

Functional Safety at BE-ICS

Borja Fernández Adiego Andrea Germinario Enrique Blanco Viñuela Frédéric Chapron Peter Sollander

31/05/2023

Agenda

- A few basic concepts about Functional Safety
- 2 Functional Safety projects at BE-ICS
- Management of Functional Safety projects at BE-ICS

Risks at the industrial installations at CERN

CERN particle accelerators

Risks at the industrial installations at CERN

CERN industrial facilities

Risk for the **personnel**, the **installations** (economic losses), the **environment**, the **reputation** of the organization, etc.

Risk definition and risk reduction

Tolerable risk at CERN

HSE risk matrix https://edms.cern.ch/document/1114042/2

Table 1 – Risk matrix

Table 3 – Severity categories

		Probability of the hazardous event						Severity description	
Riske	evaluation		Very low (1)	Low (2)	Medium (3)	High (4)		People	Slight injuries, no treatment needed.
Minimal (A)			(A1)	(\(\Lambda\)	(\(\)		Minimal (A)	Environment	Not applicable.
tv lial				(A2)		(P(4)		Property	Not applicable.
eri	LOW (B)		(B1)	1021		(B4)		Deemle	Injuries or temporary, reversible illnesses not resulting in hospitalization
ote	Medium (C)		(C1)	(C2)	(C3)	(C4) 🔶		People	and requiring only minor supportive treatment.
ي م	High (D)		(D1)	(D2)	(D3)	(D4)	Low (B)	Environmont	Isolated and minor, but measurable, impact on some component(s) of a
								Linvironment	public resource.
								Property	Minor property damage in the facility.
								Dooplo	Injuries or temporary, reversible illnesses resulting in hospitalization of
			Table 2 - Probal	nility categories			Madium (C)	People	variable but limited period of disability.
		-		sinty categories			Mediulii (C)	Environment	Serious impairment of the functioning of a public resource.
Prob	ability	Occurrence of t	the hazardous eve	nt				Property	Major property damage in the facility.
Very	low (1)	Extremely unlik	ely to occur during	g task; once per ye	ar or less.			People	Death from injury or illness, permanent disability or chronic irreversible
Low ((2)	Unlikely to occu	ur during task; m <u>or</u>	e thar once per ye	ear, maximum of	once per month.		Георіс	illness.
Medium (3) Incident may occur during task: several times per month, maximum of once per week			High (D)	Environment	Permanent or long term loss of a public resource (drinking water, air,				
High (4) Likely to occur s		several times during task several times per week						etc.).	
1 BII	(")	Entery to occur .	several times duri		es per week.			Property	Loss off facility.

Table 4 - Action levels

Risk level	Action
Low (A1, A2, B1)	Acceptable risk: no actions need to be taken.
Medium (A3, A4, B2, B3, C1, C2, D1)	Unacceptable risk: actions are necessary to reduce the risk.
High $(PA, C2, C4, D2, D2, D4)$	Unacceptable risk: immediate actions are necessary to reduce the
nigii (64, CS, C4, D2, DS, D4)	risk promptly.

Tolerable risk at CERN

CERN accelerators risk matrices (BE-MPE) https://edms.cern.ch/document/2647881/1

LHC example

		[1m - 20m)	[20m - 1h)	[1h - 3h)	[3h - 6h)	[6h - 12h)	[12h - 24h)	[24h - 2d)	[2d - 1w)	[1w - 1M)	[1M - 1Y)	[1Y - 10Y)
	1/H	U	U	U	U	U	U	U	U	U	U	U
	1/Shift	U	U	U	U	U	U	U	U	U	U	U
ailure	1/Day	А	U	U	U	U	U	U	U	U	U	U
ode	1/Week	А	А	A	А	U	U	U	U	U	U	U
equency	1/Month	А	А	A	А	A	А	U	U	U	U	U
	1/Year	А	А	A	А	А	А	A	А	←	U	U
	1/10Years	А	А	A	А	А	А	А	А	A	•	U
	1/100Years	А	А	A	А	А	А	А	А	А	A	U
	1/1000Years	А	А	А	А	А	А	А	А	А	А	А

Failure mode consequence (severity) – LHC downtime

Risk reduction factor $RRF = \frac{\lambda_1}{\lambda_2}$ $RRF = \frac{1}{1y} / \frac{1}{100y} = 100$ Related to SIL

Functional Safety

- The goal is to **ensure safety** in our industrial installations
- Functional Safety is, "Systems that lead to the freedom from **unacceptable risk** ... by the proper implementation of one or more automatic protection functions (often called safety functions)." from TÜV SÜD
- Functional safety standards:
 - **IEC 61508**: Functional Safety of Electrical / Electronic / Programmable Electronic Safety-related Systems
 - **IEC 61511**: specific for the process industry
 - IEC 62061: safety of machinery
 - IEC 13849: safety-related Parts of Control Systems
 - Specific industry standards (e.g chemical industry, radioprotection, etc.)
- Functional Safety certified courses (by TÜV Rheinland):
 - Safety Instrumented Systems and
 - **Process Hazard & Risk Analysis**

unit

Risk for the people, the environment and the installations

Context – Functional Safety

Which standard should we use?

Context – IEC 61511

 IEC 61511 standard - SIS (Safety Instrumented Systems) for the industrial process sector

- It provides the safety life-cycle:
 - 11 phases (to complete the project)
 - 19 Clauses (requirements)

 Very challenging task to implement all the requirements (lots of resources and time-consuming)

Failures types

•

What about SIL?

