
Polyglot Jet Finding

Graeme Stewart, Atell Krasnopolski, Philippe Gras, Benedikt Hegner

Overview

● Languages in HEP do evolve - albeit slowly!
○ Originally we programmed in Fortran for LEP

● With the LHC a huge transition to C++ occurred
○ Then supplemented by the addition of Python

■ Configuration and steering
■ Analysis codes
■ However, importantly backed by performant C++ code underneath

● However, there is interest over time in other languages (both inside HEP and
outside)

○ Go attracted attention a few years ago
○ Julia is being actively instigated [link to other CHEP papers]

● Evaluation of any new language is multi-dimensional
○ Here we look at some aspects of algorithmic performance and lanugage ergonomics for current

and possible future languages

2

AntiKt Jet Finding

● We would like to evaluate performance on a non-trivial HEP algorithm
○ Should not be so simple as to add little information over general metrics
○ Should not be so complex that implementation takes a very long time

● Jet finding is a good example of a “goldilocks”
algorithm

● The goal is to cluster calorimeter energy deposits
into jets

○ The AntiKt algorithm is popularly used because it is
an infrared and co-linear safe algorithm

○ [arXiv:0802.1189]

3

https://arxiv.org/abs/0802.1189

AntiKt in Brief

1. Define a cone size R (0.4 is typical)
2. For each active pseudojet A (=particle, cluster)

a. Measure the geometric distance, d, to the nearest
active pseudojet B, if < R (or d=R)

b. Define the AntiKt distance, akt_dist, as
i. akt_dist = d / min(JetA pt

2, JetB pt
2)

ii. N.B. Favours merges with high pt jets, giving
stability against soft radiation

3. Choose the jet with the lowest akt_dist
a. If this jet has an active partner B, merge these jets
b. If not, this is a final jet

4. Repeat steps 2-3 until no jets remain active

This is essentially a serial
process (have to final the lowest
global akt_dist)

There is a parallelisation
possibility in step 2

4

Serial and Parallel Optimisations

● We look at two different approaches to this
algorithm

○ A basic implementation of the algorithm, essentially just
implementing the flow on the previous slide

○ A tiled implementation of the algorithm, where the (eta, phi)
plane is split into tiles of size R

■ So that only neighbouring tiles need to be considered
when calculating distances

● The tiled algorithm involves more bookkeeping, but
reduces the work needing done

● The basic algorithm does more calculations, but
these are more amenable to parallelisation

eta

phi

R

5

Tiled Implementation
For a jet centred in the circle, only blue
tile neighbours need to be considered

Implementations

● The benchmark code used in HEP is FastJet in C++
○ This is a extremely well tested and optimised version

● Two versions in Python
○ One in pure Python
○ One using numpy and numba to accelerate calculations

● Julia version
○ Why Julia? Promise of the ergonomics of Python with speed approaching C++

Implementation Basic Algorithm Tiled Algorithm

C++ (FastJet) TBD! x

Python (Pure) x x

Python (Accelerated) x x

Julia x x
6

N.B. There is a FastJet C++
wrapper for both Python
and Julia!

https://fastjet.fr/
https://github.com/scikit-hep/fastjet
https://juliapackages.com/p/fastjet

Ergonomics: C++

● Tiles use pointers to jets
○ Implemented as a linked list
○ Minimises copying
○ Need to be careful about consistency with updating

■ Limited opportunities to parallelise

● Updates are bi-directional (jets are considered in pairs)
○ E.g., allows for a “march” across the tiles, only looking in one direction

● Overall, many pointers and linked
lists make the code quite hard to
follow

7

Ergonomics:
Pure Python

● Easy implementation
of jet classes

● Using a simple list to hold pseudojets
○ Mutable, so updates are easy

● Logic is clear and overall the implementation takes up relatively few lines of
code in the basic algorithm case

● Tililed algorithm makes things more complicated, but still a fairly
straightforward implementation, with simpler data structures used

8

Ergonomics:
Accelerated Python
● Using numba to hold arrays for pseudojets

○ Basically a single structure of arrays object

● Calculations can be aggressively parallelised for basic case
● Bookkeeping has to be done with masks to avoid resizing
● Numba jitting needs basic numpy types (unless taught otherwise)
● For the tiled case, used a single

unified array in [ieta, iphi, SLOTS]
● Needs to be sized appropriately

Leading to wasted space
● Ironically, parallelisation suffers

in this algorithm version

9

arrays!

Ergonomics: Julia

● Uses broadcast syntax for array calculations
● Easy markup where SIMD can be used as well
● Keeps the code for the basic implementation

rather nice, easy to follow
● For the tiled case, the implementation follows

fastjet
○ Using references, not pointers

● Jitting takes a few seconds (on my machine) for
the tiled case

○ Borderline annoying when making rapid iterations cf.
Python (but less than C++ compilation!)

10

array

Runtime Speed

● Standard sample 100 of HepMC3 events, multiple trials
● Benchmark is C++ Tiled Algorithm at 299μs/event (=1.00)
● Jit time for Numba and Julia is excluded

11

Implementation Basic Algorithm Tiled Algorithm

C++ (FastJet) TO BE DONE 1.00

Python (Pure) 779 177

Python (Accelerated) 31 175

Julia 2.8 1.1

Python acceleration of tiled algorithm currently doesn’t give a speed-up
[I think it can be improved]

Bonus Observations

● Pure Python 3.11 is much faster than 3.10
○ Pure python basic and tiled run 30% faster in 3.11

● Squeezing maximum performance from Julia requires some tricks, e.g.,
○ Switching off array bounds checking
○ Paying attention to memory allocations, e.g., in loops
○ Profiling some occasional fumbles from the jit (e.g., pow(x,-1.0) instead of 1/x)
○ (However, performance is usually excellent out of the box)

12

Conclusions

● FastJet in C++ remains the champion of speed!
○ However, the code is tricky and not easy to work with

● The pure Python implementation has the advantages of working in a easy
language

○ However, its runtime speed is, as expected very poor

● The accelerated Python implementation sacrifices ergonomic advantages,
moving to array structures

○ The speed-up in the basic case is significant
○ The speed-up in the tiled case is disappointing

■ Numpy excels at parallel calculations, but the tiling implementation is not optimal for this

● Julia looks impressive, it’s easy to work with and fast
○ “Time to first plot” is quite high because of the JIT compilation
○ Features like array broadcast really help for the basic implementation

13

Backup

14

Repositories

15

Implementation Repository

C++ https://fastjet.fr/

Python (all) https://github.com/graeme-a-stewart/antikt-python

Julia Basic https://github.com/JuliaHEP/JetReconstruction.jl

Julia Tiled N2 https://github.com/grasph/AntiKt.jl

https://fastjet.fr/
https://github.com/graeme-a-stewart/antikt-python
https://github.com/JuliaHEP/JetReconstruction.jl
https://github.com/grasph/AntiKt.jl

Benchmark Machine

● 11th Gen Intel(R) Core(TM) i7-1185G7 @ 3.00GHz
● Ubuntu 22.04 running in WSL under Windows 11

16

