn

|ψ⟩ = | ⟩Ĥ ∑
n

eiknaĤ ϕn

⇒ ⟨ψ ψ⟩ = ⟨ ⟩ = ⟨ψ|ψ⟩∣∣Ĥ∣∣ ∑
n,m

eik(n−m)a ϕm
∣∣Ĥ∣∣ϕn Enk
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we then assume that electrons can only "hop" one orbital at a time, i.e. we need only

consider nearest neighbours in the sum above. We label the matrix elements

 such that we can write:

It is reasonable (in 1D at least) to assume that the energy cost for hopping "le�" is the

same as for hopping "right", and we'll call this cost . There is an onsite energy for the

electron  also. We then have:

= ⟨ ⟩Hn,m ϕn
∣∣Ĥ∣∣ϕm

= = + +Enk ∑
n,m

eik(n−m)a
Hn,m Hn,n eika

Hn,n+1 e−ika
Hn,n−1

t
ϵ

= ϵ − t ( + ) = ϵ − 2t cos(ka)Enk eika e−ika
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NOTES FROM TIGHT BINDING

• For one orbital we only get one band, but it still has disallowed energies - i.e. everything

outside the band!

• For each orbital we add to LCAO we will get another band in the dispersion.

• The band looks very much like free electrons for small |k|
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BUT WHAT IS  ?

In the dispersion of free electrons, we have:

So, by analogy with classical mechanics,  is the momentum:

In solid state physics, we call  the crystal momentum because there is a subtlety.

Consider the action of the quantum mechanical momentum operator on a Bloch state:

k

E =
ℏ2

2m
|k|2

ℏk

E = ∴ p = ℏk
|p|2

2m
ℏk

|ψ⟩ = −iℏ |ψ⟩ = ℏk u − iℏ = ℏk |ψ⟩ − iℏp̂
∂

∂x
eikx eikx ∂u

∂x
eikx ∂u

∂x

i.e. Bloch states are not momentum eigenstates!
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WAIT, WHAT?

• The states we are dealing with are not quite electrons. More correctly we might call

them "quasi-electrons". These states cannot and do not exist outside of the lattice.

• Crystal momentum is conserved, but only up to a factor of the reciprocal lattice vector.

The translational symmetry of the lattice is a discrete (not continuous) symmetry. The

quantity that is conserved is 

• Technical note because the symmetry which generates crystal momentum is discrete, its

associated conservation law cannot be directly derived using Noether's theorem

• Luckily, for most purposes in semiconductor physics, you can think of crystal

momentum as momentum (absorption, scattering, laws of motion etc)

ℏk mod 2π
a
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DENSITY OF STATES

• If a system is well described by a bandstructure (plenty of caveats there), then in

principle the dispersion relation  contains all dynamical information about the

electron (and hole, we'll get there!) states.

• The related quantity of density of states per unit volume  is also o�en needed. It is

unambiguously defined by the combination of the dispersion relation and the geometry

of the system.

• A corollory of Bloch's Theorem is that when it applies, we also have Born-von Karman

boundary conditions (i.e. periodic boundary conditions). A consequence is that the Bloch

waves have wavelengths which are integer multiples of the lattice periodicity. This, in

turn, means that states are evenly spaced in  space

E(k)

g(E)

k
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This gets quite messy in 3D, so we stick to 1D for now (and show some 3D pictures later).

Because of the above condition, we can immediately write down the density of states in

 space:

where  is the total size of the system. (In 3D we could write , but only if

the system is isotropic in reciprocal space). The 2 in front comes from the fact that for

each value of , we can fit 2 electrons (via spin). This factor is different e.g. for phonons

where typically we have 3 polarisation modes in 3D.

We obtain a very useful relationship by just considering counting the total number of

states in the entire system:

k

g(k) = 2
L

2π
L g(k) = 2 V

(2π)3

k

g(k)dk = g(E)dE∫
π

a

− π

a

∫ ∞

0
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(This next bit is not rigorous, see Ashcro� & Mermin pp. 143-144 for chapter & verse)

Since  is a constant, the above suggests we can write:

the extension to 3D is reasonable, if not obvious:

where  is a contour of constant energy.

By analogy with classical optics, the quantity  is called the group velocity.

