

Automated scheduling optimisation

Development status of the "Supercycle Optimiser" program

Sandy Easton (BE-OP-PS)

16th May 2023

Acknowledgements

Sandy Easton (BE-OP-PS)

Special thanks to

- <u>Hannes Pahl</u> (BE-OP-PS)
 - Made the whole program apart from the computation backend
 - PyQt UI for inputting scheduling requests
 - Interfaced program to Timing Server using LIC API (from BE-CSS)
 - Launching the Java algorithm and displaying the results
 - Excellent help and support

And also thanks to

- <u>Tibor Bukovics</u> (BE-OP-PSB) & <u>Andrea Callia</u> (BE-OP-LHC)
 - Software engineering support
- Jean-Charles Tournier (ICS) & Bertrand Lefort (BE-OP-AD)
 - Useful algorithm-whiteboard sessions
- <u>George Melvin</u> & <u>Alex Paulin</u> (UC Berkeley), <u>Spencer Gessner</u> (SLAC) & <u>Solve Slettebak</u> (ESS)
 Theoretical discussions and encouragement
- <u>Alex Scheinker</u> (LANL), <u>Andrew Wooff</u> (Napier), & <u>Mike McKerns</u> (Caltech/LANL)
 Broader scope of algorithms, and uniqueness of new functionality
- <u>Nico Madysa, Greg Kruk, Verena Kain, Zsolt Kovari</u> & <u>Andrejz Dvorak</u> (BE-CSS)

Programming assistance and raising project visibility

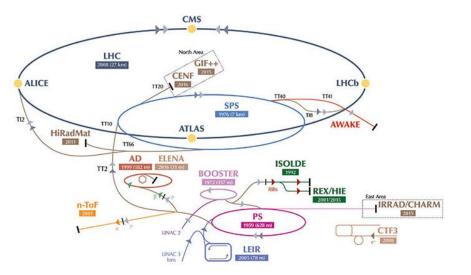
And also thanks to

- Bettina Mikulecs (BE-OP-PS) & Frank Tecker (CAS)
 - Long suffering supervisors ©
- Eva Maria Gonzalez Garcia (BE-OP-PS)
 - Technical student assisting project 2020-2021
- Prof. Andrew Ranicki (1948-2018) (Edinburgh)
 - Former advisor and supervisor
- and too <u>many operators</u> to mention!

Sandy Easton (BE-OP-PS)

16th May 2023

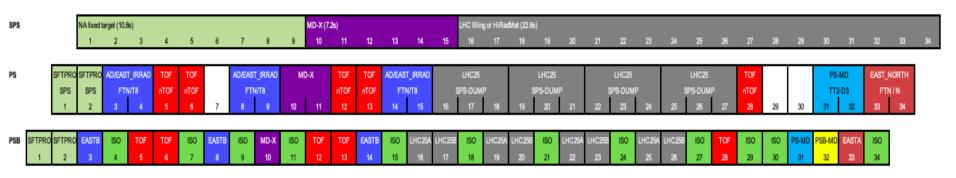
Overview



Sandy Easton (BE-OP-PS)

16th May 2023

Scheduling beams


•

- CERN's accelerators are a chain
 - Beams come from only two sources
- Trafficing beams inefficiently wastes experiment-time
 - Geneva traffic vs. Geneva airport....
 - Scheduling bottlenecks -> Fewer beams/minute
 - Not an insignifcant loss
- The schedule is adjusted during real-time operations
 - Every time an experiment's requirement changes
 - 20 80 times per day
- At any given time, this scheduling task is handled by the accelerator operators in the CCC
 - Knowledge of which beams are to be taken
 - Knowledge of all scheduling constraints
 - How many to whom?
 - User requirements, hardware constraints, etc.
 - Knowledge of which users are given highest priorities
- The operators agree upon a new schedule at every change
 - A.k.a. "change the * <u>Supercycle</u>"
- This schedule is used until the next change in a user requirement
- * "Supercycle" = the schedule of beams to be created by the accelerator chain

The Supercycle

- Observe
 - Green beams only using the booster (PSB user)
 - Red blue and brown beams to PS users
 - Pass through PSB & PS
 - Teal, Purple and Grey to SPS users
 - PSB, PS & SPS
 - And this still omits the LEIR...!
 - Behold, a real supercycle from the Timing App Suite (existing Supercycle edition software)

