Brief intro to Flavor Physics @ FCC-ee

Gino Isidori
[University of Zürich]

- General considerations
- The special role of the 3rd family
- Highlights of FCC-ee in \textit{tau} \& \textit{b} physics
- Conclusions
General considerations [On the importance of indirect NP searches]

- We have good reasons to expect new degrees of freedom in the TeV-scale domain. However, no direct signals of New Physics has been observed so far at the high-energy frontier (whose exploration is far from being complete...)

No clear indications on the precise location of the New Physics threshold

- We should not forget that in the last ~ 40 years all the discoveries at the high-energy frontier [c, b, t, H] were anticipated by indirect indications from indirect searches (flavor/CP and EWPO).

Hard to expect a discovery at High Energies without **indirect clues** at Low Energies...
General considerations [On the importance of indirect NP searches]

Hard to expect a discovery at HE without indirect clues at low energies (general field-theory argument):

\[
A(\psi_i \rightarrow \psi_j + X) = A_0 \left[1 + \frac{c_{NP} m_W^2}{c_{SM} \Lambda^2} \right]
\]

\[
\mathcal{L}_{NP-EFT} = \mathcal{L}_{SM} + \sum_i \frac{c_{NP}}{\Lambda^{d-4}} O_i^{d \geq 5}
\]
General considerations [On the importance of indirect NP searches]

Hard to expect a discovery at HE without indirect clues at low energies (general field-theory argument):

\[
A(\psi_i \to \psi_j + X) = A_0 \left[1 + \frac{c_{NP} m_W^2}{c_{SM} \Lambda^2} \right]
\]
General considerations [On the importance of indirect NP searches]

Hard to expect a discovery at HE without indirect clues at low energies (general field-theory argument):

\[A(\psi_i \rightarrow \psi_j + X) = A_0 \left[1 + \frac{c_{NP}}{c_{SM}} \frac{m_W^2}{\Lambda^2} \right] \]
\textbf{General considerations} [On the importance of indirect NP searches]

The FCC-ee offers a \textbf{unique opportunity} in this respect with the huge statistics @ the Z pole:

\[A(\psi_i \rightarrow \psi_j + X) = A_0 \left[\frac{c_{\text{SM}}}{M_W^2} + \frac{c_{\text{NP}}}{\Lambda^2} \right] \]

For the clean observables (pure stat. error) determined by Z decays:

\[\Lambda_{\text{NP}} \mid_{N_Z \ [\text{LEP}]} \sim 10 \times \Lambda_{\text{NP}} \]

\[c_{\text{NP}} \mid_{N_Z \ [\text{FCC-ee}]} = 0.003 \times c_{\text{NP}} \times 10^5 \times N_Z \ [\text{FCC-ee}] \]

\textbf{Unprecedented jump in precision!}
General considerations [On the importance of indirect NP searches]

The FCC-ee offers a unique opportunity in this respect with the huge statistics @ the Z pole:

\[A(\psi_i \rightarrow \psi_j + X) = A_0 \left[\frac{c_{SM}}{M_W^2} + \frac{c_{NP}}{\Lambda^2} \right] \]

\[\Lambda_{NP} \]

\[c_{NP} \]

\[N_Z \text{ [LEP]} \]

\[\sim 10 \times \Lambda_{NP} \]

\[0.003 \times c_{NP} \]

\[10^5 \times N_Z \text{ [FCC-ee]} \]

\[\Lambda_{NP} \]

\[c_{NP} \]

\[\tau \tau \text{ [Belle]} \]

\[\sim 6 \times \Lambda_{NP} \]

\[0.03 \times c_{NP} \]

\[10^3 \times \tau \tau \text{ [FCC-ee]} \]

For th. clean observables (pure stat. error) determined by Z decays

Unprecedented jump in precision!

For \(b \bar{b} \) & \(\tau \tau \) pairs we have to take into account also Belle-II (~ 50 \times Belle), & LHCb

But... → LHCb is poor on missing-energy modes (virtually all tau decays..)

→ At Belle-II there are no \(B_s \), and \(b \) & \(\tau \) have a very small boost
The special role of the 3rd family
The special role of the 3rd family

For a long time, the vast majority of model-building attempts to extend the SM was based on the *implicit* hypotheses of *flavor-universal* New Physics

- Concentrate on the
 Higgs hierarchy problem
- Postpone the flavor problem to higher scales

3 gen. = “identical copies” up to high energies

Less compelling after the LHC results:

No clear sign of NP from direct searches
The special role of the 3rd family

For a long time, the vast majority of model-building attempts to extend the SM was based on the implicit hypotheses of \textit{flavor-universal} New Physics.

