
New Developments in Minuit2

L. Moneta, O. Zapata, H. Deminsky

Minuit2
▶ Minuit

● Popular minimisation program developed in the 1970s by F. James.
● It is a Variable metric method (quasi-Newton method) based on the DFP /

BFGS update of the inverse Hessian matrix.
● Work extremely well for fitting (e.g. parameter estimation) and it is has been

used extensively in HEP.
● available in ROOT since the beginning in the TMinuit class.

▶ Minuit2
● improved version re-written in C++ classes of Minuit
● available in ROOT and as a standalone version

■ e.g. used by the iMinuit Python package
● already in use in the statistical analysis of LHC experiments

2

Minuit Algorithm
▶ Start with an initial approximation of inverse Hessian,

● e.g. use diagonal second derivatives
▶ Iterate :

● compute new step direction as where
● perform line search for optimal point

■
● compute the new gradient at and
● Update inverse Hessian matrix according to BFGS or DFP update formula

BFGS : DFP:

● stop iteration when the Expected Distance from the Minimum (EDM)  
 is small

▶ EDM provides a scale-invariant quantity to tell the convergence of method.
● This is unique in Minuit!

H = (∇2f (x))−1

pk = − Hg g = ∇f (xk)
xk+1 = xk + αpk

sk = xk+1 − xk
g xk+1 yk = gk+1 − gk

Hk

Hk+1 = (I −
skyT

k

yT
k sk

)Hk(I −
yksT

k

yT
k sk

) +
sksT

k

yT
k sk

Hk+1 = Hk +
sksT

k

sT
k yk

−
HkykyT

k Hk

yT
k Hkyk

ρ = gT Hg

3

Advantages of Minuit
▶ Method work very well, superior to gradient descent methods

● much less number of iteration to converge
● approximate Hessian converge to true Hessian at the minimum
● use regularisation of Hessian by correcting for non-positive defined Hessian

■ add some offset to the diagonal of H to make it positive defined
● no need to perform matrix inversion at each iteration
● self-correcting if approximation is not good enough

▶ Disadvantage:
● require a fairly good initial Hessian approximation for having a fast convergence

■ second diagonal derivatives are often good enough (define scale)
● Sensitive to initial parameters, it is a local minimiser, can get stuck in local minimum
● Sensitive to bad numerical precision in function and gradient calculation
● Does not scale to problems with huge number of parameters

■ proofed to work to > ~ 1000 parameters (e.g Higgs combination fits)
■ will not work for training deep learning models with million of parameters

◆ need to use gradient descent in these cases

4

External Gradient and Hessian

▶ Minuit computes (by default) numerically the gradient using
a 3 points rule and adaptive step size
● algorithm well-tested and robust
● Essential having good numerical derivatives when gradient is

close to zero (near the minimum) to converge rapidly
▶ Support for external gradient

● needed for users exploiting Automatic Differentiation (AD)
▶ Option to provide external Hessian or only the diagonal of

the Hessian (needed for seeding)
● without providing Hessian, Minuit2 computes it numerically

5

Other new improvements in Minuit2

▶ Improved debugging
● can return all minimisation iteration status
● can provide a detailed output for each iteration in debug mode

▶ Possibility to add callbacks which can be called at each iteration
▶ Thread-safety: Minuit can work in multi-threads if user provided

function can
● support for likelihood or gradient parallelisation

▶ Addition of new minimization methods:
● BFGS: use standard BFGS formula instead of the default hybrid

mode of using BFGS or DFP formula depending on some conditions

6

Specialized Algorithms for Fitting

▶ When minimising Least-square functions:

7

this can be neglected
when residuals f are
small

Many algorithms have been developed on this idea (Levenberg-Marquardt method, Fumili,…)

Hk ≈ JT
k Jk

Specialized Fitting Methods
▶ Hessian can be computed directly from the first derivatives of the model

function
● It is like linear approximation of a non-linear least-square problems

▶ This approximation is also valid in the case of binned likelihood fits.
● but not really for standard unbinned maximum likelihood fits

▶ Advantage:
● positive defined and easy to calculate (one can use a 2-point rule)
● faster to converge than standard Minuit/BFGS methods

▶ Disadvantage:
● Initial point need to be close enough to the minimum to have the approximation

 valid
● require a more complex interface, user needs to provide the Jacobian matrix

(number of fit points , number of parameters) at each iteration

Hk ≈ JT
k Jk

8

Fumili Algorithm

▶ Old algorithm proposed already in 1961 by I. Silin
▶ Implemented later in the CERN library and made also available to

ROOT with TFumili class.
● It is using the Hessian approximation combined with a trust region

method.
■ a multidimensional parallelepiped ("box") is defined around the point

and used its intersection with the Newton direction for the next step
■ size of the parallelepiped changes dynamically

◆ depending on the function improvements and the expectation from a
quadratic approximation.

