Polyglot Jet Finding

Graeme Stewart, Atell Krasnopolski, Philippe Gras, Benedikt Hegner

cgﬁw
\

N/ S

Overview

e Languages in HEP do evolve - albeit slowly!
o Originally we programmed in Fortran for LEP

e With the LHC a huge transition to C++ occurred
o Then supplemented by the addition of Python
m Configuration and steering
m Analysis codes
m However, importantly backed by performant C++ code underneath
e However, there is interest over time in other languages (both inside HEP and

outside)
o Go attracted attention a few years ago
o Julia is being actively instigated [link to other CHEP papers]
e FEvaluation of any new language is multi-dimensional
o Here we look at some aspects of algorithmic performance and lanugage ergonomics for current
and possible future languages
2
e

AntiKt Jet Finding

e We would like to evaluate performance on a non-trivial HEP algorithm

o Should not be so simple as to add little information over general metrics
o Should not be so complex that implementation takes a very long time

e Jetfinding is a good example of a “goldilocks”

. L
algorithm L “\ |
e The goalis to cluster calorimeter energy deposits l"‘ L e
into jets ‘ l (- T7 [P0

o The AntiKt algorithm is popularly used because it is
an infrared and co-linear safe algorithm
o [arXiv:0802.1189]

https://arxiv.org/abs/0802.1189

AntiKt in Brief

1. Define a cone size R (0.4 is typical)

2. For each active pseudojet A (=particle, cluster)
a. Measure the geometric distance, d, to the nearest
active pseudojet B, if <R (or d=R)
b. Define the AntiKt distance, akt_dist, as
i. akt_dist=d/min(JetA p?, JetB p;?)
ii. N.B.Favours merges with high p, jets, giving
stability against soft radiation

3. Choose the jet with the lowest akt_dist This is essentially a serial

\ .
. . . process (have to final the lowest
a. Ifthis jet has an active partner B, merge these jets global akt_dist)

b. If not, this is a final jet
4. Repeat steps 2-3 until no jets remain active

There is a parallelisation
possibility in step 2

Serial and Parallel Optimisations

e We look at two different approaches to this

algorithm
o A basic implementation of the algorithm, essentially just
implementing the flow on the previous slide
o Atiled implementation of the algorithm, where the (eta, phi)
plane is split into tiles of size R
m So that only neighbouring tiles need to be considered
when calculating distances
e The tiled algorithm involves more bookkeeping, but
reduces the work needing done
e The basic algorithm does more calculations, but

these are more amenable to parallelisation

Tiled Implementation
For a jet centred in the circle, only blue
tile neighbours need to be considered

eta

lyd

Im plementatiOnS N.B. There is a FastJet C++
wrapper for both Python

and Julia!

e The benchmark code used in HEP is FastJet in C++
o This is a extremely well tested and optimised version

e Two versions in Python
o Onein pure Python
o One using numpy and numba to accelerate calculations

e Julia version
o Why Julia? Promise of the ergonomics of Python with speed approaching C++

Implementation Basic Algorithm Tiled Algorithm
C++ (FastJet) TBD! X
Python (Pure) X X
Python (Accelerated) X X
Julia X X
6

https://fastjet.fr/
https://github.com/scikit-hep/fastjet
https://juliapackages.com/p/fastjet

struct TiledJet {

ErgOnomiCS: C++ double eta, phi, kt2, NN_dist;

TiledJet * NN, *previous, * next;
int _jets_index, tile_index, diJ_posn;

e Tiles use pointers to jets -

o Implemented as a linked list

o Minimises copying

o Need to be careful about consistency with updating
m Limited opportunities to parallelise

e Updates are bi-directional (jets are considered in pairs)
o E.g, allows for a “march” across the tiles, only looking in one direction

e Overall, many pointers and linked \
. . // Update of only RH neighbour tiles
lists make the code quﬂ:e hard to for (Tile ** RTile = tile.RH_tiles; RTile != tile.end tiles; RTiles+) {
for (jetA = tile.head; jetA != NULL; jetA = jetA->next) {

f()ll()\A/ for (jetB = (*RTile)->head; jetB != NULL; jetB = jetB->next) {
double dist = _tj_dist(jetA,jetB);
if (dist < jetA->NN_dist) {jetA->NN_dist = dist; jetA->NN = jetB;}
if (dist < jetB->NN_dist) {jetB->NN_dist = dist; jetB->NN = jetA;}
}

¥

}
7

def scan_for_all_nearest_neighbours(jets: list[PseudoJet]):
""'Do a full scan for nearest (geometrical) neighbours'''

Er Onomicso for ijetA, jetA in enumerate(jets):
g; ° for ijetB, jetB in enumerate(jets[ijetA+1:], start=ijetA+l):
dist = geometric_distance(jetA, jetB)

Pu re Python if dist < jetA.info.nn_dist:

jetA.info.nn_dist = dist
jetA.info.nn = ijetB
if dist < jetB.info.nn_dist:
jetB.info.nn_dist = dist
jetB.info.nn = ijetA
jetA.info.akt_dist = antikt_distance(jetA, jets[jetA.info.nn] if jetA.info.nn else None)

e Easy implementation
of jet classes

e Using a simple list to hold pseudojets
o Mutable, so updates are easy

e Logicis clear and overall the implementation takes up relatively few lines of
code in the basic algorithm case

e Tililed algorithm makes things more complicated, but still a fairly
straightforward implementation, with simpler data structures used

class NPPseudoJets:
def __init_ (self, size:int):
'"'Setup blank arrays that will be filled later'''