SIL (Safety Integrity Level) = tool to **quantify the risk reduction**

Safety	Low-de	mand mode of operation	High-demand mode of operation Probability of dangerous failure per hour (PFH) /hour		Low Demand: Safety Function demand rate is less than or equal to once a year			
Integrity Level	Average pro (P	bability of failure on demand PFD _{avg}) / activation						
SIL 4	1	$10^{-5} \le \text{PFD}_{\text{avg}} < 10^{-4}$	$10^{-9} \le \text{PFH} < 10^{-8}$					
SIL 3	1	$10^{-4} \le \text{PFD}_{\text{avg}} < 10^{-3}$	$10^{-8} \le \text{PFH} < 10^{-7}$		High Demand Mode: Safety Function demand			
SIL 2	1	$10^{-3} \le \text{PFD}_{\text{avg}} < 10^{-2}$	10^{-2} $10^{-7} \le \text{PFH} < 10^{-6}$		rate is more than once a year			
SIL 1	1	$0^{-2} \le PFD_{avg} < 10^{-1}$	$10^{-6} \le \text{PFH} < 10^{-5}$					
	SIL	PFD _{avg}	RRF					
	$\begin{array}{cccc} 4 & \geqslant 10^{-5} \text{ to } < 10^{-4} \\ 3 & \geqslant 10^{-4} \text{ to } < 10^{-3} \\ 2 & \geqslant 10^{-3} \text{ to } < 10^{-2} \\ 1 & \geqslant 10^{-2} \text{ to } < 10^{-1} \end{array}$		10000 to 100 000 1000 to 10 000 100 to 1000 10 to 100					

But it is not only about hardware reliability

What about SIL?

Process engineer Safety officer

Risk analysis:

- Identify the risk
- Evaluate its criticality (consequence + frequency of the hazardous event)
- Determine the needed risk reduction (tolerable risk) = SIL target

e.g. **SIL2 Low demand** SIF (if the temp. is higher than 60°C, open the valve)

"agreement"

Risk reduction Requirements = SIL

Functional Safety engineer

Design the SIL2 Low Demand SIF according to the IEC 61511 (or other) by following the **safety life cycle (hardware, software, communication protocols, architecture, etc.)**

it is not only about hardware reliability

CERN Safety systems examples

1. Safety Instrumented System for the SM18 cluster F (superconducting magnets test bench facility)

2. Protection layers for the HL-LHC Full Remote Alignment System (FRAS)

SM18 Cluster F Safety Instrumented System

SM18 Cluster F project

Taken from https://cds.cern.ch/record/724733

Risk analysis hazard identification – Personnel and machine protection

FMEA (Failure Mode and Effect Analysis)

						Effects of th	e failure mode	
-		Subsystem		Failure mode	Effects of the fail Failure effect on the system	ure mode Failure effect on the operators and other related persons	Causes of failure	Current mitigation measures for the failure mode or the hazard
1	Id	Description	Id	Description				
2 Bench Commutators		2.1	Incorrect indication of the position of the commutators	Power a (different) bench when potentially not all the "start-up" conditions are met - potential damage to the magnet, installation, PCs	Operator does not know which bench is powered. Operator inadvertently exposed to electrical power - Electrocution	Failure of the feedback contacts of the commutator>Wrong wiring Accidental rupture of cable		

Other methods:

• **HAZOP**: when you analyze deviations (e.g. high temperature, high pressure)

Management of functional

safety

functional

safety

assess

ment and auditing

Safety life-cycle

structure

planning

Hazard and risk assessment Clause 8

Allocation of safet

functions to

protection lavers

Clause 9

Design and

development of other

means of risk reduction Clause 9

Safety requirements specification for the safety instrumented system Clause 10

Design and engineering of

safety instrumented system Clauses 11, 12 and 13

Stage 2

Stage 1

Verification

- **FTA**: when you analyze the combination of multiple failures
- What-if: based on experience
- etc.

Risk assessment - Risk reduction and layers of protection

Depends on the definition of tolerable risk (combination of frequency and the severity of the risk)

How?

- Judgement of the organization
- Based on the IEC 61511 guidelines

Estimation of the original failure frequency due to (for example):

- Operator/expert command
- Software
- Hardware

...

- Collected data from similar systems and operational experience
- Reliability predictions (e.g. MIL-HDBK-217

https://www.isograph.com/software/reliabilityworkbench/prediction-software/mil-hdbk-217/

Based on the IEC 61511-3 guidelines

Risk assessment - Tolerable risk (Personnel protection)

IEC 61511-3 Annex D - Calibrated Risk Graph (qualitative method)

- Calibration based on the IEC 61508 and IEC 61511 examples (and the HSE matrix)
- Sometimes the necessary risk reduction is bigger for machine protection (mainly due to the F and P parameters)

SIL1 \rightarrow necessary **Risk Reduction Factor** 10 < (RFF) \leq 100

Calibrated Risk Graph – calibration (corporative decision)

Personnel protection:

 Based on examples from IEC 61511-3:2016 Annex D or IEC 61508-5:2010 Annex E

OPERATORS	MACHINES				
Consequences:					
Minor injury is possible	CA	Delay of few minutes to few hours	CA		
Permanent injury is possible	СВ	Delay of several hours to few days	СВ		
One fatality is possible	СС	Delay of several days to several weeks	СС		
Multiple fatalities are possible	CD	Delay of a month or more/ cancelation of test programmes	CD		
Frequency of Exposition:					
less than 10% of working time	FA	Always	FB		
more than 10% of working time	FB				
Possibility of avoidance:					
If there is any automatic control system capable of	PA	If there is any automatic control system	PA		
detecting the hazard and alerting the operators and/or		capable of detecting the hazard and			
prevent the hazard, in a way the harm can be avoided		alerting the operators and/or prevent the			
		hazard, in a way the harm can be avoided			
If not	РВ	If not	PB		
Probability of Failure					
less than 1 failure per 10 years	W1	less than 1 failure per 10 years	W1		
less than 1 failure per year	W2	less than 1 failure per year	W2		
more than 1 failure per year	W3	more than 1 failure per year	W3		