- Concentrate on the Higgs hierarchy problem
- Postpone the flavor problem to higher scales

3 gen. = “identical copies” up to high energies

Less compelling after the LHC results:

\textit{No clear sign of NP from direct searches}

\textit{strong bounds on NP \textit{coupled universally} to all families}

\textit{worsening of the Higgs hierarchy problem}
The special role of the 3rd family

CMS preliminary

Overview

3rd family NP

Universal NP

Selection of observed exclusion limits at 95% C.L. (theory uncertainties are not included).
The special role of the 3rd family

Shift of paradigm to address both the Higgs hierarchy problem and the flavor puzzle: multi-scale UV completion with flavor non-universal interactions

Main idea:

- Flavor non-universal interactions already at the TeV scale:
 - 1st & 2nd gen. have small masses because they are coupled to NP at heavier scales

3 gen. = “identical copies” up to high energies

Energy

Λ_1 → ψ_1 mass
$\psi_{1,2} & \psi_3$

Λ_2 → ψ_2 mass
$\psi_2 & \psi_3$

$\Lambda_{3,H}$ → ψ_3 mass
ψ_3

Λ_{EW} → SM EFT

Dvali & Shifman '00
Panico & Pomarol '16
Bordone et al. '17
Allwicher, GI, Thomsen '20
Barbieri '21
Davighi & G.I. '23
The special role of the 3rd family

Shift of paradigm to address both the Higgs hierarchy problem and the flavor puzzle: multi-scale UV completion with flavor non-universal interactions

Effective organizing principle for the flavor structure of the SMEFT
The special role of the 3rd family

Shift of paradigm to address both the Higgs hierarchy problem and the flavor puzzle: *multi-scale* UV completion with *flavor non-universal* interactions

A renewed phenomenological interest in this type of approach has been triggered by the B-physics anomalies (*hinting to violations of lepton flavor universality, mainly in 3rd gen.*)

But the construction has an intrinsic, more general, interest:

- Explain the origin of the flavor hierarchies
- Allow TeV-scale NP coupled (mainly) to 3rd gen. → Higgs sector stabilization

G. Isidori – Flavor Physics @ FCC-ee

FCC pheno Workshop – CERN, 5-7 July 2023

Allwicher, GI, Thomsen '20
Davighi & G.I. '23

→ talk by Joe Davighi
The special role of the 3rd family

Renewed phenomenological triggered by the B-physics anomalies:

N.B.:
1) The drop in significance of the neutral-current anomalies does not imply a major shift in the preferred parameter space
The special role of the 3rd family

Renewed phenomenological triggered by the B-physics anomalies:

N.B.:

1) The drop in significance of the neutral-current anomalies does not imply a major shift in the preferred parameter space.

2) Beside the (low) significance in present data, this set-up has an interesting “UV motivation” → useful benchmark for FCC-ee studies.

SU(4)[3]×SU(3)[12] × G\textsubscript{EW}

TeV-scale U\textsubscript{1} coupled mainly to 3rd gen.

SU(3) × SU(2)\textsubscript{L}×U(1)\textsubscript{Y}
Highlights of FCC-ee in tau & b physics
E.g.: (I) LFU tests in tau decays

| $|g_\mu/g_e|$ | $\Gamma_{\tau\rightarrow\mu}/\Gamma_{\tau\rightarrow e}$ | $\Gamma_{\pi\rightarrow\mu}/\Gamma_{\pi\rightarrow e}$ | $\Gamma_{K\rightarrow\mu}/\Gamma_{K\rightarrow e}$ | $\Gamma_{K\rightarrow\pi\mu}/\Gamma_{K\rightarrow\pi e}$ | $\Gamma_{W\rightarrow\mu}/\Gamma_{W\rightarrow e}$ |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| 1.0018 (14) | 1.0021 (16) | 0.9978 (20) | 1.0010 (25) | 0.996 (10) |