Ergonomics: self.size = size

self.phi = np.zeros(size, dtype=float) # phi
self.rap = np.zeros(size, dtype=float) # rapidity

Acce | e rated P th O n self.inv_pt2 = np.zeros(size, dtype=float) # 1/ptr2
self.dist = np.zeros(size, dtype=float) # nearest neighbour geometric distance

S LGSR = i N GE St T8 DLELSEINL JLERE LA EDS

Using numba to hold arrays for pseudojets
o Basically a single structure of arrays object

Calculations can be aggressively parallelised for basic case
Bookkeeping has to be done with masks to avoid resizing
Numba jitting needs basic numpy types (unless taught otherwise)
For the tiled case, used a single et

def scan_for_all_nearest_neighbours(phi: npt.ArrayLike, rap: npt.ArrayLike, inv_pt2: npt.ArraylLike,
unified array in [i i SLOTS] dist: npt.ArraylLike, akt_dist: npt.Arraylike,
eta’ phl, nn: npt.ArraylLike, mask:npt.ArraylLike, R2:float):
""'Do a full scan for nearest (geometrical) neighbours''®

Needs to be sized appropriately for ijet in range(phi.size):

if mask[ijet]: arrays!

. continue
Leadlng tO Wasted Space _dphi = np.pi - np.a 5 - np.abs(phi - phi[ijet]))
_drap = rap ““rap[ijet]
1 1 1 _dist = _dphi*_dphi + _drap*_drap
Ironlca“y’ para”ellsatlon SUfferS _dist[ijet] = R2 # Avoid measuring the distance © to myself!

_dist[mask] = 1e20 # Don't consider any masked jets

in this algorithm version iclosejet = _dist.argnin()

dist[ijet] = _dist[iclosejet]

array

ErgonomICS: JUlla _kt2 = 1.8 / (JetReconstruction.pt.(_objects) .~ 2)

e

e Uses broadcast syntax for array calculations
e Easy markup where SIMD can be used as well

@inbounds @simd for j in from:(i-1)

e Keeps the code for the basic implementation Kzss: GASEEL. 3, . eta, phi}
rather nice, easy to follow FimiBd ¢oonnd Sk _
nn = IfElse.ifelse(f, j, nn)
e For the tiled case, the implementation follows nndist = IfElse.ifelse(f, A2, nndist)
. end
fastjet

o Using references, not pointers
e Jitting takes a few seconds (on my machine) for

the tiled case
o Borderline annoying when making rapid iterations cf.
Python (but less than C++ compilation!)

10

Runtime Speed

e Standard sample 100 of HepMC3 events, multiple trials
e Benchmark is C++ Tiled Algorithm at 299us/event (=1.00)
e Jit time for Numba and Julia is excluded

Implementation Basic Algorithm Tiled Algorithm
C++ (FastJet) TO BE DONE 1.00
Python (Pure) 779 177
Python (Accelerated) 31 /1 75

Julia 2.8 1.1

Python acceleration of tiled algorithm currently doesnt give a cpeed-up

[T think it can be improved]

1

Bonus Observations

e Pure Python 3.11is much faster than 3.10
o Pure python basic and tiled run 30% faster in 3.11

e Squeezing maximum performance from Julia requires some tricks, e.g.,
Switching off array bounds checking

o Paying attention to memory allocations, e.g., in loops

o Profiling some occasional fumbles from the jit (e.g., pow(x,-1.0) instead of 1/x)

o (However, performance is usually excellent out of the box)

(@)

12

Conclusions

e Fastletin C++ remains the champion of speed!
o However, the code is tricky and not easy to work with

e The pure Python implementation has the advantages of working in a easy
language
o However, its runtime speed is, as expected very poor
e The accelerated Python implementation sacrifices ergonomic advantages,

moving to array structures
o The speed-up in the basic case is significant
o The speed-up in the tiled case is disappointing
m Numpy excels at parallel calculations, but the tiling implementation is not optimal for this

e Julia looks impressive, it’s easy to work with and fast
o “Time to first plot” is quite high because of the JIT compilation

o Features like array broadcast really help for the basic implementation
13

Backup

Repositories

Implementation Repository

C++ https://fastjet.fr/

Python (all) https://github.com/graeme-a-stewart/antikt-python
Julia Basic https://qgithub.com/JuliaHEP/JetReconstruction.jl
Julia Tiled N? https://github.com/grasph/AntiKt.jl

15

https://fastjet.fr/
https://github.com/graeme-a-stewart/antikt-python
https://github.com/JuliaHEP/JetReconstruction.jl
https://github.com/grasph/AntiKt.jl

Benchmark Machine

e 11th Gen Intel(R) Core(TM) i7-1185G7 @ 3.00GHz
e Ubuntu 22.04 running in WSL under Windows 11

16