Machine protection:

 Based on the operational experience at CERN

Calibrated Risk Graph vs HSE matrix

OPERATORS	MACHINES			
Consequences:				
Minor injury is possible	CA	Delay of few minutes to few hours	CA	
Permanent injury is possible		Delay of several hours to few days	СВ	
One fatality is possible	сс	Delay of several days to several weeks	СС	
Multiple fatalities are possible	CD	Delay of a month or more/ cancelation of test programmes	CD	
Frequency of Exposition:				
less than 10% of working time	FA	Always	FB	
more than 10% of working time	FB			
Possibility of avoidance:				
If there is any automatic control system capable of	PA	If there is any automatic control system	PA	
detecting the hazard and alerting the operators and/or		capable of detecting the hazard and		
prevent the hazard, in a way the harm can be avoided		alerting the operators and/or prevent the		
		hazard, in a way the harm can be avoided		
If not	РВ	If not	PB	
Probability of Failure				
less than 1 failure per 10 years	W1	less than 1 failure per 10 years	W1	
less than 1 failure per year	W2	less than 1 failure per year	W2	
more than 1 failure per year	W3	more than 1 failure per year	W3	

Table 1 – Risk matrix

Bick o	valuation	Probability of the hazardous event						
RISKE	valuation	Very low (1)	Low (2)	Medium (3)	High (4)			
al V	Minimal (A)	(A1)	(A2)	(A3)	(A4)			
nti erit	Low (B)	(B1)	(B2)	(B3)	(B4)			
ote	Medium (C)	(C1)	(C2)	(C3)	(C4)			
۹ م	High (D)	(D1)	(D2)	(D3)	(D4)			

Table 3 – Severity categories

Severity		Severity description					
	People	Slight injuries, no treatment needed.					
Minimal (A)	Environment	Not applicable.					
	Property	Not applicable.					
	Deenle	Injuries or temporary, reversible illnesses not resulting in hospitalization					
	People	and requiring only minor supportive treatment.					
Low (B)	Environmont	Isolated and minor, but measurable, impact on some component(s) of a					
	Environment	public resource.					
	Property	Minor property damage in the facility.					
	Deeple	Injuries or temporary, reversible illnesses resulting in hospitalization of					
Madium (C)	People	variable but limited period of disability.					
	Environment	Serious impairment of the functioning of a public resource.					
	Property	Major property damage in the facility.					
	Pooplo	Death from injury or illness, permanent disability or chronic irreversible					
	reopie	illness.					
High (D)	Environment	Permanent or long term loss of a public resource (drinking water, air,					
		etc.).					
	Property	Loss off facility.					

Table 2 - Probability categories

Probability	Occurrence of the hazardous event
Very low (1)	Extremely unlikely to occur during task; once per year or less.
Low (2)	Unlikely to occur during task; more than once per year, maximum of once per month.
Medium (3)	Incident may occur during task; several times per month, maximum of once per week.
High (4)	Likely to occur several times during task; several times per week.

Risk analysis hazard identification – Personnel and machine protection

	Determination of SIL								
	Consequence	Occupancy	(Frequency of Exposition)	Pos	sibility of Avoidance	Base Pr	obability of failure	SIL from Risk Graph	
	CA, CB, CC, CD		FA, FB		PA, PB	V	V1, W2, W3	-, 1, 2, 3	
Choosen value	Comments or Justifications	Choosen value	Comments or Justifications	Choosen value	Comments and justifications	Choosen value	Comments and justifications		
							_		
CC	1 person might die due to eletrocution, since there is no insulation, or fire	FA	Operators are less than 10% of the time exposed to the hazardous zone	РВ	The danger is not easily recognized by the operator and can scale quickly	W1	Less than once every 10 years	SIL 1	

SIL1 necessary Risk Reduction Factor 10 < RFF ≤ 100

Risk graph calibration

Safety Requirements Specification (SRS)

Very detailed (and tedious) document to specify all details of each Safety Instrumented Functions (SIF)

SIF DETAILS					
Tag	SIF-01				
Description	Regarding any of the water cooling cables, upon detecting a high or a low flow, analyse the position of the associated load switch commutators and disable the associated power converter if the cable can be powered. To disable the power, disable the power permit and, after 1 minute, trigger the fast power abort command.				
Sources of demand	Water Cooling Cable - Water temperature too high (Hazard 1.1): Water leak or wrong regulation of the Cooling System;				
	Water Cooling Cable – Low flow (Hazard 1.3): Water leak or wrong regulation of the Cooling System.				
Demand Rate	Less than once every 10 years for each of the two hazards which are source of demand.				
Required Response Time	3 minutes after passing one of the threshold limits.				
Output Actions	Disable the power converter by using two commands: the power permit and the fast power abort, the last one with a delay.				
Criteria for Successful	 Shutdown the power converter if the hazardous event occurs. 				
Operation	No damage to installations or personnel.				
Conceptual Diagram of the SIF	Scheme on file "SIF-01 Block Diagram.drawio".				
I/O functional relationship	Formal specification of the functional relationship found in the referenced document of Cause and Effect Matrix.				
SIF Interfaces with any	Operator: SCADA interface on the WinCCOA panel.				
other system, BPCS or operator	BPCS: Power converters will be shared between SIFs and Interlock Control.				
Dangerous combinations of Output States	Not identified.				
Mean time to repair	8 hours.				