			1		2	3		4	5		0	7		8	9		10	11	1		13	14	15		16	17		10	15	
		SPS						SFT_PRC	_MTE_L4780	_2023_V1												LHC	_INDIV_1inj_0	20_2023_V	1					
		SPS						SFT_PRC	_MTE_L4780	_2023_V1												L	HC_PILOT_Q2	_2023_V1						
		1		2	3		4	5		0	7		8		9	10	11		12	13	1	4	15	10	1	7	18		19	20
	CPS	MTE_BB_	_23	MTE_BB_23												L	HC#1b_INDIV_23													
	CPS	MTE_BB_	_23													L	HC#1b_PILOT_23													
	1		2		3	4			6	7		8		9	10		11	12	13		14	15	16		17	18		19	20	
SB	MTE_20	23	MTE_202	13											LHCINDIV	_2023														
SB	MTE_20	23													LHC_PILOT	Т_2023														
		1		2	3	4		5	0		7			9		10	11	12		13	14	15		16	17		10	19		20
LE	EI																													
LE	-																													

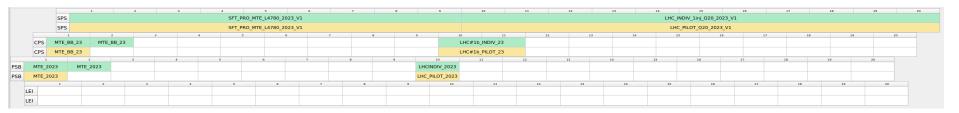
The Supercycle

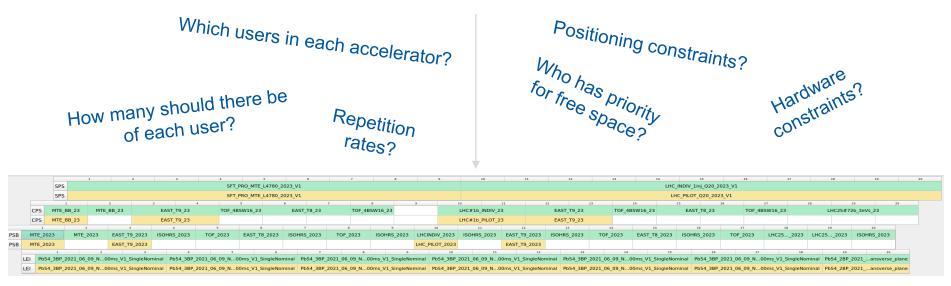
- Indeed, this is the skeleton when making a supercycle
 - The beams to the SPS users

			1		2	3		4	5		0	7	0		9	10		11		12	13		14	15		16	17		10	19	
		SPS						SFT_P	RO_MTE_L	4780_202	3_V1												LHC_I	NDIV_1inj_Q2	0_2023_V1						
		SPS						SFT_P	RO_MTE_L	4780_202	3_V1												LHC	_PILOT_Q20_	2023_V1						
		1		2	3		4		,	0		7	8	9	1	D	11		12	13		14	1		10	1	17	18	19		20
	CPS M	ITE_BB_	23 M	E_BB_23												LHC#1b_IN	DIV_23														
	CPS M	ITE_BB_	23													LHC#1b_PI	LOT_23														
	1		2			4		5	6		7	8	9		10	11		12		13	14		15	16		17	18		19	20	
	MTE_2023	3	MTE_2023											LHCI	NDIV_2023																
3	MTE_2023	3												LHC_	PILOT_2023																
		1			3		4	5		0	7	8		2	10		11	12		13		14	15		16	17		10	19	2	2
LEI	1																														
LEI																															

- CPS beams are then placed in the available white space
 - ISOLDE, EAST, AD, TOF
 - MD users
 - Beams under adjustment

