Bichid e

Accelerated Particle Transport

AdePT status and plans

Accelerated demonstrator of electromagnetic Particle Transport

Andrei Gheata for the AdePT Developers

26th INTERNATIONAL CONFERENCE ON COMPUTING IN HIGH ENERGY &
NUCLEAR PHYSICS (CHEP2023) - Norfolk, May 8-12, 2023

Simulation on GPU - can we do that?

» Functionality: make all simulation components work on GPU

e Physics, geometry, field, but also user sensitive detector code and hits?

e Simulate e*, e andy electromagnetic shower
» Correctness: validate results and ensure reproducibility
e Producing compatible results with Geant4 equivalent?
» Usability: integrate in a hybrid CPU-GPU Geant4 workflow
e Usable within real experiment frameworks?
» Performance: understand/address bottlenecks limiting performance

e Canwe actually use the GPU in an efficient/beneficial way?

e Show stoppers? Bottlenecks? Can we overcome them?

vvvvvvvvvvvv

wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww

e GitHub repository, initial commit in Sep 2020, 0(10) contr;but@;ns rrrrrrrrrr

Strategy: integrate gradually features as new examples ™~
e No library/framework, just core infrastructure, to maximize flexibility-to explore different
directions and adapt to different requirements
Minimal external dependencies
e Geometry: VecGeom library, enhancing its GPU-related features
e Physics: G4HepEm library, a GPU-friendly port of Geant4 EM interactions
Understand and improve the integration with experiments and their

frameworks
e Discussions/collaboration with ATLAS, CMS and LHCb ongoing

https://github.com/apt-sim/AdePT
https://gitlab.cern.ch/VecGeom/VecGeom
https://github.com/mnovak42/g4hepem

At a glance: physics

» G4HepEm: GPU-friendly compact rewrite of
EM processes for HEP

e Covers the complete physics for e”, e and y particle
transport

» Design of library very supportive for
heterogeneous simulations

e Stateless interfaces working on both CPU and GPU

e Data: physics tables and other data structures relying
on Geant4, but standalone after being copied to GPU

» Verified against Geant4 standalone

o At %olevelin the sampling calorimeter test case

o020
040

G4 Heplzn

400 Sim| llﬁed samplin; calorlmeter 50 layers of [2 3 mm PbWO4 + S 7 mm lArJ
T

Layer index

https://g4hepem.readthedocs.io/en/latest/IntroAndInstall/introduction.html#physics-modelling-capability

At a glance: geometry

» Relying on the builtin VecGeom CUDA support

e Identical object model for CPU and GPU, non-specialized for the GPU use case

e CUDA-specific, non-portable
» Improved gradually the GPU support

e Developed index-based navigation state handling, single-precision support, faster GPU init
e Moving from a simple non-optimized to a more efficient BVH navigator
e Adopting modern CMake GPU support

» The current geometry approach is a major GPU bottleneck

e Strong motivation to develop a surface model for GPU support
> Portable less complex & less divergent code, creating a surface-based view on device

> Our major work item (see: surface model presentation link)

https://gitlab.cern.ch/VecGeom/VecGeom/-/tree/surface_model?ref_type=heads

Parallelization in AdePT

» Simulation is done in steps, moving particles to either boundaries or physics
processes

» All active tracks available are stepped at once (Geant4 transports one
particle at a time)
e Much higher degree of parallelism and more uniform work for the GPU

» No “thread-local” state, everything embedded in the track

e Energy, position/direction, state needed across steps
e Random number generator state (RANLUX++) per track to ensure reproducibility
> Strategy to spawn a hew sequence for daughter particles from the current state

» Tracks pre-allocated per particle type in thread-safe containers
e Atomic counter to hand on track slots to be filled by kernels

Stepping loop

Pre-allocated track buffer
Separate kernels per particle type

e Separate kernels for continuous and

different discrete processes also possible
Double buffer of active/next track

indices

e Atomic access, next-unused slot track
allocation policy
e Dead tracks leave holes, track container

compacted occasionally
Copy to host simulation products at

the end (hits, leaked tracks)

while (nactive > 0)