Common Cause Failures								
Type of failure	Description							
Feedbacks of commutators	The feedbacks o	he feedbacks of the commutators are responsibility of SIF-03.						
Commands to stop the power converters	Since the comm on the power co	nce the commands will act on the same power converter, it is possible that a failure in the power converter can cause both commands to fail.						
Safety relays	The safety relay actuators. Thou the same mode	The safety relays transform the output signals from the PLC to input signals for the actuators. Though they will be separated and isolated, the safety relays will be from the same model and thus can have a common cause of failure.						
Process Details								
Safe State definition	The power converters related to the hazardous water-cooling cable are switched off, with no damage to installations or personnel.							
Process Safety Time	5 minutes.	5 minutes.						
Individually safe process states which, when occurring concurrently, create a separate hazard	Not identified.	lot identified.						
SIL Requirements								
Mode of Operation	Low demand							
Target SIL	2							
Test Proof Details								
Proof Test Requirements fo	r inputs and final	elements						
Sensor name or tag	All sensors and	Actuators						
Proof test interval	1 year							
Test duration	1 hour							
State of the tested device	Off-line							
Detection of common cause failures	None							
Prevention of errors	N/A							

SIS design and engineering

- Design a SIS compliant with the SRS (Safety Requirements Specification)
- Challenges:
 - 1. **Design and engineering requirements:** IEC 61511-1:2016 Clause 11 Hardware Fault Tolerance (11.4) Selection of the devices (11.5) SIS req. Hardware random failures (11.9) Others (System behaviour on detection of a fault, field devices, interfaces, Design and maintenance, etc.) FAT engineering AP Req. Req. Req. Clause 13 Clause 11 Clause 12 **Application program (AP)** Requirements 2 IEC 61511-1:2016 Clause 12 Factory Acceptance Test (FAT) requirements 3. IEC 61511-1:2016 Clause 13

Management of functional

safety

functional

safety

assess

ment and auditing

Safety life-cvcle

structure

and planning

Verification

Hazard and ris

Clause 8

Allocation of safe

functions to

protection laver

Clause 9

Design and

development of other

means of

risk reduction Clause 9

Safety requirements specification for the safety

instrumented system

Design and engineering of

Clauses 11, 12 and 13

afety instrumented syste

Example 1001

Average Probability of Failure On Demand for the sensor group

IEC 61508-6:2010 Annex B

Demand Mode of Operation											
Safety Integrity Level (SIL)	PFD _{avg}	Required risk reduction									
4	$\ge 10^{-5}$ to < 10^{-5}	-4 > 10 ⁴ to $\le 10^5$									
3	$\geq 10^{-4}$ to < 10^{-1}	$^{-3}$ > 10 ³ to $\le 10^4$									
2	$\geq 10^{-3}$ to < 10^{-3}	$> 10^2 \text{ to} \le 10^3$									
1	$\geq 10^{-2}$ to < 10^{-2}	$ > 10^1 \text{ to} \le 10^2$									

Hardware random failures analysis

	Demand Mode of Operation										
S	afety Integrity Level (SIL)	PFD _{avg}	Required risk reduction								
	4	$\geq 10^{-5}$ to < 10^{-5}	$ ^{4}$ > 10 ⁴ to $\leq 10^{5}$								
	3	$\geq 10^{-4}$ to < 10^{-1}	3 > 10 ³ to $\le 10^{4}$								
	2	$\geq 10^{-3}$ to < 10^{-3}	$> 10^2$ to $\le 10^3$								
	1	$\geq 10^{-2}$ to < 10 ⁻²	$1 > 10^1 \text{ to} \le 10^2$								

Hardware random failures analysis

Reliability Block Diagram (RBD) or Fault Tree Analysis (FTA) for SIFs - ISOGRAPH

Architectural constraints analysis

- Even if the prob. of failure is compliant with target SIL, we may need to apply redundancy
- Use the reliability model (sensors + controller + actuators) and analyze the SIF architecture

Redundancy is needed, if continuous mode

Hardware Fault Tolerance IEC 61511-1:2016 Clause 11.4

SIL	Minimun HFT
1 (any mode)	0
2 (low demand mode)	0
2 (continuous mode)	1
3 (high demand mode)	1
or continuous mode)	
4 (any mode)	2

HFT (Hardware Fault Tolerance)

Architectural constraints analysis

- Route 1_H based on hardware fault tolerance and safe failure fraction concepts; or,
- Route 2_H based on component reliability data from feedback from end users, increased confidence levels and hardware fault tolerance for specified safety integrity levels.

Architectural constrains analysis with Isograph

Application Program

- IEC 61508-3 (2010). Software requirements
- IEC 61511-1 (2016). Clause 12. SIS application program development
- IEC 61511-2 (2016). Annex A and Annex B

12.2.3 The IEC 61511 series addresses programming in Limited Variability Languages (LVL) and the use of devices using Fixed Program Languages (FPL). The IEC 61511 series does not address Full Variability Language (FVL) and the IEC 61511 series does not address SIL 4 application programming. Where function blocks are written in FVL then these shall be developed and modified under IEC 61508-3:2010.

The traditional text based approach of safety AP specification is not efficient enough to handle the advanced, complex safety requirements commonly found in SIF specifications.