			1	3	4	5	6	7	0	9	10	11	12	13	14	15	10	17	10	19
		SPS			SFT	PRO_MTE_L4780_	2023_V1								LHC	INDIV_1inj_Q20_2	023_V1			
		SPS			SFT	PRO_MTE_L4780_	2023_V1								LF	IC_PILOT_Q20_202	3_V1			
		1	2	3	4	5	6	7	0	9	10	11	12 1	13	14	15	16	17	10	19 20
	CPS	MTE_BB_23	MTE_BB_23	EAST_T9_23	TOF_4	BSW16_23	EAST_T8_23	TOF_4E	35W16_23		LHC#1b_INDIV_2	3	EAST_T9_23	TOF_	4BSW16_23	EAST_T8_23	TOF_4	BSW16_23	LHC25#7	2b_3eVs_23
	CPS	MTE_BB_23		EAST_T9_23							LHC#1b_PILOT_2	3	EAST_T9_23							
	1	2	3	4	5	6	7	0	2	10	11	12	13	14	15	16	17	10	19	20
PSB	MTE_20	023 MTE_2	2023 EAST_T9	2023 ISOHRS_2023	TOF_2023	EAST_T8_2023	ISOHRS_2023	TOF_2023	ISOHRS_2023	LHCINDIV_2023	ISOHRS_2023	EAST_T9_2023	ISOHRS_2023	TOF_2023	EAST_T8_2023	ISOHRS_2023	TOF_2023	LHC252023	LHC252023	ISOHRS_2023
PSB	MTE_2	023	EAST_T9	2023						LHC_PILOT_2023		EAST_T9_2023								
		1	2	3 4	5	0	7	0	2	10	11	12	13	1	14 15	16	17	10	19	20
1	LEI Pb5	54_3BP_2021_06_	09_N00ms_V1_Si	ngleNominal Pb54_3B	P_2021_06_09_N	.00ms_V1_SingleNo	ominal Pb54_3BP	_2021_06_09_N0	00ms_V1_SingleNor	ninal Pb54_3BP	2021_06_09_N0	0ms_V1_SingleNo	minal Pb54_3BP_3	2021_06_09_N.	00ms_V1_SingleNo	minal Pb54_3BP	2021_06_09_N	.00ms_V1_SingleNo	minal Pb54_2BP_	2021ansverse_plane
	LEI Pb5	54_3BP_2021_06_	09_N00ms_V1_Si	ngleNominal Pb54_3B	P_2021_06_09_N	.00ms_V1_SingleNo	minal Pb54_3BP	_2021_06_09_N0	00ms_V1_SingleNor	ninal Pb54_3BP	2021_06_09_N0	0ms_V1_SingleNo	minal Pb54_3BP_3	2021_06_09_N.	00ms_V1_SingleNo	minal Pb54_3BP	2021_06_09_N	.00ms_V1_SingleNo	minal Pb54_2BP_	2021ansverse_plan


• The individual beams are hard to make outthere, don't worry it's just


SPS		NA fixed ta	rget (10.8s) 2	3	4	5	6	7	8	9	MD-X (7. 10	2s) 11	12	13	ч	15	LHC fillin 16	ng or HiRaa 17	Mat (22.8s 18) 19	21	21	20	23	24	25	26	27	28	28	จา	31	9	89	น
PS	SETER	SFTPRO	AD/EAST		OF	TOF	0	AD/EAST	IRRAD	м		TOF		AD/EAS	t irrad		LHC25			LHC25		-	LHC25	-		LHC25	20	TOF	20	2.7	PS-MD)	EAST_NO	35 DRTH	24
	SPS 1	SPS 2	FTN/I 3			TOF 6	7	FTN 8	-			nTOF 12	nTOF 13		N/T8 15		SPS-DUM			PS-DUMP 20	p 21	22	PS-DUM 23	24		PS-DUMP 26	27	nTOF 28	29	30	TT2-D 31		FTN / 33		
PSB	SFTPRO SFTPRO	EASTB 3	ISO 4	TOF T 5	OF 6	150 7	EASTB 8	ISO 9	MD-X 10	ISO 11	TOF 12	TOF 13	EASTB 14	ISO 15	LHC25A 16	LHC25B 17	ISO 18	LHC25A 19	LHC25B 20	ISO 21	LHC25A 22	LHC258 23	ISO 24	LHC25A 25	LHC258 28	ISO 27	TOF 28	ISO 29	ISO 30	PS-MD 31	PSB-MD E	ASTA 33	ISO 34		

Changing the supercycle

• This schedule creation is performed manually by the CPS operators

- It takes 1-5 minutes to edit a sequence, depending on complexity
- All operators should verify it
- 20-80 times per day

Scheduling

- Typically supercycles range from 20-40 blocks* long
 - Occasionally higher
 - As high as 80 BPs!
- The supercycle is "cyclic"
 - It repeats cyclically until changed
 - This is surprisingly tricky for algorithms to deal with...!
- Beams can each take up between 1-3 blocks in the CPS accelerators
 - Beams can fit under each other
 - Parallel scheduling
 - 1. Baby Terrapin
 - 2. Similarities to other scheduling problems (KT plug)
- Beams can need to be regularly spaced etc. (a.k.a. "Constraints")
- This presents a sizable scheduling challenge!

