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Background and motivation

e Athena: ATLAS experiment software framework for data and MC
processing

e For Run 3, DAOD_PHYS has been the common ATLAS wide analysis
format

o Produced by deriving primary AODs resulting from data/MC reconstruction

e For Run 4, DAOD_PHYSLITE will additionally be used

o Centrally calibrated, which means it needs to store fewer variables

N.B. (D)AOD = (Derived) Analysis Object Data



Background and motivation

HL-LHC: (even) more data to store and process!
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RNTuple: experimental evolution of ROOT's TTree columnar data storage

(See previous talk for more on RNTuple) 3


https://indico.jlab.org/event/459/contributions/11594/
http://cds.cern.ch/record/2802918

Getting RNTuple in shape for Athena

Collection Proxies
o Support for user-defined classes that behave as collections. These have an associated
"collection proxy" that provides access to collection's elements
Read rules
o Act on standard ROOT I/0 customization rules (i.e., #pragma read)
o Enables custom post-read callbacks
Late model extension

o Allows for on-demand extension of RNTuple model with new fields after some entries have
been written using the initial schema
o Required for adding dynamic attributes during the derivation job

With these features, RNTuple-based DAOD_PHYS(LITE)
production is fully possible in Athena



RNTuple for ATLAS DAOD_PHYS

Two central questions

1. How does RNTuple perform compared to TTree?
2. How could it (ideally) be used in the future?

Evaluation of DAOD PHYS

e Storage efficiency and read throughput
e Samples from real data and Monte Carlo

e RNTuples fully equivalent to TTrees, event-wise
o Created using ROOT's RilTuplelmporter
o Default cluster and page configurations used



https://root.cern/doc/master/classROOT_1_1Experimental_1_1RNTupleImporter.html

DAOD_PHYS storage efficiency, data

Storage Efficiency

Average event size [kB]

DAOD_PHYS (almost) exclusively contain
collections (both STL and custom),
various levels of nesting

RNTuple / TTree

Izma (vl 1) Izma (Ivl 7)

Storage efficiency in line with other
evaluations
o See

DAOD_PHYS storage efficiency, MC

Selection flags are stored as
std: :vector<char>
o  Storing them as
std: :vector<bool> might lead
to additional size reduction

Average event size [kB]

RNTuple / TTree
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https://indico.jlab.org/event/459/contributions/11594/

Read throughput

Benchmark: (highly) artificial event loop
using RDataFrame
o Restricted to reading
std::vector<float> fields
o  More representative benchmarks
are planned, requires additional
RNTuple support in Athena

Depending on storage medium,
performance may be CPU bound

In general: faster time-to-plot

Similar results with MC benchmark
sample

DAOD_PHYS event throughput speedup, data
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Read throughput
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Read throughput

DAOD_PHYS event throughput, SSD DAOD_PHYS raw byte throughput, SSD
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Next steps

Explore storage efficiency across more (different) files

2. Explore more of the benchmarking phase space

e Compression: Lz4, lossy compression
e Storage backends: Intel DAQS, S3
o More on this during tomorrow's session
e Data sources: more (XRootD) latency configurations
e RNTuple parameter configuration: cluster and page sizes
o  Check out this poster on ML-based optimization of RNTuple I/0 parameters

3. Evaluate (multiple) representative analyses
Evaluate DAOD_PHYSLITE

5. Bonus: Evaluate RNTuple use in other stages of the data production
pipeline
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https://indico.jlab.org/event/459/contributions/11329/
https://indico.jlab.org/event/459/contributions/11600/

Summary and concluding remarks

Support for RNTuple in ATLAS Athena almost complete - validation ongoing

RNTuple shows improvements in file size and read speed w.r.t. TTree for
DAOD_PHYS

Similar to TTree, zstd compression seems to outperform Izma in terms of

read speed
o File sizes seem to be comparable, need to validate with more data sets
o Comparison to other compression methods is planned

We need further evaluation and benchmarking to understand current
(performance) bottlenecks
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Backup



Benchmark setup

e Single-core “analysis” using RDataFrame

e For 8 object containers, read the pt, eta, phi and mass
o 32 branches/top-level fields in total

e C(Calculate the invariant mass (using ROOT : : VecOps) and fill a histogram with
the result
e Repeated 10 times, outliers removed
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https://root.cern/doc/master/group__vecops.html

Hardware and software

Hardware Software
e CPU: AMD EPYC 7702P @ 2GHz, 128 e ROOT
logical cores e Benchmark code
e RAM: 128GB DDR4 RDIMM 3200 MHz
SSD: Samsung MZWLJ3T8HBLS-00007 e OS: AlmaLinux 9.1 with Linux kernel
HDD: TOSHIBA MGO7ACAT4TE SATA, 6.3 from ELrepo (uring enabled)
7200 RPM

e Network:; 100GBe

N.B.: XRootD access from projects.cern.ch EOS
instance (same datacenter)
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https://github.com/enirolf/atlas-bm/tree/rdf
https://github.com/enirolf/atlas-bm

Average event size [kB]

RNTuple / TTree

DAOD_PHYS storage efficiency, data DAOD_PHYS storage efficiency, MC
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Why is the ratio RNTuple/TTree so much larger for uncompressed DAOD_PHYS?

e DAOD_PHYS files contain a lot of std::vectors and other vector-like branches/fields
e Every std::vector<POD> needs 10 bytes more in TTree compared to RNTuple

o  Similar story for other types of STL(-like) collections
e Lots of redundant data, compresses away well - but not completely

17



Warm cache performance

DAOD_PHYS event throughput, warm cache DAOD_PHYS raw byte throughput, warm cache
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XRootD performance

DAOD_PHYS raw byte throughput, XRootD (100GbE, 0.3ms)
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