The most efficient tool to address these challenges is the Model-based design (MBD). MBD is a mathematical and visual method of addressing the problems associated with designing complex safety systems, and is being used successfully in many applications. It provides an efficient approach to overcome the difficulties of the development phase of the safety lifecycle. This approach and this example include the following steps:

The detailed functional safety requirements for each SIF can typically be defined by use of logic diagrams or cause and effect (see Figure D.2) drawings. In many cases, the

The models are independently run by the model checking tool in order to detect safe behavior violations. If errors are found by the model checker the concerned models are corrected and run again until they are free from these systematic design faults.

Testing and verification - Formal methods and the FS standards

IEC 61508: Functional safety of electrical/electronic/programmable electronic safety-related systems

Table A.1 – Software safety requirements specification

	Technique/Measure *	Ref.	SIL 1	SIL 2	SIL 3	SIL 4
1a	Semi-formal methods	Table B.7	R	R	HR	HR
1b	Formal methods	B.2.2, C.2.4		R	R	HR
2	Forward traceability between the system safety requirements and the software safety requirements	C.2.11	R	R	HR	HR
3	Backward traceability between the safety requirements and the perceived safety needs	C.2.11	R	R	HR	HR
4	Computer-aided specification tools to support appropriate techniques/measures above	B.2.4	R	R	HR	HR

(See 7.2)

Table A.5 – Software design and development – software module testing and integration

	Technique/Measure *	Ref.	SIL 1	SIL 2	SIL 3	SIL 4
1	Probabilistic testing	C.5.1		R	R	R
2	Dynamic analysis and testing	B.6.5 Table B.2	R	HR	HR	HR
3	Data recording and analysis	C.5.2	HR	HR	HR	HR
4	Functional and black box testing	B.5.1 B.5.2 Table B.3	HR	HR	HR	HR
5	Performance testing	Table B.6	R	R	HR	HR
6	Model based testing	C.5.27	R	R	HR	HR
7	Interface testing	C.5.3	R	R	HR	HR
8	Test management and automation tools	C.4.7	R	HR	HR	HR
9	Forward traceability between the software design specification and the module and integration test specifications	C.2.11	R	R	HR	HR
10	Formal verification	C.5.12			R	R

(See 7.4.7 and 7.4.8)

IEC 61511: Functional safety – Safety instrumented systems for the process industry sector

several references to model checking. For example from IEC 61511-2:2016 Annex B:

"... specification should be implemented in the graphical language of the **model checking** workbench environment..."

Application Program

CEM (Cause and Effect Matrix) - **SISpec** More details: <u>MOPHA041</u>

	Effect	SIF1	Effect	PC1_PP
Cause			Cause	
COM_1		A1,A2,A3,A4	SIF1	NA1
CON_A		A1,A2,A3,A4	SIE2	NA 1
TSH1		NA1	51172	INAI
TSH2		NA2	SIF3	
FSL1		NA3	SIF4	NA1
FSL2		NA4	PC1_OPER	A1

LD (Logic Diagrams) - Grassedit

Simulation, test and verification case generation and code generation are possible

Application Program

FRAS Protection Layers design

Context – FRAS

- Full Remote Alignment System for the HL-LHC EDMS 2166298
- Installed in **both** Long Straight Sections (LSS) of IP1 (ATLAS) and IP5 (CMS)

CMCT: Collimators, Q4/5 masks, Crab-cavities, TAXN

Context – FRAS

4 IP sides and each of them contains:

- **17 components** for remote alignment
- Capacitive sensors:
 - 54 WPS (Wire Positioning System)
 - 10 Inclinometers
- FSI (Frequency Scanning Interferometer) sensors:
 - 27 HLS (Hydrostatic Levelling Sensors)
 - 16 FSI inclinometers
- Resolvers (5 motors per component):
 - 85 resolvers
- 21 bellows

Exceeding the limits would imply up to **1 year of stop** of the LHC

Bellow **deformation limits** +/- 2.5 mm 1 mrad

IEC 61511 Safety Life Cycle

Manage-

ment of

functional

safety

and

functional

safety

assess-

ment and auditing

Clause 5

10

Safety Instrumented System requirements

- SIL
- Certified devices
- Architectural constrains
- Software requirements
- ...

Protection Layers requirements

Protection Layers design (IEC 61511-3 Annex C)

- a) A protection layer consists of a grouping of equipment and/or administrative controls that function in concert with other protection layers to control or mitigate process risk.
- b) A protection layer (PL) meets the following criteria:
 - Reduces the identified risk by at least a factor of 10;
 - Has the following important characteristics:
 - Specificity a PL is designed to prevent or mitigate the consequences of one potentially hazardous event. Multiple causes may lead to the same hazardous event, and therefore multiple event scenarios may initiate action by a PL.
 - Independence a PL is independent of other protection layers if it can be demonstrated that there is no potential for common cause or common mode failure with any other claimed PL.
 - Dependability the PL can be counted on to do what it was designed to do by virtue of addressing both random failures and systematic failures in its design.
 - Auditability a PL is designed to facilitate regular validation of the protective functions.
- c) A safety instrumented system (SIS) protection layer is a protection layer that meets the definition of a SIS in IEC 61511-1:2016 Clause 3.2.69 ("SIS" was used when safety layer matrix was developed).

Necessary Risk Reduction	Number of PLs
10	1
100	2
1000	3

Analysis of the Protection Layers (IEC 61511-2 Annex A)

9.4 Requirements for preventing common cause, common mode and dependent failures

9.4.1 The design of the protection layers shall be assessed to ensure that the likelihood of common cause, common mode and dependent failures between:

- protection layers;
- protection layers and the BPCS.

are sufficiently low in comparison to the overall safety integrity requirements of the protection layers. The assessment may be qualitative or quantitative unless 9.2.7 applies.

NOTE A definition of dependent failure is provided in 3.2.12.