* The supercycle is quantised into blocks of 1.2 seconds, a.k.a. "basic periods" or BPs

Why is automation necessary

- This task takes up considerable operator time
 - CPS operators put most time into this task
 - Considerable distraction for administrative task
- Estimated 30 minutes to 3 hours cumulative operator time per day
 - Requires communal input from operators of all accelerators
- Existing system is effective for manual scheduling like this
 - Manually edit schedules and send it to Timing hardware
 - "Locking" system to prevent concurrency mistakes
 - Requires plenty communication and good timing
- However, manual scheduling itself is
 - Laborious
 - At least occasionally sub-optimal
 - Open to some errors

Why is optimisation important?

- Example
 - Suppose it is found that a rearrangement of the Supercycle can allow an extra instance to a user
 - This user had two instances, but now gets three
 - 50% increase in rate of data taking for that user
- Example
 - Consider a Supercycle of length 25 BP
 - It is found to be suboptimal by a single BP in one accelerator going unnecessarily unused
 - Akin to a 4% loss in that accelerator's uptime
 - AFT....? 😊
 - 2% for a 50 BP supercycle
- Small scheduling inefficiencies are a serious bottleneck for operations
 - Small oversights can cost a lot

Schedule boundaries

1. Suppose the SPS changes its skeleton request from

2. To

- 3. The PS, booster and LEIR operators must all now fill this space
 - ... in "the same way" they did before
 - · obey all their previous constraints and requests

									4							50			12		13	34		13	14			38		19	50		23	22		23	24		8	28	27		28	29	30	3		32
	SPS					5	T_PRO_M	TE_L4780_202	23_V1																					LHC_6Inj_I	B12300_FT	100_020_202	23_V1														MD_26_L60	0_020_2022_V1
	SPS					s	FT_PRO_M	TE_L4780_202	23_V1													L	HC_INDIV_1	inj_Q20_202	13_V1																						MD_26_L60	0_020_2022_V1
														•	2.9		13	12		13	14		15	14			3		19		20	23	2	2	23	2	4	25	24	6	27	28		29	30	35	32	33
CPS	MTE_BE	38_23 M	TE_88_23	EAS	T_T8_23		EA	IST_T9_23	TOP	F_485W16	23 TOF_4	BSW16_23		LHC	25#56b_8	b4e_23		LHC	25#48b_3eV	/s_23	LH	C25#48b_3e	Vs_23	LHI	C25#48b_3e	rVs_23	U	C25#48b_3	leVs_23	L	HC25#48b_	3eVs_23		EAST_T8_	13		MD	74888_2	3 TOF_4BS	W16_23		B	AST_T9_23		LHC#1b_IND/	/_23	AD_4B	ISW16_23
CPS	÷						EA	ST_T8_23					DEGAU	SS_1BP	LHC	#1b_INDIV_2	13																	EAST_T8_	13							E	AST_T8_23		LHC#1b_INDO	/_23	EAST	IT_N_23
					4			6						10		11	12		13		14	15		38			18	19		20	21		22	23		24	29		26	27	28		29	38	31	32		33
MTE,	2023	MTE_2023	EAST_T8_2	023 ISOH	R5_2023	EAST_T9_202	13 1501	HR5_2023	TOF_2023	т т	OF_2023	LHC25.	_2023	LHC252	023 154	OHRS_2023	LHC251	_2023 1	50HR5_2023	UHC25_	s_2023	ISOHR5_202	3 LHC25_	5_2023	ISOHRS_202	23 LHC25,	5_2023	ISOHRS_20	123 LHC25	s_2023	ISOHRS_2	23 EAST	_T8_2023	STAGIS5_2	123 ISOH	IR5_2023	MTE_2023	TO	2023	ISOHRS_2023	EAST_T9_2	123 150	HR5_2023	LHCINDIV_203	3 ISOHR5_202	3 AD_5_8?	2023 ISOHR	IS_2023
в						EAST_T8_202	13							LHCINDIV_2	2023																	EAST	_T8_2023								EAST_T8_2	123		LHCINDIV_200	3	EAST_N_	1023	
					4			4							30	33		12			14		15	24			58		19	20		21	22		23	24		28	26			28	29			34	32	33
LEI Pt	b54_28P_20	021ansvers	se_plane Pb54	28P_2021	ansverse_pi	ane Pb54_2	BP_2021	ansverse_pla	ane Pb54_2	28P_2021_	ansverse	plane Pb	64_28P_2	021ansv	erse_piani	e Pb54_38	P_2021_06_	09_NOMIN	AL_3600ms_	V1_H1	Pb54_38P_3	021_06_09_	NOMINAL_3	600ms_V1_H	11 Pb54	38P_2021_0	06_09_NOM	NAL_3600m	15_V1_H1	Pb54_3BP	2021_06_0	NOMINAL_	3600ms_V1	H1 Pb54_	IBP_2021_0	06_09_N00	ms_V1_Single	Nominal	Pb54_3BP_2	1021_06_09_N	.00ms_V1_Sing	eNominal	Pb54_38P	2021_06_09_N	.00ms_V1_Single	Nominal Pb5	_2BP_2021a	ansverse_plane
LEI Pt	b54_28P_20	021ansvers	se_plane Pb54	28P_2021	ansverse pi	ane Pb54_2	BP_2021	ansverse_pla	ane Pb54_3	28P_2021_	ansverse	plane Pb	64_28P_2	021ansv	erse piani	e Pb54_3BP	2021_06_0	9_N00m	V1_Singlet	Nominal P	b54_38P_20	21_06_09_N	00ms_V1	SingleNomi	nal Pb54_3	38P_2021_0	6_09_N00	ns_V1_Sing	leNominal	Pb54_38P_	2021_06_09	N00ms_V3	1_SingleNor	inal Pb54_	BP_2021_0	06_09_N00	ms_V1_Single	Nominal	Pb54_3BP_2	021_06_09_N	.00ms_V1_Sing	eNominal	Pb54_38P	2021_06_09_N	.00ms_V1_Single	Nominal Pb5	2BP_2021a	ansverse_plane