<table>
<thead>
<tr>
<th>g_{τ}/g_{μ}</th>
<th>$\Gamma_{\tau\rightarrow e}/\Gamma_{\mu\rightarrow e}$</th>
<th>$\Gamma_{\tau\rightarrow\pi}/\Gamma_{\mu\rightarrow\pi}$</th>
<th>$\Gamma_{\tau\rightarrow K}/\Gamma_{\mu\rightarrow K}$</th>
<th>$\Gamma_{W\rightarrow\tau}/\Gamma_{W\rightarrow K}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0011 (15)</td>
<td>0.9962 (27)</td>
<td>0.9858 (70)</td>
<td>1.034 (13)</td>
<td></td>
</tr>
</tbody>
</table>

| $|g_{\tau}/g_e|$ | $\Gamma_{\tau\rightarrow\mu}/\Gamma_{\mu\rightarrow e}$ | $\Gamma_{W\rightarrow\tau}/\Gamma_{W\rightarrow e}$ |
|-----------------|-----------------|-----------------|
| 1.0030 (15) | 1.031 (13) |

- NP expectation from motivated NP (→ flavor deconstruction) up to current bounds (i.e. $\sim 2 \times 10^{-3}$)
- SM theory precision $\sim 10^{-5}$
- Belle-II can (at most) reach an error $\sim 0.3 \times 10^{-3}$
- FCC-ee could go below 10^{-4} !

Unique opportunity!
Highlights of FCC-ee in tau & b physics

E.g.: (1) LFU tests in tau decays

<table>
<thead>
<tr>
<th>$\Gamma_{\tau \to \mu}/\Gamma_{\tau \to e}$</th>
<th>$\Gamma_{\pi \to \mu}/\Gamma_{\pi \to e}$</th>
<th>$\Gamma_{K \to \mu}/\Gamma_{K \to e}$</th>
<th>$\Gamma_{K \to \pi \mu}/\Gamma_{K \to \pi e}$</th>
<th>$\Gamma_{W \to \mu}/\Gamma_{W \to e}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>g_{\mu}/g_{e}</td>
<td>$</td>
<td>1.0018 (14)</td>
<td>1.0021 (16)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$\Gamma_{\tau \to e}/\Gamma_{\mu \to e}$</th>
<th>$\Gamma_{\tau \to \pi}/\Gamma_{\pi \to \mu}$</th>
<th>$\Gamma_{\tau \to K}/\Gamma_{K \to \mu}$</th>
<th>$\Gamma_{W \to \tau}/\Gamma_{W \to \mu}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>g_{\tau}/g_{\mu}</td>
<td>$</td>
<td>1.0011 (15)</td>
</tr>
</tbody>
</table>

- **NP expectation** from motivated NP up to current bounds (i.e. $\sim 2 \times 10^{-3}$)
- **SM theory precision** $\sim 10^{-5}$
- Belle-II can (at most) reach an error $\sim 0.3 \times 10^{-3}$

FCC-ee could go below 10^{-4}!
Highlights of FCC-ee in tau & b physics

E.g.: (I) LFU tests in tau decays

LFU violations in tau decays expected in motivated LQ models addressing the B anomalies

Allwicher, GI, Selimovic, ’21
Allwicher, GI, Lizana, Selimovic, Stefanek, ’23
E.g.: (I) LFU tests in tau decays

LFU violations in tau decays expected in motivated LQ models addressing the B anomalies

Allwicher, GI, Selimovic, ’21
Allwicher, GI, Lizana, Selimovic, Stefanek, ’23

bit.ly/3kkuuyg

G. Isidori – Flavor Physics @ FCC-ee

FCC pheno Workshop – CERN, 5-7 July 2023
Highlights of FCC-ee in tau & b physics

E.g.: (I) LFU tests in tau decays

LFU violations in tau decays expected in motivated LQ models addressing the B anomalies

Allwicher, GI, Selimovic, ’21
Allwicher, GI, Lizana, Selimovic, Stefanek, ’23

4321 model [vector LQ]

hypothetical 3σ bands with $\Gamma(\tau \to \mu \nu \nu)$ & $\Gamma(\tau \to e \nu \nu)$ @ 2×10^{-4}
Highlights of FCC-ee in tau & b physics

E.g.: (II) LFV in tau & B decays

Lepton Flavor Violation of the type $\tau \rightarrow \mu$ naturally large ($\sim |V_{cb}|$) in several NP models

...including the vector LQ [*]

[*] upper bound on $\tau \rightarrow \mu$ mixing reduced by $\sim \frac{1}{2}$ due to new R_K
Highlights of FCC-ee in tau & b physics

E.g.: (II) LFV in tau & B decays

Lepton Flavor Violation of the type $\tau \rightarrow \mu$ naturally large ($\sim |V_{cb}|$) in several NP models

...including the vector LQ [*]

[*] upper bound on $\tau \rightarrow \mu$ mixing reduced by $\sim \frac{1}{2}$ due to new R_K
Highlights of FCC-ee in tau & b physics

