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Simulation on GPU - can we do that?

► Functionality: make all simulation components work on GPU
● Physics, geometry, field, but also user sensitive detector code and hits?

● Simulate  e⁺, e⁻ and γ  electromagnetic shower

► Correctness: validate results and ensure reproducibility
● Producing compatible results with Geant4 equivalent?

► Usability: integrate in a hybrid CPU-GPU Geant4 workflow
● Usable within real experiment frameworks?

►  Performance: understand/address bottlenecks limiting performance 
● Can we actually use the GPU in an efficient/beneficial way?

● Show stoppers? Bottlenecks? Can we overcome them?
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The AdePT project

► Trying to get answers for most of these questions
● GitHub repository, initial commit in Sep 2020, O(10) contributors

► Strategy: integrate gradually features as new examples
● No library/framework, just core infrastructure, to maximize flexibility to explore different 

directions and adapt to different requirements

► Minimal external dependencies
● Geometry: VecGeom library, enhancing its GPU-related features
● Physics: G4HepEm library, a GPU-friendly port of Geant4 EM interactions

► Understand and improve the integration with experiments and their 
frameworks

● Discussions/collaboration with ATLAS, CMS and LHCb ongoing
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https://github.com/apt-sim/AdePT
https://gitlab.cern.ch/VecGeom/VecGeom
https://github.com/mnovak42/g4hepem


At a glance: physics
► G4HepEm: GPU-friendly compact rewrite of 

EM processes for HEP
● Covers the complete physics for e⁻, e⁺ and 𝛾 particle 

transport

► Design of library very supportive for 
heterogeneous simulations

● Stateless interfaces working on both CPU and GPU

● Data: physics tables and other data structures relying 
on Geant4, but standalone after being copied to GPU

► Verified against Geant4 standalone
● At ‰ level in the sampling calorimeter test case
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https://g4hepem.readthedocs.io/en/latest/IntroAndInstall/introduction.html#physics-modelling-capability


At a glance: geometry

► Relying on the builtin VecGeom CUDA support
● Identical object model for CPU and GPU, non-specialized for the GPU use case

● CUDA-specific, non-portable

► Improved gradually the GPU support
● Developed index-based navigation state handling, single-precision support, faster GPU init

● Moving from a simple non-optimized to a more efficient BVH navigator

● Adopting modern CMake GPU support

► The current geometry approach is a major GPU bottleneck
● Strong motivation to develop a surface model for GPU support

▹ Portable less complex & less divergent code, creating a surface-based view on device

▹ Our major work item (see: surface model presentation link)
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https://gitlab.cern.ch/VecGeom/VecGeom/-/tree/surface_model?ref_type=heads


Parallelization in AdePT

► Simulation is done in steps, moving particles to either boundaries or physics 
processes

► All active tracks available are stepped at once (Geant4 transports one 
particle at a time)

● Much higher degree of parallelism and more uniform work for the GPU

► No “thread-local” state, everything embedded in the track
● Energy, position/direction, state needed across steps
● Random number generator state (RANLUX++) per track to ensure reproducibility

▹ Strategy to spawn a new sequence for daughter particles from the current state

► Tracks pre-allocated  per particle type in thread-safe containers
● Atomic counter to hand on track slots to be filled by kernels
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Stepping loop
► Pre-allocated track buffer
► Separate kernels per particle type

● Separate kernels for continuous and 
different discrete processes also possible

► Double buffer of active/next track 
indices

● Atomic access, next-unused slot track 
allocation policy

● Dead tracks leave holes, track container 
compacted occasionally

► Copy to host simulation products at 
the end (hits, leaked tracks)
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TransportKernel
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Run Time Characteristics
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batch size = 100

batch size = 1000

Unallocated warps in active SMs
Compute warps in flight

25 %

50 %

75 %

100 %

Occupancy
● putting more work per batch does more work in the same 

#iterations (steps)
○  limited by available memory AND available tracks

● hints already to using strategies to fill the gaps
○ e.g. more CPU threads doing concurrent events

