

Hands on: modifying the detector geometry

Lorenzo Sestini INFN-Padova

On behalf of the Muon Collider Detector and Physics group

MuCol: training on the detector design and physics performance tool - CERN- 6/7/2023

Istituto Nazionale di Fisica Nucleare

- In this hands-on you will learn how to modify the detector geometry. This is the basic
- Remember: the simulation is performed with *ddsim*, that is based on DD4HEP
- The main XML file that described the geometry is located in \$MUCOLL_GEO

[lsestini@lxplus905 mucoll-tutorial-2023]\$ ls \$MUCOLL_GEO											
/cvmfs/muoncollider.cern.ch/release/2.8-patch2/linux-almalinux9-x86_64/gcc-11.3.1/lcgeo-0.18.1-qp36lz4ohtjqltkvtvkirsyjkshsvg57/share/lcgeo/compact/Mu											
[lsestini@lxplus905 mucoll-tutorial-2023]\$ ls \$(dirname \$MUCOLL_GEO)											
BeamCal_o1_v01_01.xml	ECalPlug_o1_v01_02.xml	<pre>InnerTracker_o2_v06_01.xml</pre>	Nozzle_10deg_v0.xml	Solenoid_o1_v01_01.x							
BeamInstrumentation_o1_v01_01.xml	HCalBarrel_01_v01_01.xml	LumiCal_o1_v01_01.xml	OuterTrackerBarrelModuleDown.xml	TrackerDiskModuleIn.							
Beampipe_o1_v01_02.xml	HCalEndcap_o1_v01_01.xml	MuColl_v1.xml	OuterTrackerBarrelModuleUp.xml	TrackerDiskModuleOut							
ECalBarrel_02_v01_02.xml	InnerTrackerBarrelModuleDown.xml	MuColl_v1_mod.xml	OuterTracker_o2_v06_01.xml	<pre>Vertex_o2_v06_01.xml</pre>							
ECalEndcap_o2_v01_02.xml	InnerTrackerBarrelModuleUp.xml	MuColl_v1_vis.xml	README.md	YokeBarrel_o1_v01_01							

a list of constants that are used through the geometry files

Modify the detector geometry

knowledge to implement a new detector (instructions at https://mcdwiki.docs.cern.ch/tutorial/advanced/geometry/)

Coll/MuColl_v1/MuColl_v1.xml YokeEndcap_o1_v01_01.xml elements.xml materials.xml text_description.md

.xm

• MuColl v1.xml contains a list of includes that define specific subdetectors. It contains also

Detector description

MuColl v1.xml

```
<include ref="Beampipe_o1_v01_02.xml"/>
<include ref="Nozzle_10deg_v0.xml"/>
<!-- <include ref="BeamInstrumentation_o1_v01_01.xml"/> -->
<include ref="Vertex_o2_v06_01.xml"/>
<include ref="InnerTracker_o2_v06_01.xml"/>
<include ref="OuterTracker_o2_v06_01.xml"/>
<include ref="ECalBarrel_o2_v01_02.xml"/>
<include ref="ECalEndcap_o2_v01_02.xml"/>
<include ref="HCalBarrel_o1_v01_01.xml"/>
<include ref="HCalEndcap_o1_v01_01.xml"/>
<include ref="Solenoid_o1_v01_01.xml"/>
<include ref="YokeBarrel_o1_v01_01.xml"/>
<include ref="YokeEndcap_o1_v01_01.xml"/>
<!-- <include ref="LumiCal_o1_v01_01.xml"/> -->
<!-- <include ref="BeamCal_o1_v01_01.xml"/> -->
```

You can comment some include to exclude a detector and speed up the simulation

<constan <constar <constan <constar <constan <constan <constan <constan <constar <constan <constan <constan <constan <constan

