
AdePT status and plans
Accelerated demonstrator of electromagnetic Particle Transport

Andrei Gheata for the AdePT Developers

26th INTERNATIONAL CONFERENCE ON COMPUTING IN HIGH ENERGY &
NUCLEAR PHYSICS (CHEP2023) - Norfolk, May 8-12, 2023

Simulation on GPU - can we do that?

► Functionality: make all simulation components work on GPU
● Physics, geometry, field, but also user sensitive detector code and hits?

● Simulate e⁺, e⁻ and γ electromagnetic shower

► Correctness: validate results and ensure reproducibility
● Producing compatible results with Geant4 equivalent?

► Usability: integrate in a hybrid CPU-GPU Geant4 workflow
● Usable within real experiment frameworks?

► Performance: understand/address bottlenecks limiting performance
● Can we actually use the GPU in an efficient/beneficial way?

● Show stoppers? Bottlenecks? Can we overcome them?

2

The AdePT project

► Trying to get answers for most of these questions
● GitHub repository, initial commit in Sep 2020, O(10) contributors

► Strategy: integrate gradually features as new examples
● No library/framework, just core infrastructure, to maximize flexibility to explore different

directions and adapt to different requirements

► Minimal external dependencies
● Geometry: VecGeom library, enhancing its GPU-related features
● Physics: G4HepEm library, a GPU-friendly port of Geant4 EM interactions

► Understand and improve the integration with experiments and their
frameworks

● Discussions/collaboration with ATLAS, CMS and LHCb ongoing

3

https://github.com/apt-sim/AdePT
https://gitlab.cern.ch/VecGeom/VecGeom
https://github.com/mnovak42/g4hepem

At a glance: physics
► G4HepEm: GPU-friendly compact rewrite of

EM processes for HEP
● Covers the complete physics for e⁻, e⁺ and 𝛾 particle

transport

► Design of library very supportive for
heterogeneous simulations

● Stateless interfaces working on both CPU and GPU

● Data: physics tables and other data structures relying
on Geant4, but standalone after being copied to GPU

► Verified against Geant4 standalone
● At ‰ level in the sampling calorimeter test case

4

https://g4hepem.readthedocs.io/en/latest/IntroAndInstall/introduction.html#physics-modelling-capability

At a glance: geometry

► Relying on the builtin VecGeom CUDA support
● Identical object model for CPU and GPU, non-specialized for the GPU use case

● CUDA-specific, non-portable

► Improved gradually the GPU support
● Developed index-based navigation state handling, single-precision support, faster GPU init

● Moving from a simple non-optimized to a more efficient BVH navigator

● Adopting modern CMake GPU support

► The current geometry approach is a major GPU bottleneck
● Strong motivation to develop a surface model for GPU support

▹ Portable less complex & less divergent code, creating a surface-based view on device

▹ Our major work item (see: surface model presentation link)

5

https://gitlab.cern.ch/VecGeom/VecGeom/-/tree/surface_model?ref_type=heads

Parallelization in AdePT

► Simulation is done in steps, moving particles to either boundaries or physics
processes

► All active tracks available are stepped at once (Geant4 transports one
particle at a time)

● Much higher degree of parallelism and more uniform work for the GPU

► No “thread-local” state, everything embedded in the track
● Energy, position/direction, state needed across steps
● Random number generator state (RANLUX++) per track to ensure reproducibility

▹ Strategy to spawn a new sequence for daughter particles from the current state

► Tracks pre-allocated per particle type in thread-safe containers
● Atomic counter to hand on track slots to be filled by kernels

6

Stepping loop
► Pre-allocated track buffer
► Separate kernels per particle type

● Separate kernels for continuous and
different discrete processes also possible

► Double buffer of active/next track
indices

● Atomic access, next-unused slot track
allocation policy

● Dead tracks leave holes, track container
compacted occasionally

► Copy to host simulation products at
the end (hits, leaked tracks)

7

TransportKernel

read write

active
indices

next
indices

pre-allocated track buffer AOS

FinishIteration

one per e+, e- and gamma, running in
separate streams

swap active and next track indices, compact
track buffer occasionally

… host sync

CopyToHost
copy simulation products (hits, leaked
tracks) back to host

si
ng

le
 s

te
p

w
hi

le
 (n

ac
tiv

e
>

0
)