9.4.2 The assessment shall consider the following:

independence between protection layers;

diversity between protection layers;

- physical separation between different protection layers;
- common cause failures between protection layers and between protection layers and BPCS.

Protection layers proposal for bellow and personnel protection (functional schema)

FRAS control system vs FRAS Protection Layers

New hardware

Legend

PL2

PL1

PL3

FRAS : C-M-C-T Configuration

FRAS control system vs FRAS PLs

- PLs and the FRAS control system share most of the components
- We need to analyze the different FRAS control system failures and asses which protection layer protects from specific failures
- Functional safety analysis:
 - 1. FMEA to analyze component failures
 - 2. FTA to analyze system failures
 - **3.** LOPA to analyze the efficiency of our PLs and assess if we meet the risk reduction target

New hardware

Reliability data

Source of information:

- 1. Failure records
- 2. Reliability studies
- 3. Standard recommendations
- 4. Operator errors (HEART method)

For safety analysis, we only care about dangerous undetected failures

FMEA – Individual component failures

Subsystem		Subsystem	Failure mode	Failure mode	Effects of the failure mode	Frequency estimation (failure/year)	Remarks / Justifications	Beta value estimation (Common Cause of Failure)	Remarks / Justifications
	Id	Notes	In Short	Description					
	4	Sterrer Mater				\frown		\frown	
	4.1	Stepper Motor	 Motor breaks Typical Stepper Motor wearing out Stepper motor exaggerated movement 	 (1) Statistical death of a component during nominal operation. (2) Typical Stepping Motor Wearing out that may lead to imprecision in movement. (Two steps instead of one, etc) (3) Exaggerated movement of the motor, can be originated by an 	Imprecise movement, may move the magnet out-of-range	0.002	eedback from BE- CEM. Operational data of ~650 stepper motors in the LHC. 10 failures over 8 years of operation.	10%	IC61508 - 6 Annex D - D.5
	5.1	DIOT / InterFSI	 Hardware failure Short Circuit Communication Error with sensor or with FEC 	 (1) Statistical failure of a component during nominal operation. (2) Short Circuit of the component. (3) Communication Error 	No Value / Wrong Value interpreted from sensors and/or sent to the lower_FEC.	0.1	According to IEC61508, proof test intervals 5 years, PFD=0.26 (data coming from BE-CEM)	0	Null because the DIOT and InterFSI are independent
	5.2		Radiation	between the component and the sensor(s) below or the FEC above. Radiation affect the value of measurement	No Value / Wrong Value interpreted from sensors and/or sent to the lower_FEC.	0.01	Feedback by BE-GM.	5%	IEC61508 - 6 Annex D - D.5 and assuming the power source is the same between different components on the same laver. (See the hierarchy in model
	5.3		Electric Shortage	An electric shortage at the sensor level could make them send a null value or a wrong one.	No Value / Wrong Value interpreted from sensors and/or sent to the lower_FEC.	0	They are detected, so they are not 'undetected dangerous failures'	80%	files) IEC61508 - 6 Annex D - D.5 and assuming the power source is the same between different components on the same layer. (See the hierarchy in model files)

FTA for FRAS control system

Isograph reliability workbench

FTA – top FEC

Notes:

- All failures records are considered dangerous
 undetected failures
- However, many of them could be detected (e.g. most hardware errors)

FTA – actuation path

Notes:

- A hardware failure in the SAMBUCA cards would be detected by the PXI
- A software/logic error won't be detected

FTA – Operator mistake

Notes:

- If the operator makes a mistake, the top FEC should avoid the wrong command to be transmitted
- The **HEART** method was used to evaluate, the probability of the human failure

Operator mistakes HEART (Human Error Analysis Reduction Technique) method

From "Critical evaluation of quantitative human error estimation methods in light of different incident causation models and Hollnagel's research on performance variability" by Esme Fowler (University of Aberdeen)

https://downloads.opito.com/downloads/Critical-evaluation-of-quantitative-human-error-estimation-methods-in-light-of-different-incident-causation-models-2018.pdf?mtime=20181029151433

4.2.1 - Reasons for use

From the comparison of HRA tools is seems that HEART is the most appropriate op as it meets the following requirements:

It is a widely validated tool across different industries.

- It was revalidated by the UK Health and Safety Laboratory in 2016
- It provides its own nominal HEPs linked to 9 different task types. The nominal probabilities were initially developed in the 1980's, however, in 2017 they were updated based on literature published in the 30yrs since its development [66]. The updated values for the nominal probabilities will be used here.
- ➤ It provides a list of 38 PSFs with multipliers for each one
- The calculation used to combine the PSFs and nominal HEPs is very simple to understand.

4.2.2 - Performance Shaping Factors

HEART provides an extensive list of PSFs with their relative multipliers to be used in the calculation. The sources for the data for the multipliers are predominantly from ergonomics and psychology journals in addition to technical reports and conference

- λ_1 is 8.393E-5 h⁻¹ = 0.735 y⁻¹ = **7.35 failures per 10 years** according to the collected data and the FTA
- The biggest contributors to this risk are:
 - the top FEC: $\lambda = 0.27 \text{ y}^{-1}$ (FESA class is the biggest contributor)
 - Actuation path: $\lambda = 0.30 \text{ y}^{-1}$ (SAMBUCA cards and FESA software error are the biggest contributors here)
 - Motors and UAPs: λ = 0.16 y⁻¹ (~ 50% each)
- The PLs share most of the hardware (and software) with the FRAS control system, LOPA is a good choice to assess scenarios risk and the adequacy of the PLs

Layers of Protection Analysis (LOPA)