4. This task must be performed whenever any operator has to change their request

Project aims

- Automate the task of building supercycles
- Explore and implement constraint-solving and optimisation algorithm
 - Crux of the project!
- Proof of concept for automation principle
 - Reduce scheduling requirements to UI input
 - Deliver maximally-efficient scheduling for near real-time use
 - Should be faster than a human as a general rule
- Produce tool for operational use in CCC
 - Interface optimiser to existing Supercycle editor software
 - Timing App Suite used for all viewing and driving tasks

Sandy Easton (BE-OP-PS)

Inputting a scheduling request

Sandy Easton (BE-OP-PS)

Inputting a scheduling request

1. SPS defines the "skeleton" supercycle

Usual method: Timing App Suite

		-	_	1	2	3		4	5	0	7		8	9	10	11	12	13	14	15	10	17	10	19
		S	SPS					SFT_P	RO_MTE_L4780	_2023_V1									LHC_IN	IDIV_1inj_Q20_2	023_V1			
		s	5PS					SFT_P	RO_MTE_L4780	_2023_V1									LHC	PILOT_Q20_202	3_V1			
			1	2		3	4		,	0	7	8	9		10 11	12	13	14	15		10	17	18 19	20
	C	CPS M1	TE_BB_23	MTE_B	B_23										LHC#1b_INDIV_23									
	C	PS M	TE_BB_23												LHC#1b_PILOT_23									
	-	1		2	3	4		5	6	7	8	5	>	10	11	12	13	14	15	16	17	18	19	20
PSB	м	ITE_2023	MTE	_2023									LH	CINDIV_2023										
PSB	м	ITE_2023											LH	C_PILOT_2023										
		3	1	2	3		4	5	0		7	8	2	10	11	12	13	14	15	16	17	18	19	20
	LEI																							
	LEI																							

- All BCDs are available to be read
- 1. Demonstration of input and output BCDs for optimiser, in TAS & OptimiserUI
- 2. Have prepared 3 inputs for us to use

N.B. keeping track of beams

- 1. Beams are named by concatenating the names of their constituent LSA cycles
- 2. Horible example
- 3. This is unwieldy, so here we make use of <u>beam aliases</u>
- 4. Picture of beam aliases

Demonstration of

- Importing an SPS fixed sequence
- A simple request
 - Using beam aliases*

What are we looking for?

We are looking for a Supercycle that is

- 1. Optimal
 - Produce as many usable beams per minute as possible from the complex
- 2. <u>Valid</u>
 - All constraints for all beams must be satisfied

Optimality with prioritising

- 1. If any extra space is available in the Supercycle, it is allocated to users according to their priority.
- 2. Every user has a minimum required precence in the Supercycle
- 3. Allocations above this need to be ranked for the optimiser to have an objective function
 - This makes an interesting discretised objective function to be dealt with....
- 4. It's not pretty but it works...
 - Thanks be to Hannes!