GPU sync

Run Time Characteristics

8

batch size = 100

batch size = 1000

Unallocated warps in active SMs
Compute warps in flight

25 %

50 %

75 %

100 %

Occupancy
● putting more work per batch does more work in the same

#iterations (steps)
○ limited by available memory AND available tracks

● hints already to using strategies to fill the gaps
○ e.g. more CPU threads doing concurrent events

● performance: sweet spot at about 50% occupancy
(register-hungry code)

● 36 SM GPU ≃64 CPU threads: a consumer card can double
the throughput of a dual socket machine

fastest

AdePT-Geant4 integration

9

► AdePT only provides EM physics for e⁺, e⁻ and γ
● Cannot be used standalone for simulating a full experiment
● In a first phase it could be used as accelerator for the EM part, in the

same way as fast simulation models can be used in Geant4

► Developed an integration interface allowing a Geant4
region to become the “GPU region”

● Intercepting and buffering for GPU particles sent asynchronously by
Geant4 threads
▹ Available from Geant4 11.1, patches available for older versions

● Sensitive detector code run on device, hits+leaked tracks sent back
to host

● An initial approach under evaluation by several experiments

ev0

ev1

ev2

ev3

buffer

buffer

buffer

buffer

GPU
worker

worker

worker

worker

Integration performance
► Performance in this approach increases with :

● Fraction of time spent in the GPU-accelerated
region (Amdahl law)

● GPU buffer size and event size (to fill it)

► Performance degrades with :
● Number of exchanges CPU-GPU per event
● Number of CPU threads (GPU saturation)

► Why not the full detector on GPU?
● Not limited by geometry
● Possible for EM particles

▹ Except lepto-nuclear processes (rare)
that can be delegated to CPU

● Limited by sensitive detector code GPU
awareness - incentive to write GPU-friendly
scoring

10

Throughput for batches of 100 x 10 GeV e-/event
gun, 85% of simulation time in the EM calorimeter

cms_2018 setup, Xeon(R) CPU E5-2630v3 + RTX2070

GPU buffer size = 2000

Hooking user code
► AdePT advanced examples provide a mechanism to

implement Geant4-like sensitive detector code
● Scoring type to be implemented and aliased as AdeptScoring
● Transport kernels templated on this type, calling back directly on GPU

► Fairly straightforward interfaces
● GPU data management (hits) - allocation and cleanup, copy to host

▹ A very simple atomic calorimeter cell accumulator as example
● AdeptScoring::Score method to intercept current step as in Geant4

► One of the main challenges for experiment code
integration

● Cannot be identical with Geant4 code (different types)
● Working directly with experiments to understand realistic cases

11

electrons.cuh

template <typename Scoring>
__global__ void
TransportElectrons(Scoring *s)
{
…
 s->Score(track_state);
}

SimpleScoring.h

struct SimpleScoring
{
 __device__ void Score(

TrackState const&);
 …
};

using AdeptScoring =
SimpleScoring;

AdePT

User code

https://github.com/apt-sim/AdePT/tree/master/examples/Example17

Experiment integrations

► AdePT is not a framework/library at this stage
● Compiling the specific experiment integration will compile AdePT
● This makes easier to fit on specific user scoring requirements

► Interacting with experiments in different phases
● Understand how AdePT works: modifying advanced examples and adding a custom detector

module
● Understanding which detectors/workflows may benefit from such GPU integration
● “Biting the bullet” and actually dealing with the concrete case integration problems

▹ AdePT dependencies, experiment framework, specific detector scoring code

12

Towards integration with CMSSW
► Targeting Phase 2 setup, in particular CMS HGCal

● Load geometry setup in AdePT Example14 (exported from CMSSW)
● Configure HGCalRegion to offload electrons, positrons and gammas
● Load HepMC3 file with minimum bias events

► Started with integration fo G4HepEm on CPU
● Library built with CMSSW since November 2022
● Integrate as option into EMM physics list, only for e- below 100 MeV

► Investigate sensitive detector code on GPUs
● Right now only accumulated energy deposit
● Also need to deal with sparsity of HGcal hits (important data volume)

► Prepare prototype for integration with CMSSW
● How to request GPU resources from multiple threads
● Ways to extract particles for the GPU, send back results and feed into framework