Initiating events and frequency from the FTA

Assuming independent (and diverse) PLs

Impact Event			Initiating Cause 1	Initiating Cause 2	Initiating Cause 3	Initiating Cause 4		Initiating Cause 5		Initiating Cause 6			Initiating Cause 7
					Error in actuation	irror measurement o	one CMCT componer	ror measurement or	ne Q45-D2 compone	r Error measure	ement one Triplet-D1	component	
IP side Break Bellow			Upper FEC	Fror in actuation FEC path PXI - SAMbuCa	path Jack / UAP and motors	Rotational	Horizontal-Vertical	Vertical-Rotational	Horizontal	Vertical	Horizontal	Rotational	Malicius user / Error of operator
	Event I	Frequency (1/h	3.08E-05	3.45E-05	1.84E-05	1.14E-07	1.14E-07	1.14E-07	1.14E-07	' 1.14E-07	1.14E-07	1.14E-07	6.38E-0
	Event	Frequency (1/y	0.27	0.30	0.161534	0.00099864	0.00099864	0.0009986	0.0009986	0.0009986	0.0009986	0.0009986	0.000055
Protection and mitigation layers	PL1 PL2 PL3		10 10 10	10	10								1(1(1(
Operation Time		36.5	10	10	10	10	10	10	10	10	10	10	10
Procedures / Alarms													
Cybersecurity: TN + RBAC													(
Physical Limit Switches			0	0	0	0	C	0	0	0	0		(
Cumulative			10000	1000	1000	10	10	10	10	10	10	10	10000
	Interm freque	ediate event ency	0.000027	0.000302	0.00016153	0.0000999	0.0000999	0.00009986	0.00009986	0.00009986	0.00009986	0.00009986	0.0000000
	Weigh overal	t over the I frequency	2.27%	25.37%	13.58%	8.40%	8.40%	8.40%	8.40%	8.40%	[10-200] [200-15] [9	- 36] (26 - 66) (66 - 126] (26 - 266) (266 - 26] (27 - 36) (16 -	MI (W-W) (Y-W) 0.00%
	Total n event	nitigated frequency						0.00	0119		15540		
	Tolera Freque	ble Event ency - LHC						0.01	1000		Targe	t from MPE ı	matrices
	Freque	bie Event ency - IP side						0.00	0250				
	Freque	ble Event ency - Bellow						0.0001	119048				
	Residu	ial Risk						0.001	31063				

Layers of Protection Analysis (LOPA)

We don't meet the independence and diversity requirements From the IEC 61511 standard

mpact Event			Initiating Cause 1	Initiating Cause 2	Initiating Cause 3	Initiating Cause 4		Initiating Cause 5		Initiating Cause 6			Initiating Cause 7
					Frror in actuation	Fror measurement o	ror measurement one CMCT componen ror measurement one Q45-D2 componer				Error measurement one Triplet-D1 component		
IP side Break Bellow			Upper FEC	Error in actuation path PXI - SAMbuCa	path Jack / UAP and motors	Rotational	Horizontal-Vertical	Vertical-Rotational	Horizontal	Vertical	Horizontal	Rotational	Malicius user / Error of operator
	Event Frequency (1/h		3.08E-05	3.45E-05	1.84E-05	1.14E-07	1.14E-07	1.14E-07	1.14E-07	1.14E-07	1.14E-07	1.14E-07	6.38E-09
	Event Freq	uenc <mark>y (</mark> 1/y	0.27	0.30	0.161534	0.00099864	0.00099864	0.0009986	0.0009986	0.0009986	0.0009986	0.0009986	0.0000559
Protection and mitigation layers	PL1 PL2 PL3		10	10	10								10
Operation Time		36.5	10	10	10	10	10	10	10	10	10	10	10
Procedures / Alarms													
Cybersecurity: TN + RBAC													0
Physical Limit Switches			0	o	0	0	0	0	0	0	0		0
Cumulative			100	100	100	10	10	10	10	10	10	10	100
	Intermedia frequency	te event	0.002700	0.003018	0.00161534	0.0000999	0.0000999	0.00009986	0.00009986	0.00009986	0.00009986	0.00009986	0.00000056
	Weight ove overall free	er the quency	33.61%	37.57%	20.11%	1.24%	1.24%	1.24%	1.24%	1.24%	1.24%	1.24%	0.01%
	Total mitigates event frequent	ated uency						0.00	0803				
	Tolerable E Frequency	vent - LHC						0.01	1000				
	Tolerable E Frequency	vent - IP side						0.00	0250				
	Tolerable E Frequency	vent - Bellow						0.0001	119048				
	Residual Ri	sk	-0.00553260										

Layers of Protection Analysis (LOPA)

We don't meet the independence and diversity requirements From the IEC 61511 standard