Demonstration of

- Using the priority list
- Changing SPS sequence transparently

User Allocations

Sandy Easton (BE-OP-PS)

16th May 2023

Demonstration of

- Maximum allocation
- Minimum allocation
 - Types of occurrences calculation

Types of occurences definition

Existing

- Fixed
 - MDs
- x per y BPs
 - Constant-rate experiments
 - TOF, EAST, ISOLDE
- Percentage
 - ISOLDE 37-40%
- Potential
 - "Equally spaced"
 - From user sources
 - ISOLDE current & current-per-shot
 - TOF radiation monitors

Output

- 1. If a solution is possible, output is a Supercycle that could be sent to the timing system
 - 1. With the allocation/runtime and the sequence
- 2. Picutre
- 3. If a solution is not possible, output describes why
 - 1. Constraints
 - 2. Request unsaisfiable

Demonstration of failures

- Constraints Unsatisfiable
- Allocations too high
- Max and min auto adjust
- No LEIRs
- Guidance on why requests were not possible

Positioning constraints

Sandy Easton (BE-OP-PS)

16th May 2023

Demonstrations

- 1. Min
 - 1. Cyclicity
- 2. Max
 - Max spacings buggy in hangover... (Implementation error)

Always Follow

- It is regularly requested that one beam directly follow a particular other
 - Typically for a constant hysteresis
- The optimiser must thus allow this to be requested

Demonstrations

Always follows

Block placements

Some experiments (typically @ ISOLDE) ask for their shots to be grouped together

For example

- In groups of 2
- In groups of 2,3 or 4
- In groups of 8!

The optimiser must all thus be able to handle these kinds of requests

Demonstration

- Block placements
- Blocks with spacings

- Three use-cases pinpointed:
 - 1. AD/East scenario
 - 2. Comparison
 - Two beams to be alternated between using the Request
 - MD users
 - 3. Parasitic
 - Desperately hoping for an external condition...!
- Comparison type implemented
- AD/EAST with partial functionality
- Parasitic not implemented at all (minor)

Demonstration

- Beams in spare
- Combination demos

Planned but not yet implemented

- POPS RMS constraints
 - Limit what can be requested to not overload POPS
 - Requires numerical parameter
- AD wait-time optimiser
 - Figured-out but not implemented
- Occurrences calculation from external sources (ISOLDE, TOF)
- Decoupled LEIR
- Adding duplicate beams to dump
- User preferences
- Speed boosts

Demonstration

General demo

Algorithm & Implementation

Sandy Easton (BE-OP-PS)

What is the algorithm doing?

- The algorithm (Terrapin) is basically a sequence of two algorithms:
 - First one (WGP) deals with positioning constraints
 - Creates a 3-D network containing all possible valid supercycles
 - Second one (Kiwanda) finds a supercycle with the best allocation to users
 - Finds a suitably "long" path in the 3-D network
- Terrapin optimises by gradually increasing the requested allocation
 - According to the priority list
 - Can be seen in the terminal output

Satisfying constraints

- There are numerous constraint-solvers available. In OP, we already use
 - a <u>heuristic-repair algorithm</u> for some constrained scheduling
 - Scheduling LHC hardware tests
 - CSP algorithms
- Here we must not just find <u>a</u> valid sequence
 - We need enough knowledge of the valid sequences to find our preferred one
- Most constraint-solving algorithms focus on <u>if</u> the constraints are solvable
- Unsuitable for mapping paths for optimisation
- WGP uses a "correct-by-construction" approach to map the space of supercycles
 - Directly builds all possible extensions, no need to check for violations.
 - Efficient construction and storage of entire schedule-space

Runtime

- Development: Functionality vs runtime
- The slowest part of the algorithm is the path-tracing part
- Astronomically large possibilities
 - 1. Current runtime
 - 2. Where can it be sped up?
 - 1. 2-3 orders of magnitude easily
 - 2. 4-6 orders reasonably easily
 - 3. More on complex problems
- Is quite involved work. Decision to be made

Next steps

Sandy Easton (BE-OP-PS)

16th May 2023

Development and deployment

- 1. Broader plans from within BE
 - There is an perational need for this tool
 - Is On-the-fly possible
- 2. On the fly is actually easy
 - Should decide which route to take

Documentation


1. Algorithm

1. Document for publication

2. Implementation

- 1. Handover?
- 2. Other uses

Questions

Image credit to @CaroCalendula

Sandy Easton (BE-OP-PS)

