
https://root.cern

ROOT
Data Analysis Framework

Integration of RNTuple in
ATLAS Athena
Florine de Geus1,2, Javier Lopez-Gomez1, Jakob Blomer1, Marcin Nowak3 and Peter van Gemmeren4

May 8, 2023

1 CERN
2 University of Amsterdam
3 Brookhaven National Laboratory
4 Argonne National Laboratory

https://root.cern

Background and motivation

2

● Athena: ATLAS experiment software framework for data and MC
processing

● For Run 3, DAOD_PHYS has been the common ATLAS wide analysis
format
○ Produced by deriving primary AODs resulting from data/MC reconstruction

● For Run 4, DAOD_PHYSLITE will additionally be used
○ Centrally calibrated, which means it needs to store fewer variables

N.B. (D)AOD = (Derived) Analysis Object Data

Background and motivation

RNTuple: experimental evolution of ROOT’s TTree columnar data storage
(See previous talk for more on RNTuple) 3

Source: ATLAS Software and Computing HL-LHC Roadmap

HL-LHC: (even) more data to store and process!

https://indico.jlab.org/event/459/contributions/11594/
http://cds.cern.ch/record/2802918

Getting RNTuple in shape for Athena

● Collection Proxies
○ Support for user-defined classes that behave as collections. These have an associated

"collection proxy" that provides access to collection's elements
● Read rules

○ Act on standard ROOT I/O customization rules (i.e., #pragma read)
○ Enables custom post-read callbacks

● Late model extension
○ Allows for on-demand extension of RNTuple model with new fields after some entries have

been written using the initial schema
○ Required for adding dynamic attributes during the derivation job

→ With these features, RNTuple-based DAOD_PHYS(LITE)
production is fully possible in Athena

4

RNTuple for ATLAS DAOD_PHYS

Two central questions

1. How does RNTuple perform compared to TTree?
2. How could it (ideally) be used in the future?

Evaluation of DAOD_PHYS
● Storage efficiency and read throughput
● Samples from real data and Monte Carlo
● RNTuples fully equivalent to TTrees, event-wise

○ Created using ROOT’s RNTupleImporter
○ Default cluster and page configurations used

5

https://root.cern/doc/master/classROOT_1_1Experimental_1_1RNTupleImporter.html

Storage Efficiency

6

● DAOD_PHYS (almost) exclusively contain
collections (both STL and custom),
various levels of nesting

● Storage efficiency in line with other
evaluations

○ See previous talk

● Selection flags are stored as
std::vector<char>

○ Storing them as
std::vector<bool> might lead
to additional size reduction

DAOD_PHYS storage efficiency, data

DAOD_PHYS storage efficiency, MC

https://indico.jlab.org/event/459/contributions/11594/

Read throughput

● Benchmark: (highly) artificial event loop
using RDataFrame

○ Restricted to reading
std::vector<float> fields

○ More representative benchmarks
are planned, requires additional
RNTuple support in Athena

● Depending on storage medium,
performance may be CPU bound

● In general: faster time-to-plot

● Similar results with MC benchmark
sample

7

DAOD_PHYS event throughput speedup, data

DAOD_PHYS raw byte throughput speedup, data

8

Read throughput
DAOD_PHYS event throughput, SSD

DAOD_PHYS event throughput, HDD

DAOD_PHYS raw byte throughput, SSD

DAOD_PHYS raw byte throughput, HDD

9

DAOD_PHYS event throughput, SSD

DAOD_PHYS event throughput, HDD

DAOD_PHYS raw byte throughput, SSD

DAOD_PHYS raw byte throughput, HDD

9

Read throughput

io_uring: Linux interface
for asynchronous I/O,

utilized by RNTuple
(requires Linux kernel

version >= 5.1)

10

Read throughput
DAOD_PHYS event throughput, SSD

DAOD_PHYS event throughput, HDD

DAOD_PHYS raw byte throughput, SSD

DAOD_PHYS raw byte throughput, HDD

11

DAOD_PHYS event throughput, SSD

DAOD_PHYS event throughput, HDD

DAOD_PHYS raw byte throughput, SSD

DAOD_PHYS raw byte throughput, HDD

11

Read throughput

CPU bound

zstd is I/O-bound,
effects of async I/O

become more
apparent

Next steps

1. Explore storage efficiency across more (different) files

2. Explore more of the benchmarking phase space
● Compression: Lz4, lossy compression
● Storage backends: Intel DAOS, S3

○ More on this during tomorrow’s session
● Data sources: more (XRootD) latency configurations
● RNTuple parameter configuration: cluster and page sizes

○ Check out this poster on ML-based optimization of RNTuple I/O parameters

3. Evaluate (multiple) representative analyses

4. Evaluate DAOD_PHYSLITE

5. Bonus: Evaluate RNTuple use in other stages of the data production
pipeline

12

https://indico.jlab.org/event/459/contributions/11329/
https://indico.jlab.org/event/459/contributions/11600/

● Support for RNTuple in ATLAS Athena almost complete – validation ongoing

● RNTuple shows improvements in file size and read speed w.r.t. TTree for
DAOD_PHYS

● Similar to TTree, zstd compression seems to outperform lzma in terms of
read speed
○ File sizes seem to be comparable, need to validate with more data sets
○ Comparison to other compression methods is planned

● We need further evaluation and benchmarking to understand current
(performance) bottlenecks

13

Summary and concluding remarks

Backup

Benchmark setup

15

● Single-core “analysis” using RDataFrame
● For 8 object containers, read the pt, eta, phi and mass

○ 32 branches/top-level fields in total
● Calculate the invariant mass (using ROOT::VecOps) and fill a histogram with

the result
● Repeated 10 times, outliers removed

https://root.cern/doc/master/group__vecops.html

Software
● ROOT

● Benchmark code

● OS: AlmaLinux 9.1 with Linux kernel
6.3 from ELrepo (uring enabled)

16

Hardware and software

Hardware
● CPU: AMD EPYC 7702P @ 2GHz, 128

logical cores
● RAM: 128GB DDR4 RDIMM 3200 MHz
● SSD: Samsung MZWLJ3T8HBLS-00007
● HDD: TOSHIBA MG07ACA14TE SATA,

7200 RPM
● Network: 100GBe

N.B.: XRootD access from projects.cern.ch EOS
instance (same datacenter)

https://github.com/enirolf/atlas-bm/tree/rdf
https://github.com/enirolf/atlas-bm

Storage efficiency (incl. no compression)

17

DAOD_PHYS storage efficiency, data DAOD_PHYS storage efficiency, MC

Why is the ratio RNTuple/TTree so much larger for uncompressed DAOD_PHYS?

● DAOD_PHYS files contain a lot of std::vectors and other vector-like branches/fields
● Every std::vector<POD> needs 10 bytes more in TTree compared to RNTuple

○ Similar story for other types of STL(-like) collections
● Lots of redundant data, compresses away well – but not completely

18

Warm cache performance

DAOD_PHYS event throughput, warm cache DAOD_PHYS raw byte throughput, warm cache

19

XRootD performance

DAOD_PHYS event throughput, XRootD (100GbE, 0.3ms) DAOD_PHYS raw byte throughput, XRootD (100GbE, 0.3ms)