● performance: sweet spot at about 50% occupancy 
(register-hungry code)

● 36 SM GPU ≃64 CPU threads: a consumer card can double 
the throughput of a dual socket machine

fastest



AdePT-Geant4 integration
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► AdePT only provides EM physics for e⁺, e⁻ and γ
● Cannot be used standalone for simulating a full experiment
● In a first phase it could be used as accelerator for the EM part, in the 

same way as fast simulation models can be used in Geant4

► Developed an integration interface allowing a Geant4 
region to become the “GPU region”

● Intercepting and buffering for GPU particles sent asynchronously by 
Geant4 threads
▹ Available from Geant4 11.1, patches available for older versions

● Sensitive detector code run on device, hits+leaked tracks sent back 
to host

● An initial approach under evaluation by several experiments
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Integration performance
► Performance in this approach increases with :

● Fraction of time spent in the GPU-accelerated 
region (Amdahl law)

● GPU buffer size and event size (to fill it)

► Performance degrades with :
● Number of exchanges CPU-GPU per event
● Number of CPU threads (GPU saturation)

► Why not the full detector on GPU?
● Not limited by geometry
● Possible for EM particles

▹ Except lepto-nuclear processes (rare) 
that can be delegated to CPU

● Limited by sensitive detector code GPU 
awareness - incentive to write GPU-friendly 
scoring
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Throughput for batches of 100 x 10 GeV e-/event 
gun, 85% of simulation time in the EM calorimeter 

cms_2018 setup, Xeon(R) CPU E5-2630v3 + RTX2070

GPU buffer size = 2000



Hooking user code
► AdePT advanced examples provide a mechanism to 

implement Geant4-like sensitive detector code
● Scoring type to be implemented and aliased as  AdeptScoring
● Transport kernels templated on this type, calling back directly on GPU

► Fairly straightforward interfaces
● GPU data management (hits) - allocation and cleanup, copy to host

▹ A very simple atomic calorimeter cell accumulator as example
● AdeptScoring::Score method to intercept current step as in Geant4

►  One of the main challenges for experiment code 
integration

● Cannot be identical with Geant4 code (different types)
● Working directly with experiments to understand realistic cases
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electrons.cuh

template <typename Scoring>
__global__ void 
TransportElectrons(Scoring *s)
{
…
  s->Score(track_state);
}

SimpleScoring.h

struct SimpleScoring
{
  __device__ void Score(

TrackState const&);
  …
};

using AdeptScoring = 
SimpleScoring;

AdePT

User code

https://github.com/apt-sim/AdePT/tree/master/examples/Example17


Experiment integrations

► AdePT is not a framework/library at this stage 
● Compiling the specific experiment integration will compile AdePT
● This makes easier to fit on specific user scoring requirements

► Interacting with experiments in different phases
● Understand how AdePT works: modifying advanced examples and adding a custom detector 

module
● Understanding which detectors/workflows may benefit from such GPU integration
● “Biting the bullet” and actually dealing with the concrete case integration problems

▹ AdePT dependencies, experiment framework, specific detector scoring code
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Towards integration with CMSSW
► Targeting Phase 2 setup, in particular CMS HGCal

● Load geometry setup in AdePT Example14 (exported from CMSSW)
● Configure HGCalRegion to offload electrons, positrons and gammas
● Load HepMC3 file with minimum bias events

► Started with integration fo G4HepEm on CPU
● Library built with CMSSW since November 2022
● Integrate as option into EMM physics list, only for e- below 100 MeV

► Investigate sensitive detector code on GPUs
● Right now only accumulated energy deposit
● Also need to deal with sparsity of HGcal hits (important data volume)

► Prepare prototype for integration with CMSSW
● How to request GPU resources from multiple threads
● Ways to extract particles for the GPU, send back results and feed into framework
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ATLAS trying out AdePT
► Forked AdePT & modified example14(17)