13

ATLAS trying out AdePT
► Forked AdePT & modified example14(17)

● Taking a test beam setup geometry GDML
▹ Scintillator as active element

● Modifying BasicScoring.cu
▹ Adapting to specific Geant4 scoring code

● Scanning with electron gun tilted along Y axis
▹ Getting same results + speedup GPU vs. CPU

● Main challenge: adapting G4Step-based scoring

► Take-away & next steps
● “Ideal environment to build a sensitive detector”

(working on GPU)
● More complex scoring (e.g. Birk’s law on device)
● Code duplication? How to handle?
● Thinking about integration with FullSimLight

14

ATLTileCalTB

credits to D. Costanzo, A. Dell’Acqua &
R. M. Bianchi

https://github.com/adept-atlas/AdePT
https://github.com/lopezzot/ATLTileCalTB/

Integration as fast simulation algorithm?
► Different versions of LHCb

upgrade geometry usable with
AdePT advanced examples

● Ongoing investigation enabling AdePT
with the EMCAL, using MCParticles at
entrance taken from realistic simulation

► Ongoing discussions about AdePT
integration in Gaussino

● Via AdePT buffer and FastSim hook
(requires patching Geant4)

● Stopping particles entering the ECAL
and giving them to Gaussino calling
AdePT as fast simulation algorithm

15

credits to G.Corti & M. Mazurek

Outlook

► A challenging project, the problem is far from a perfect match for GPU
● Full EM shower transport functionality implemented and validated
● A first phase of evaluation completed, answering most of the initial R&D questions
● Efficiency blockers identified, triggering a new project on GPU geometry

► Prototypes for standalone and Geant4-integrated workflows available
● Realistic examples for LHC setups, GPUs can be used in a Geant4 native application
● Optimization work ongoing, performance not yet on a GPU-efficient baseline

► GPUs appears to be a valid accelerating alternative for particle transport
simulation

● Still to be validated by integration with concrete experiment use cases
● Discussions and collaboration with experiments ongoing

16

Backup

17

Kernel Launch Configurations
► 1024 Threads / SM

● 4 schedulers x 8 warps/scheduler x 32 threads/warp

► 65536 Registers / SM
● 4 register files x 16384 registers
● 1 float = 1 register, 1 double = 2 registers

► 96 KB L1 Data Cache / Shared Memory
► Theoretical Occupancy (–maxrregcount or __launch_bounds__)

● 256 regs/thread (256 threads, 8 warps) ⇒ 25%
● 160 regs/thread (320 threads, 10 warps) ⇒ 38%
● 128 regs/thread (512 threads, 16 warps) ⇒ 50%
● 96 regs/thread (640 threads, 20 warps) ⇒ 63%
● 80 regs/thread (768 threads, 24 warps) ⇒ 75%
● 64 regs/thread (1024 threads, 32 warps) ⇒ 100%

18

Turing SM

H
ig

he
r p

ar
al

le
lis

m

Fa
st

er
 T

hr
ea

d
s

Relative Performance per SM

19

● sweet spot at about 50% occupancy for a simple geometry,
showing that simulation code is register-hungry

● comparable throughput per SM no matter the card

GPU Throughput (RTX 2070)

20

25 %

50 %

75 %

100 %

Occupancy

Performance does not improve with higher occupancy.
Too many global memory accesses, thread divergence.

More occupancy means more memory accesses spill to global memory.

CPU vs GPU Performance

21
AMD Ryzen 3950X (16 cores, 32 threads, 3.5-4.7GHz), AMD EPYC 7282 (16 cores, 32 threads, 2.8-3.2GHz)

32 threads

64 threads

36 SMs

72 SMs

80 SMs

Case Study: Thread Divergence

22

Problem: Threads in transport kernels diverge
because of diverging interactions
→ 13 / 32 threads active on average

Here: Split off interaction computations from
cross-section and geometry kernels (one
kernel for pair creation, one for ionisation, …)

Result: 17 / 32 threads active for physics + geo
 29 / 32 threads active for Bremsstr.
 Run time: 6.4 s → 5.5 s

Conclusion: Keeping threads coherent is key
for detector simulation
Generally difficult; stochastic processes

Single kernel
Split kernels

End of
step

Single kernel
Split kernels

V100