mpact Event		Initiating Cause 1	Initiating Cause 2	Initiating Cause 3	Initiating Cause 4		Initiating Cause 5		Initiating Cause 6			Initiating Cause 7
				Error in actuation	Fror measurement of	one CMCT componen	ror measurement or	ne Q45-D2 componer	Error measure	ement one Triplet-Di	l component	
IP side Break Bellow		Upper FEC	Error in actuation path PXI - SAMbuCa	path Jack / UAP and motors	Rotational	Horizontal-Vertical	Vertical-Rotational	Horizontal	Vertical	Horizontal	Rotational	Malicius user / Error of operator
	Event Frequency (1	/h 3.08E-05	3.45E-05	1.84E-05	1.14E-07	1.14E-07	1.14E-07	1.14E-07	1.14E-07	1.14E-07	1.14E-07	6.38E-09
	Event Frequency (1	/y 0.27	0.30	0.161534	0.00099864	0.00099864	0.0009986	0.0009986	0.0009986	0.0009986	0.0009986	0.0000559
Protection and mitigation layers	PL1 PL2 PL3	10	10	10								10
Operation Time		11 33.18181818	33.18181818	33.18181818	33.18181818	33.18181818	33.18181818	33.18181818	33.18181818	33.18181818	33.18181818	33.18181818
Cybersecurity: TN + RBAC												0
Physical Limit Switches		0) ()) 0	o	0	0	0	0	0		0
Cumulative		331.8181818	331.8181818	331.8181818	33.18181818	33.18181818	33.18181818	33.18181818	33.18181818	33.18181818	33.18181818	331.8181818
	Intermediate event frequency Weight over the	t 0.000814	0.000909	0.00048682	0.0000301	0.0000301	0.00003010	0.00003010	0.00003010	0.00003010	0.00003010	0.00000017
	overall frequency Total mitigated	33.61%	37.57%	20.11%	1.24%	1.24%	1.24%	1.24%	1.24%	1.24%	1.24%	0.01%
	Tolerable Event Frequency - LHC						0.00	1000				
	Tolerable Event Frequency - IP side Tolerable Event						0.00	0250				
	Frequency - Bellow						0.0001	119048				
	Residual Risk						0.000	07922				

Conclusions

About FRAS control system:

- 1. The biggest contributors to this risk are:
 - **the top FEC**: $\lambda = 0.27 \text{ y}^{-1}$ (**FESA class** is the biggest contributor)
 - Actuation path: $\lambda = 0.30 \text{ y}^{-1}$ (SAMBUCA cards and FESA software error are the biggest contributors here)
 - Motors and UAPs: λ = 0.16 y⁻¹ (~ 50% each)
- 2. Software errors can be minimized by "exhaustive" functional testing

About the PLs:

- 1. We don't meet all the requirements from IEC 61511 to claim a risk reduction of 10 per PL, therefore we only claim a maximum of 10 risk reduction for all PLs protecting from a specific event
- 2. According to this data, if the risk is present (motors are powered) more than 11 full days per year, we don't meet the tolerable risk target
- 3. According to this data, if FRAS components are operated less than 11 days, we do NOT need to provide diversity and replace the PL1 FEC by a PLC (if a PLC is installed in PL1, full independence between 2 PLs can be achieved)
- 4. Human errors are analyzed by the **HEART** method, but it is not a critical source of danger
- 5. Cybersecurity issues will be addressed with different methods (determinist methods)

Functional safety projects management

Management of Functional Safety projects

Challenges:

- Define the roles and responsibilities of the project members
- Define the workflow and documentation to coordinate all project members

Role	Responsibilities
Functional Safety (FS) expert	Apply the FS standards
Process expert	Process knowledge and risk analysis
Instrumentation and controls expert	Design and implementation of the safety system
Departmental Safety Officer (DSO)	Risk graph calibration and safety support
Health & Safety and Environmental Protection (HSE) unit representative	Safety support and safety audits

Functional Safety tools

Table 1: Safety Life-cycle Tools and Software Suites.

Tool	Safety life-cycle coverage	Reference
exSILentia® (Exida)	All phases	https://www.exida.com/
Safeguard Profiler	Phases 1, 2, 3, 4 and 6 (Bowtie, LOPA analysis, SRS, SIS design, SIL verification, Proof test analysis)	https: //www.acm.ca/safeguard-profiler/
SISsuite	All phases	https://www.sissuite.com/
SLM V2	All phases	https: //mangansoftware.com/slm-v2/
Vertigo TM	Phases 3 and 4 (Equipment failure rate database, SRS and SIL verification)	<pre>https://www.kenexis.com/software /sis-lifecycle-management-and-si l-verification/</pre>
SIL Solver®	Phase 4 (SIL verification)	https://sis-tech.com/application s/sil-solver/
Isograph's Reliability Workbench	Phase 4 (SIL verification)	https://www.isograph.com/softwar e/reliability-workbench/
Siemens Safety Matrix Engineering Tool	All phases	<pre>https://assets.new.siemens.com/s iemens/assets/api/uuid:f18dcad1-9 faf-4f33-8c20-c8390d176993/safet ymatrixflyerfinal-300.pdf</pre>
SILcet	Phase 4 (SIL verification)	https://safetyandsis.com/sil-ver ification/

More details in https://inspirehep.net/files/fcdeb3597bbefa61732b5fdbb53c53e6

Many more tools for phase 4 (SIL verification)

Conclusions / tips

- FS is about proving that your design, development and operation meet the risk reduction target (SIL)
- The SIL (risk reduction target) can be achieved (mainly) by:
 - a **SIS** (IEC 61511-1 clauses 10, 11, 12 and 13)
 - or independent protection layers (IEC 61511-1 clause 9)
- If SIS, then:
 - Reliability calculations (random hardware failures)
 - Architectural analysis
 - Systematic failures analysis (e.g Operators, EMC, etc.)
 - Software design and verification

...

- If PLs, then: specificity, independence, dependability, auditability and diversity (when possible)
- Multidisciplinary teams (Safety engineers, process engineers, automation engineers, functional safety engineers, ...)
- Proof tests (periodic test to maintain the SIL over the life of the industrial plant)

Future work at BE-ICS

Regarding management aspects:

- Traceability (explore commercial tools)
- Workflow procedures for functional safety projects (coordination and responsibilities of the different groups)
- Functional safety service definition

Regarding technical aspects:

- Code generation of application programs (Siemens safety LADDER code for TIA portal)
- Integration in our frameworks (e.g. <u>UNICOS</u>)
- Frequency estimation of software errors (?)