Vertex o2 v06 01.xml

it	<pre>name="VertexEndcap_offset"</pre>	value="3*mm"/>
it	<pre>name="VertexEndcap_rmax"</pre>	<pre>value="Vertex_outer_radius - VertexEndcap_o</pre>
it	<pre>name="VertexEndcap_zmin"</pre>	value="70*mm"/>
it	<pre>name="VertexEndcap_zmax"</pre>	value="310*mm"/>
it	<pre>name="VertexEndcap_z1"</pre>	value="80*mm"/>
It	<pre>name="VertexEndcap_z2"</pre>	value="120*mm"/>
it	<pre>name="VertexEndcap_z3"</pre>	value="200*mm"/>
it	<pre>name="VertexEndcap_z4"</pre>	value="280*mm"/>
It	<pre>name="VertexEndcapModules"</pre>	value="16"/>
it	<pre>name="VertexEndcap_rmin1"</pre>	<pre>value="22*mm + VertexEndcap_offset"/></pre>
it	<pre>name="VertexEndcap_rmin2"</pre>	<pre>value="28*mm + VertexEndcap_offset"/></pre>
it	<pre>name="VertexEndcap_rmin3"</pre>	<pre>value="35*mm + VertexEndcap_offset"/></pre>
It	<pre>name="VertexEndcap_rmin4"</pre>	<pre>value="50*mm + VertexEndcap_offset"/></pre>
it	<pre>name="VertexEndcap0verlap"</pre>	value="1*mm"/>

As an example

<constant name="VertexEndcap z2" value="120*mm"/>

defines the position of the 2nd Vertex Endcap disk

Pay attention: do not introduce overlaps!!

Hands-on: moving a vertex detector sensor

1. Prepare a local directory and files with the geometry:

cp -r \$(dirname \$MUCOLL_GEO) MuColl_v1_mod1

<constant name="VertexEndcap_z2" value="150*mm"/> from 120 mm to 150 mm

3. Run the simulation with the new geometry: ddsim --steeringFile mucoll-benchmarks/simulation/ilcsoft/steer baseline.py \

4. Visualize the simulated events with

- mv ./MuColl v1 mod1/MuColl v1.xml ./MuColl v1 mod1/MuColl v1 mod1.xml
- 2. Modify the position of the 2nd endcap disk in ./MuColl_v1_mod1/Vertex_o2_v06_01.xml

- --compactFile=./MuColl v1 mod1/MuColl v1 mod1.xml --outputFile=./mumu H bb mod1.slcio
 - ced2go -d ./MuColl v1 mod1/MuColl v1 mod1.xml ./mumu H bb mod1.slcio

Changing the calorimeter technology

materials.xml

<material name="beam" state="gas"> <D unit="g/cm3" value="1.7e-14"/> <fraction n="0.363" ref="H"/> <fraction n="0.363" ref="N"/> <fraction n="0.117" ref="C"/> <fraction n="0.157" ref="0"/> </material>

<composite n="1" ref="Fe" /> </material>

ECalBarrel o2 v01 02.xml

<pre><layer pre="" repe<=""></layer></pre>	eat="40" vi	<pre>s="ECalLayerVis"></pre>			
<slice< th=""><th><pre>material =</pre></th><th>"TungstenDens24"</th><th>thickness</th><th>=</th><th>"1.90</th></slice<>	<pre>material =</pre>	"TungstenDens24"	thickness	=	"1.90
<slice< th=""><th><pre>material =</pre></th><th>"G10"</th><th>thickness</th><th>=</th><th>"0.15[;]</th></slice<>	<pre>material =</pre>	"G10"	thickness	=	"0.15 [;]
<slice< th=""><th><pre>material =</pre></th><th>"GroundOrHVMix"</th><th>thickness</th><th>=</th><th>"0.10</th></slice<>	<pre>material =</pre>	"GroundOrHVMix"	thickness	=	"0.1 0
<slice< th=""><th><pre>material =</pre></th><th>"Silicon"</th><th>thickness</th><th>=</th><th>"0.50</th></slice<>	<pre>material =</pre>	"Silicon"	thickness	=	"0 . 50
<slice< th=""><th><pre>material =</pre></th><th>"Air"</th><th>thickness</th><th>=</th><th>"0.10</th></slice<>	<pre>material =</pre>	"Air"	thickness	=	"0.10
<slice< th=""><th><pre>material =</pre></th><th>"siPCBMix"</th><th>thickness</th><th>=</th><th>"1.30</th></slice<>	<pre>material =</pre>	"siPCBMix"	thickness	=	"1.30
<slice< th=""><th><pre>material =</pre></th><th>"Air"</th><th>thickness</th><th>=</th><th>"0.25</th></slice<>	<pre>material =</pre>	"Air"	thickness	=	" 0. 25
<slice< th=""><th><pre>material =</pre></th><th>"G10"</th><th>thickness</th><th>=</th><th>"0.75</th></slice<>	<pre>material =</pre>	"G10"	thickness	=	"0. 75