The calculation and form of  is so important (more next time!) that we will look at

several different "toy" examples in some detail

g(k)

g(E) = g(k)
∣
∣
∣

dk

dE

∣
∣
∣

g(E) = g(k) dS∫
S(E)

1

| E|∇k

S(E)
∂E

∂k

g(E)
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DENSITY OF STATES IN 1D CHAIN

Starting with the tight-binding dispersion for a 1D chain:

we start by finding the group velocity:

and then we use the previous expression for :

E = ϵ − 2t cos(ka)

= = −2t sin(ka)vg

∂E

∂k
g(E)

g(E) =
L

π

1

|2t sin(ka)|
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finally, we find an expression for  in terms of  from the dispersion

relationship

and so the density of states is:

2t sin(ka) E

E = ϵ − 2t 1 − kasin2− −−−−−−−−√

∴ = sin(ka)1 − ( )ϵ − E

2t

2
− −−−−−−−−−−−√

g(E) =
L

2tπ

1

1 − ( )ϵ−E

2t

2
− −−−−−−−−√
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DENSITY OF STATES IN PARABOLIC BAND IN 1D, 2D, 3D

Assume a dispersion relationship of the form:

states are evenly spaced in -space, so the "volume" of 1 -state in dimension d is .

We can then consider the total volume of -space filled up to energy .

 is the "spherical volume element" in  dimensions, , , .

The above implies:

E =
ℏ2k2

2m

k k Ld

(2π)d

k E

n = dk =
2

(2π)d
∫ | |kmax

0

Ωdkd−1 2

(2π)d
Ωd

|k|d

d

Ωd d = 2Ω1 = 2πΩ2 = 4πΩ3

∴ |k| = ; E =( )nd

2

(2π)d

Ωd

1

d ℏ2

2m
( )nd

2

(2π)d

Ωd

2

d
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This gives us, for 3D, the (hopefully!) familiar relationship:

we can now find density of states  via:

takeaway message (important!!):

= 3 nk3 π2

g(E)

(E) = = = |k ×gd

dn

dE

dn

dk

dk

dE

2

(2π)d
Ωd |d−1 m

kℏ2

∴ (E) =gd

2m

(2πℏ2 )d
Ωd( )2mE

ℏ2

d−2

2

(E) ∝ ; (E) ∝ ; (E) ∝g1
1

E
−−

√
g2 E0 g3 E

−−
√
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DENSITY OF STATES IN 2D TIGHT BINDING

We now consider a dispersion relationship of the form:

as in 1D, at small  this looks exactly like the parabolic case due to cos small angle

formula.

The density of states must be calculated using the full integral over contours, though,

and is more interesting.

It is based on the 2D case for parabolic bands, i.e. 

The DoS integral is impossible analytically. Numerically it is also very difficult. We

estimate the DoS by randomly choosing  points, working out the energy, and plotting

histograms

E = − 2t(cos( a) + cos( a))ϵ0 kx ky

|k|

E0

|k|

Semiconductors I (Band Theory I) http://localhost:1948/semiconductors1.md#/

35 of 62 02/05/2023, 13:23



Semiconductors I (Band Theory I) http://localhost:1948/semiconductors1.md#/

36 of 62 02/05/2023, 13:23



SIDE

• As a consequence of the periodicity of bandstructure, the dispersion relation must cross

the Brillouin Zone boundary at right angles. This may lead to divergences in the density

of states. Divergences may also occur (in 2D & higher) due to saddle points in the

dispersion.

• A divergence in density of states is usually not a problem, because in calculations we

generally integrate over it, and the nature of these divergences is logarithmic.

• These van-Hove singularities have important consequences on physical properties

though, in particular on the optical absorption of the material.
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FILLING OF BANDS & FERMI LEVEL

Electrons are fermions, and as such they "fill up" from lower energies to higher ones. Due

to spin, every available state in  space allows for 2 electrons. For example, a

monovalent material which has 1 atom per unit cell in its structure has a half full band.

The level at which the probability of occupation is 1/2 is called the "Fermi Level" (more

on this next time)

k
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• At finite temperature, the occupation probability "smears" out around the Fermi level.

• If the Femi level is in a region without any density of states (i.e. in a "band gap"), then

this smearing results in a small number of electrons being in the upper ("conduction")

band, and almost all of the lower ("valence") band being filled.