● Taking a test beam setup geometry GDML
▹ Scintillator as active element

● Modifying BasicScoring.cu 
▹ Adapting to specific Geant4 scoring code

● Scanning with electron gun tilted along Y axis
▹ Getting same results + speedup GPU vs. CPU

● Main challenge: adapting G4Step-based scoring

► Take-away & next steps
● “Ideal environment to build a sensitive detector” 

(working on GPU)
● More complex scoring (e.g. Birk’s law on device)
● Code duplication? How to handle?
● Thinking about integration with FullSimLight
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ATLTileCalTB

credits to D. Costanzo, A. Dell’Acqua & 
R. M. Bianchi 

https://github.com/adept-atlas/AdePT
https://github.com/lopezzot/ATLTileCalTB/


Integration as fast simulation algorithm?
► Different versions of LHCb 

upgrade geometry usable with 
AdePT advanced examples

● Ongoing investigation enabling AdePT 
with the EMCAL, using MCParticles at 
entrance taken from realistic simulation

► Ongoing discussions about AdePT 
integration in Gaussino

● Via AdePT buffer and FastSim hook 
(requires patching Geant4)

● Stopping particles entering the ECAL 
and giving them to Gaussino calling 
AdePT as fast simulation algorithm 
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credits to G.Corti & M. Mazurek



Outlook

► A challenging project, the problem is far from a perfect match for GPU
● Full EM shower transport functionality implemented and validated
● A first phase of evaluation completed, answering most of the initial R&D questions
● Efficiency blockers identified, triggering a new project on GPU geometry

► Prototypes for  standalone and Geant4-integrated workflows available
● Realistic examples for LHC setups, GPUs can be used in a Geant4 native application
● Optimization work ongoing, performance not yet on a GPU-efficient baseline

► GPUs appears to be a valid accelerating alternative for particle transport 
simulation

● Still to be validated by integration with concrete experiment use cases
● Discussions and collaboration with experiments ongoing

16



Backup
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Kernel Launch Configurations
► 1024 Threads / SM

● 4 schedulers x 8 warps/scheduler x 32 threads/warp

► 65536 Registers / SM
● 4 register files x 16384 registers
● 1 float = 1 register, 1 double = 2 registers

► 96 KB L1 Data Cache / Shared Memory
► Theoretical Occupancy (–maxrregcount or  __launch_bounds__)

● 256 regs/thread (256 threads, 8 warps)   ⇒ 25%
● 160 regs/thread (320 threads, 10 warps)  ⇒ 38%
● 128 regs/thread (512 threads, 16 warps)     ⇒ 50%
●   96 regs/thread (640 threads, 20 warps) ⇒ 63%
●   80 regs/thread (768 threads, 24 warps)  ⇒ 75%
●   64 regs/thread (1024 threads, 32 warps) ⇒ 100%
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Relative Performance per SM
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● sweet spot at about 50% occupancy for a simple geometry, 
showing that simulation code is register-hungry

● comparable throughput per SM no matter the card



GPU Throughput (RTX 2070)
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25 %

50 %

75 %

100 %

Occupancy

Performance does not improve with higher occupancy.
Too many global memory accesses, thread divergence.

More occupancy means more memory accesses spill to global memory.



CPU vs GPU Performance
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AMD Ryzen 3950X (16 cores, 32 threads, 3.5-4.7GHz), AMD EPYC 7282 (16 cores, 32 threads, 2.8-3.2GHz)

32 threads

64 threads

36 SMs

72 SMs

80 SMs



Case Study: Thread Divergence
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Problem: Threads in transport kernels diverge 
because of diverging interactions
→ 13 / 32 threads active on average

Here: Split off interaction computations from 
cross-section and geometry kernels (one 
kernel for pair creation, one for ionisation, …)

Result: 17 / 32 threads active for physics + geo
 29 / 32 threads active for Bremsstr.
 Run time: 6.4 s → 5.5 s

Conclusion: Keeping threads coherent is key 
for detector simulation
Generally difficult; stochastic processes

Single kernel
Split kernels

End of 
step

Single kernel
Split kernels

V100