Definition of the ECAL barrel layers, in this case repeated 40 times

It contains the definition of materials

```
*mm" vis="ECalAbsorberVis" radiator="yes"/>
*mm" vis="InvisibleNoDaughters"/>
*mm" vis="ECalAbsorberVis"/>
*mm" sensitive="yes" limits="cal_limits" vis="ECalSensitiveVis"/>
*mm" vis="InvisibleNoDaughters"/>
*mm" vis="ECalAbsorberVis"/>
*mm" vis="InvisibleNoDaughters"/>
*mm" vis="InvisibleNoDaughters"/>
```

sensitive="yes" limits="cal limits" define the sensitive layer

5/8

1. Add a material (PbF₂) in ./MuColl_v1_mod1/materials.xml

<material name="LeadDiflourite"> <composite n="1" ref="PB"/> <composite n="2" ref="F"/> </material>

2. Change the layer definition in ./MuColl_v1_mod1/ECalBarrel_o2_v01_02.xml

```
<layer repeat="5" vis="ECalLayerVis">
                <slice material = "LeadDiflourite" thickness = "40*mm" sensitive="yes" limits="cal limits" vis="ECalSensitiveVis"/>
                                                    thickness = "1*mm" vis="ECalAbsorberVis"/>
                <slice material = "Silicon"
                <slice material = "siPCBMix"</pre>
                                                    thickness = "3*mm" vis="ECalAbsorberVis"/>
                <slice material = "Air"</pre>
                                                    thickness = "1*mm" vis="InvisibleNoDaughters"/>
</layer>
```

3. Run the simulation with the new geometry and visualize the events (as in previous exercise)


```
<D type="density" value="7.77" unit="g/cm3"/>
```

with

Hands-on: changing the calorimeter technology

The detector geometry can be inspected in details with teveDisplay -compact ./MuColl_v1_mod1/MuColl_v1_mod1.xml

818

However this command takes quite a long time to load

And now ... hands on!!

hadronic calorimeter

- 60 layers of 19-mm steel absorber + plastic scintillating tiles;
- \rightarrow 30x30 mm² cell size;

7.5 λ_I.

electromagnetic calorimeter

- 40 layers of 1.9-mm W absorber + silicon pad sensors;
- \rightarrow 5x5 mm² cell granularity;

• 22 $X_0 + 1 \lambda_1$.

muon detectors

- 7-barrel, 6-endcap RPC layers interleaved in the magnet's iron yoke;
- 30x30 mm² cell size.

Detector

superconducting solenoid (3.57T)

tracking system

- Vertex Detector:
 - double-sensor layers (4 barrel cylinders and 4+4 endcap disks);
 - 25x25 µm² pixel Si sensors.

Inner Tracker: ٠

- 3 barrel layers and 7+7 endcap disks;
- 50 µm x 1 mm macropixel Si sensors.
- Outer Tracker:
 - 3 barrel layers and 4+4 endcap disks;
 - 50 µm x 10 mm microstrip Si sensors.

shielding nozzles

Tungsten cones + borated polyethylene cladding.

10/8