• The empty electron states in the valence band can move around as though they were

themselves charge carriers. We call these "holes".
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PARABOLIC BAND APPROXIMATION

Recall that when we looked at the simple tight-binding model, we obtained a dispersion

relation that looked like

If we consider values of  (i.e. near the bottom of the band), we can use the small

angle approximation :

Recall the dispersion relation for a free electron is:

If we measure the energies with respect to the band edge, we can by analogy write

E(k) = ϵ − 2t cos(ka)
k ≈ 0

cos(θ) ≈ 1 − θ2

2

E(k) ≈ ϵ − 2t + t(ka)2

(k) =Efree

ℏ2k2

2m

E(k) ≈ ; where =
ℏ2k2

2m∗
m∗ ℏ2

2ta2
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The quantity  is called the effective mass and more generally is defined as:

for a particular dispersion relationship. The parabolic band approximation works the

same way as a Taylor series - anything with a minimum or maximum looks quadratic if

you zoom in enough.

This approximation turns out to be so convenient and useful that even though it is quite

rough in many cases, in semiconductor physics we o�en go to quite extravagent lengths

to preserve its validity (by patching up other bits of physics - we will talk about this next

time). In particular, this is the basis of the "semi-classical" transport model - treating the

particles as though they were free, with the details of the actual quantum mechanical

physics encapsulated inside  (and a couple of other quantities).

m∗

=
1

m∗

1

ℏ2

E∂2

∂k2

m∗
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EFFECTIVE MASS IN 3D

• Because  is a vector, in fact the effective mass is technically a tensor quantity.

• image above (from nanohub.org) shows constant energy ellipsoid shapes in k-space for

Ge, Si and GaAs.

k
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• In some situations, need to consider the directions separately (the details of this would

be a whole hour talk on its own).

• In GaAs, due to its direct band gap and high symmetry, typically can use a scalar

approximation

• In Si, typically we need two effective masses, depending on what calculation we are

doing:

▪ density of states we use the geometric mean of the principal components of the

effective mass tensor. This is called 

▪ Conductivity we use the harmonic mean of the principal components. This is called

m∗
dos

m∗
cond
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PHONONS

Lattice vibrations are also quantised. These bosonic quasi-particle excitations are called

phonons. They carry energy, and crystal momentum.

For semiconductors, relevant as: - one of the principle energy loss mechanisms in

electron transport - providing crystal momentum during absorption and emission to

make sure crystal momentum conserved in indirect transitions

Responsible for most of the heat conductivity of the material, and also for sound

transmission.

Can interact with photons (but only on the optical branch, for energy/momentum

conservation reasons)
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FCC STRUCTURE
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• 4 lattice points per (conventional) unit cell

• FCC equivalent to hexagonal close packing (demo if time!)

• reciprocal lattice of FCC is a BCC lattice

• Wigner-seitz cell in reciprocal space is a truncated octahedron (good visualisation at

)http://lampx.tugraz.at/~hadley/ss1/bzones/fcc.php
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THE BANDSTRUCTURE OF GAAS

Semiconductors I (Band Theory I) http://localhost:1948/semiconductors1.md#/

52 of 62 02/05/2023, 13:23



Semiconductors I (Band Theory I) http://localhost:1948/semiconductors1.md#/

53 of 62 02/05/2023, 13:23



Semiconductors I (Band Theory I) http://localhost:1948/semiconductors1.md#/

54 of 62 02/05/2023, 13:23



Semiconductors I (Band Theory I) http://localhost:1948/semiconductors1.md#/

55 of 62 02/05/2023, 13:23



THE BANDSTRUCTURE OF SILICON
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IMPORTANT THINGS WE MISSED OUT

• How to measure bandstructure: most common method is Angularly Resolved

Photoelectron Emission Spectroscopy (ARPES)

• optical absorption & Joint Density of States & Fermi's Golden Rule

• other quantised phenomena & energy loss mechanisms relevant to semiconductors -

surface plasmons, polaritons, excitons
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RECOMMENDED READING

Band Theory and Electronic Properties of Solids - John Singleton great introductory

level discussion on bandstructure

Solid State Physics - Ashcro� & Mermin - absolutely comprehensive presentation of

solid state physics including band structure

Computational Electronics: Semiclassical and Quantum Device Modeling and

Simulation - Vasileska & Goodnick - the absolute best text to follow on how to model &

treat semiconductors

Physics of Semiconductor Devices - Simon Sze - reference text on operations of various

types of semiconductor devices

Understanding Semiconductor Devices - Sima Dimitrijev - alternative and

comprehensive presentation of semiconductor physics from a devices perspective
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THANKS

This is only the 2nd year of AITL so there may still be many errors and problems with the

slides, sorry about that!

Any comments, questions & corrections greatly received:

daniel.weatherill@physics.ox.ac.uk

Speaker notes
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