. pre-allocated track buffer AOS

single step

read

ﬂflfl]]]—*[TransportKernel Hj—{liﬂ]]

active next
indices indices

one per e+, e- and gamma, running in
separate streams

GPU sync
| Finishlteration |

swap active and next track indices, compact
track buffer occasionally

A oo host sync

[CopyToHost]

copy simulation products (hits, leaked
tracks) back to host

Run Time Characteristics

Particles in Flight

putting more work per batch does more work in the same
#iterations (steps)

o limited by available memory AND available tracks
hints already to using strategies to fill the gaps

o e.g. more CPU threads doing concurrent events
performance: sweet spot at about 50% occupancy
(register-hungry code)
36 SM GPU =64 CPU threads: a consumer card can double
the throughput of a dual socket machine

batch size
250 100

1000 500

1x10°
9x10° -
8x10° -
7x10° -
6x10° -
5x10° [
4x10°
3x10° -
2x10° [

1x10°
0X100 1 1 J/ 1 /

o 100 200 300 400 500 600 700 800

Iteration Number

0s

batch size =100

. 2s .) 6s 8§ 195

batch size = 1000 Occupancy

8s 10s

25%

----l 50 %
. | !

0s

i 75%

2

| r : Gs Bs -

| , ' 100 %

'.

B Unallocated warps in active SMs
[] Compute warps in flight 8

AdePT-Geant4 integration

GPU-based

specialized
ST EM shower
calorimeter simulator

[esss

@’xs

» AdePT only provides EM physics for e, e andy

e Cannot be used standalone for simulating a full experiment
e Inafirst phase it could be used as accelerator for the EM part, in the Geacf;ts
n
same way as fast simulation models can be used in Geant4 :

» Developed an integration interface allowing a Geant4

region to become the "GPU region”
e Intercepting and buffering for GPU particles sent asynchronously b

energy
depositions +

particles exiting
calorimeter

GPU
Geant4 threads "

> Available from Geant4 11.1, patches available for older versions ev0
worker

e Sensitive detector code run on device, hits+leaked tracks sent back ev1
worker

to host >
initi i H worker

e Aninitial approach under evaluation by several experiments [buffer | ov3

Integration performance

» Performance in this approach increases with :
Fraction of time spent in the GPU-accelerated

region (Amdahl law)
GPU buffer size and event size (to fill it)

» Performance degrades with:

Number of exchanges CPU-GPU per event
Number of CPU threads (GPU saturation)

» Why not the full detector on GPU?

Not limited by geometry
Possible for EM particles
> Except lepto-nuclear processes (rare)
that can be delegated to CPU
Limited by sensitive detector code GPU
awareness - incentive to write GPU-friendly
scoring

primaries/s (higher is better)

Throughput for batches of 100 x 10 GeV e /event
gun, 85% of simulation time in the EM calorimeter

B Geant4 @ Geantd + AdePT(EM calorimeter)
250.00

200.00 GPU buffer size = 2000

150.00

100.00

50.00

0.00

5 10 15 20

#workers

cms_2018 setup, Xeon(R) CPU E5-2630v3 + RTX2070

10

Hooking user code

» AdePT advanced examples provide a mechanism to
implement Geant4-like sensitive detector code

e Scoring type to be implemented and aliased as AdeptScoring

e Transport kernels templated on this type, calling back directly on GPU

» Fairly straightforward interfaces

e GPU data management (hits) - allocation and cleanup, copy to host
> Avery simple atomic calorimeter cell accumulator as example
e AdeptScoring::Score method to intercept current step as in Geant4

» One of the main challenges for experiment code

integration

e Cannot be identical with Geant4 code (different types)

e Working directly with experiments to understand realistic cases

AdePT

electrons.cuh

template <typename Scoring>
__global__ void
TransportElectrons(Scoring *s)

{

s->Score(track_state);

}

SimpleScoring.h

struct SimpleScoring

{

__device__ void Score(
TrackState const&);

};...

using AdeptScoring =
SimpleScoring;

4

User code

1

https://github.com/apt-sim/AdePT/tree/master/examples/Example17

Experiment integrations

» AdePT is not a framework/library at this stage

e Compiling the specific experiment integration will compile AdePT
e This makes easier to fit on specific user scoring requirements