E.g.: (III) Rare B decays

The kinematical configuration with boosted b's and tau's (from Z decays) + “clean” environment, gives to the FCC-ee b-physics program a special advantage (compared to B-factories & LHC-b) to a series of very interesting rare B decays

III.a All decays into tau leptons:

\[B \rightarrow K^* (K) \tau^+\tau^- : \quad BR_{\text{SM}} \sim 10^{-7} \]

Golden modes related to present anomalies → potential huge NP effects

- \(BR_{\text{exp}} (B \rightarrow K\tau^+\tau^-) : < 2 \times 10^{-3} [\text{Babar}] \)
- Belle-II (\(B \rightarrow K^*\tau^+\tau^- \)): \~\sim 1 \text{ event @ SM rate (with small S/B)}
Highlights of FCC-ee in tau & b physics

Detailed study of $B \rightarrow K^{*}\tau^{+}\tau^{-}$ [highly non-trivial channel also @ FCC-ee]:

[Graphical representation of the study of $B \rightarrow K^{*}\tau^{+}\tau^{-}$]

- Precision of BF measurement as a function of the resolution
- Invariant B0 mass with sel solutions and natural number of event
Highlights of FCC-ee in tau & b physics

Detailed study of $B \rightarrow K^{*+}\tau^{+}\tau^{-}$ [highly non-trivial channel also @ FCC-ee]:

Precision of BF measurement as a function of the resolution

- SV and TV longitudinal smearing: 20 μm

Belle II (50 ab$^{-1}$)

$C_{LR}^c = 0$

$C_{LR}^c = -C_{LL}^c$

T. Miralles
[Cracow meeting]
Highlights of FCC-ee in tau & b physics

Detailed study of $B \rightarrow K^*\tau^+\tau^-$ [highly non-trivial channel also @ FCC-ee]:

![Graph showing precision of BF measurement as a function of the resolution](image1)

![Graph showing the SM prediction of $B(B^+ \rightarrow K^{+}\tau^{+}\tau^{-})$](image2)

- **Aebischer, GI, Pesut, Stefanek, Wilsch, 23**

G. Isidori – Flavor Physics @ FCC-ee

FCC pheno Workshop – CERN, 5-7 July 2023
E.g.: (III) Rare B decays

The kinematical configuration with boosted b's and tau's (from Z decays) + “clean” environment, gives to the FCC-ee b-physics program a special advantage (compared to B-factories & LHC-b) to a series of very interesting rare B decays

III.a All decays into tau leptons:

\[B \to K^* (K) \tau^+ \tau^- : \quad \text{BR}_{\text{SM}} \sim 10^{-7} \]

III.b Charged-currents (w & w/o taus)

\[B_{c,u} \to \tau \nu \]

\[\frac{B(B_{u(c)} \to \tau \nu)}{B(B_{u(c)} \to \mu \nu)} \quad \text{Very interesting LFU tests below 1 \%}, \quad \text{provided th. control on QED corrections...} \]

III.c FCNC inclusive modes:

\[B \to X \ell \ell \quad \& \quad B \to X \nu \bar{\nu} \quad \text{Decay modes sensitive to a variety of NP models, with good th. control compared to exclusive modes} \]

→ talk by Claudia Cornella
Highlights of FCC-ee in tau & b physics

Detailed study of $B_c \rightarrow \tau \nu$

Amhis, Hartmann, Helsens, Hill, Sumensari, ’23

\[
R_c = \frac{\mathcal{B}(B_c^+ \rightarrow \tau^+ \nu_{\tau})}{\mathcal{B}(B_c^+ \rightarrow J/\psi \mu^+ \nu_{\mu})}
\]
Highlights of FCC-ee in tau & b physics

Detailed study of $B_c \rightarrow \tau \nu$

Amhis, Hartmann, Helsens, Hill, Sumensari, '23
Concluding remarks

- In the absence of a clear indication for the next energy threshold, a new generation of indirect NP searches with EWPO + Flavor is a must → unique opportunity with FCC-ee

- In the Flavor sector there will be two other important players before FCC-ee (LHCb-II + Belle-II), but FCC-ee has key advantages in specific b & τ modes due its peculiar environment ($boosted b$ & $\tau + clean$)

- From a model-building perspective, these b and τ modes are very interesting probes of a wide class of motivated models (\rightarrow flavor deconstruction)

- More work is needed to fully exploit the discovery potential of FCCee in this area. Three main directions:
 - feasibility studies;
 - SM precision calculations;
 - identification of NP benchmarks \leftrightarrow correlation studies