» Interacting with experiments in different phases
e Understand how AdePT works: modifying advanced examples and adding a custom detector
module
e Understanding which detectors/workflows may benefit from such GPU integration
e "Biting the bullet” and actually dealing with the concrete case integration problems
> AdePT dependencies, experiment framework, specific detector scoring code

12

Towards integration with CMSSW

» Targeting Phase 2 setup, in particular CMS HGCal

e Load geometry setup in AdePT Examplel4 (exported from CMSSW)
e Configure HGCalRegion to offload electrons, positrons and gammas
e Load HepMC3 file with minimum bias events

» Started with integration fo G4HepEm on CPU

e Library built with CMSSW since November 2022

e Integrate as option into EMM physics list, only for e- below 100 MeV
» Investigate sensitive detector code on GPUs

e Right now only accumulated energy deposit

e Also need to deal with sparsity of HGcal hits (important data volume)
» Prepare prototype for integration with CMSSW

e How torequest GPU resources from multiple threads
e Ways to extract particles for the GPU, send back results and feed into framework

13

ATLAS trying out AdePT

» Forked AdePT & modified example14(17)

Taking a test beam setup geometry GDML

> Scintillator as active element
Modifying BasicScoring.cu

> Adapting to specific Geant4 scoring code
Scanning with electron gun tilted along Y axis

> Getting same results + speedup GPU vs. CPU
Main challenge: adapting G4Step-based scoring

» Take-away & next steps

“Ideal environment to build a sensitive detector”
(working on GPU)

More complex scoring (e.g. Birk’s law on device)
Code duplication? How to handle?

Thinking about integration with FullSimLight

Total Energy deposited [MeV]

Total time reported [s]

500><10'3
.
450 L
A
0
400]
A
350—
a00F 4 b
= I b ¥ S Ny ‘
mos | . ATLTileCalTB
E | 1y T -
200(— i b i |
E | i § |
F i i \
190] ; ‘x
E | i |
oo . I \
E) I \
50— » Py i |
= / L |
—%00 —600 —400 —200 0 200 400 600 800
Gun y-displacement [mm]
300
Tile test beam with AdePT A
A GPU: Total time
250
CPU: Total time
200
C «' LA
L Vi it
10— 4 4
50— 4
[A‘tA'AA“ g ‘A'A
I I i e i o, S Y 7 O 0 G S IR I
%UO -600 —400 -200 0 200 400 600 800

Gun y-displacement [mm]

credits to D. Costanzo, A. DelllAcqua &
R. M. Bianchi

14

https://github.com/adept-atlas/AdePT
https://github.com/lopezzot/ATLTileCalTB/

Integration as fast simulation algorithm?

» Different versions of LHCb
upgrade geometry usable with

AdePT advanced examples

e Ongoinginvestigation enabling AdePT
with the EMCAL, using MCParticles at
entrance taken from realistic simulation

» Ongoing discussions about AdePT

integration in Gaussino
e Via AdePT buffer and FastSim hook
(requires patching Geant4)
e Stopping particles entering the ECAL
and giving them to Gaussino calling
AdePT as fast simulation algorithm

UOI39NJISUOY) 1030333(] SAIISUSS

&
«

Gaussino Geant4

Fast Simulation

. construct() . . .
PhysicsFactory ——————3 G4FastSimulationPhysics

_ construct() .
RegionFactory _— G4Region

construc

t()
ModelFactory ——————> G4VFastSimulationModel

construct

{0)
DetectorFactory > (G4VSensitiveDetector

credits to G.Corti & M. Mazurek

uo1PLIIX3 HH

Outlook

» A challenging project, the problem is far from a perfect match for GPU
e Full EM shower transport functionality implemented and validated
e Afirst phase of evaluation completed, answering most of the initial R&D questions
e Efficiency blockers identified, triggering a new project on GPU geometry

» Prototypes for standalone and Geant4-integrated workflows available
e Realistic examples for LHC setups, GPUs can be used in a Geant4 native application
e Optimization work ongoing, performance not yet on a GPU-efficient baseline

» GPUs appears to be a valid accelerating alternative for particle transport
simulation

e Still to be validated by integration with concrete experiment use cases
e Discussions and collaboration with experiments ongoing

16

Backup

Kernel Launch Configurations

Turing SM

Warp Scheduler + Dispatch (32 threadicik) Warp Scheduler + Dispatch (32 threadiclk)

» 1024 Threads / SM [S—— T
e 4 schedulers x 8 warps/scheduler x 32 threads/warp A LW
» 65536 Registers / SM
e 4register files x 16384 registers
e 1float = 1register, 1double = 2 registers st o 3

Register File (16,384 x 32-bit)

» 96 KB L1Data Cache / Shared Memory

» Theoretical Occupancy (—maxrregcount or _Iaunch_bounds_) INTS2 | P32 Goped INT3z | PRz TGl

e 256 regs/thread (256 threads, 8 warps) = 25% A
e 160 regs/thread (320 threads, 10 warps) = 38%
e 128 regs/thread (512 threads, 16 warps) = 50%
e 96 regs/thread (640 threads, 20 warps) = 63%
e 80regs/thread (768 threads, 24 warps) = 75%
e 64 regs/thread (1024 threads, 32 warps) = 100% ¥

.| _
: = RT QORE L—=

Higher parallelism
Faster Threads

«<

Relative Performance per SM

Theoretical Occupancy
100% NN 75% WSS 50% 25%

ok ® sweetspotatabout50% occupancy for a simple geometry,
_ showing that simulation code is register-hungry
z e comparable throughput per SM no matter the card
g
2
@
E
1
5
-
a 10
=]
[=)]
=}
(<
=
=

5 -

)

RTX 2070 RTX 8000 V100

19

GPU Throughput (RTX 2070)

GPU Throughput

Memory [%] ; More occupancy means more memory accesses spill to global memory.

0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0

100.0
Speed Of Light (SOL) [%]
Warps Per Scheduler
Occupancy

Thereticl Warps Per Scheduler [— M 25%

At warps Per S M 50%

Eligible Warps Per Scheduler l . 75 %

Performance does not improve with higher occupancy.
Issued Warp Per Scheduler | Too many global memory accesses, thread divergence. B 100%

0.0 40 8.0 12.0 16.0

20

CPU vs GPU Performance

Run Time [s]

45 |

40

35|

30

25 |

20

15

10

Geant4 N Theoretical Occupancy 100% I
G4HepEm N 75% mm—
G4HepEm+Tracking 50%
25%
Ryzen3950X 1XEPYC7282 2xEPYC7282 RTX 2070 RTX 8000 V100
CPU GPU

AMD Ryzen 3950X (16 cores, 32 threads, 3.5-4.7GHz), AMD EPYC 7282 (16 cores, 32 threads, 2.8-3.2GHz)

21

Case Study: Thread Divergence

GPU Throughput

B Single kernel
B Splitkernels

0,0 10,0 20,0 30,0 40,0 50,0 60,0

Speed Of Light (SOL) [%]

Problem: Threads in transport kernels diverge
because of diverging interactions
— 13 / 32 threads active on average

Here: Split off interaction computations from
cross-section and geometry kernels (one
kernel for pair creation, one for ionisation, ...)

Result: 17 / 32 threads active for physics + geo
29 / 32 threads active for Bremsstr.
Run time:6.4s—5.5s

Conclusion: Keeping threads coherent is key
for detector simulation
Generally difficult; stochastic processes

2850 AR et RO OB 000 HO0EM et SO0 et BOBIE OO 870
» CPU (4)
~ CUDA HW (0000:00:08.0 - T‘I
o roorpostas.
2s - +290ms +295ms +300ms +306ms +310ms +3156ms +320ms +326ms, +330ms
» CPU (4)

~ CUDA HW (0000:00:08.0 - T/

» [All Streams] L 4

Warp State (All Cycles)
0,0 2,0 4,0 6,0 8,0

Stall Long Scoreboard

Stall Wait

B single kernel
B splitkernels

0,0 20 40 6,0 8,0
Cycles per Instruction

Stall LG Throttle