▶ Faster than Minuit for least-square/binned likelihood when the
starting point is close enough to the solution

9

Fumili2

▶ New implementation of Fumili integrated into Minuit2 library
● re-using Minuit2 interfaces classes
● working well for least-square and binned likelihood fits

▶ Based on trust-region using  
dogleg step
● trust region can be scaled  

using a metric defined  
by the diagonal of the  
approximated Hessian

10

Benchmark Results

▶ Use a binned likelihood to fit signal peak over some background

11

Mean 0.01292

0 0.01 0.02 0.03 0.04 0.05
sec

1

10

210

Mean 0.01292

Minuit2 (time)
Mean 0.01342

0 0.01 0.02 0.03 0.04 0.05
sec

1

10

210

Mean 0.01342

Minuit (time)
Mean 0.01292

0 0.01 0.02 0.03 0.04 0.05
sec

1

10

210

Mean 0.01292

Minuit2_BFGS (time)
Mean 0.003225

0 0.01 0.02 0.03 0.04 0.05
sec

1

10

210

310 Mean 0.003225

Fumili2 (time)
Mean 0.006277

0 0.01 0.02 0.03 0.04 0.05
sec

1

10

210

310 Mean 0.006277

Fumili (time)

Mean 270.2

0 100 200 300 400 500 600
nfcn

1

10

210

Mean 270.2

Minuit2 (# function calls)

Mean 279.5

0 100 200 300 400 500 600
nfcn

1

10

210

Mean 279.5

Minuit (# function calls)

Mean 270.5

0 100 200 300 400 500 600
nfcn

1

10

210

Mean 270.5

Minuit2_BFGS (# function calls)

Mean 9.552

0 100 200 300 400 500 600
nfcn

1

10

210

310
Mean 9.552

Fumili2 (# function calls)

Mean 44.95

0 100 200 300 400 500 600
nfcn

10

210

310
Mean 44.95

Fumili (# function calls)

Mean 1.009

0.6 0.8 1 1.2 1.4 1.6 1.8 2
chi2/ndf

1

10

210

Mean 1.009

Minuit2 (chi2/ndf)

Mean 1.009

0.6 0.8 1 1.2 1.4 1.6 1.8 2
chi2/ndf

1

10

210

Mean 1.009

Minuit (chi2/ndf)

Mean 1.01

0.6 0.8 1 1.2 1.4 1.6 1.8 2
chi2/ndf

1

10

210

Mean 1.01

Minuit2_BFGS (chi2/ndf)

Mean 1.004

0.6 0.8 1 1.2 1.4 1.6 1.8 2
chi2/ndf

1

10

210

Mean 1.004

Fumili2 (chi2/ndf)

Mean 1.005

0.6 0.8 1 1.2 1.4 1.6 1.8 2
chi2/ndf

1

10

210

Mean 1.005

Fumili (chi2/ndf)

 / ndf = 1001 / 9932χ

p0 9.5± 3971

p1 0.0086± 0.9988

p2 0.004± 0.498

p3 4.7± 402.2

p4 0.00425± 0.09955

p5 0.0004± 0.9998

p6 0.00169± 0.05059

0 0.5 1 1.5 2 2.5 3

1

10

210

310

 / ndf = 1001 / 9932χ

p0 9.5± 3971

p1 0.0086± 0.9988

p2 0.004± 0.498

p3 4.7± 402.2

p4 0.00425± 0.09955

p5 0.0004± 0.9998

p6 0.00169± 0.05059

Minuit2 CPU= 12.95 s � Nfail = 8 , 9

Minuit2 fit bench

1000 bins - 7 parameters

repeat fit 1000 times with

different data and different  
initial parameter values

Benchmark Results (2)

▶ Using initial parameters values further away from minimum solution

12

Using a starting point

further away we start to  
see more fit failures !

 / ndf 2χ 1001 / 993
p0 9.4± 3971
p1 0.0086± 0.9989
p2 0.004± 0.498
p3 4.7± 402.2
p4 0.00427± 0.09955
p5 0.0004± 0.9998
p6 0.00171± 0.05059

0 0.5 1 1.5 2 2.5 3

1

10

210

310

 / ndf 2χ 1001 / 993
p0 9.4± 3971
p1 0.0086± 0.9989
p2 0.004± 0.498
p3 4.7± 402.2
p4 0.00427± 0.09955
p5 0.0004± 0.9998
p6 0.00171± 0.05059

Fumili2 CPU= 8.57 s � Nfail = 133 , 188

Fumili2 fit bench
Mean 0.01493

0 0.01 0.02 0.03 0.04 0.05
sec

1

10

210

Mean 0.01493

Minuit2 (time)
Mean 0.01523

0 0.01 0.02 0.03 0.04 0.05
sec

1

10

210

Mean 0.01523

Minuit (time)
Mean 0.01654

0 0.01 0.02 0.03 0.04 0.05
sec

1

10

210

Mean 0.01654

Minuit2 str1 (time)
Mean 0.02447

0 0.01 0.02 0.03 0.04 0.05
sec

1

10

210

Mean 0.02447

Minuit2 str2 (time)
Mean 0.008537

0 0.01 0.02 0.03 0.04 0.05
sec

1

10

210

Mean 0.008537

Fumili2 (time)

Mean 306.1

0 100 200 300 400 500 600
nfcn

1

10

210

Mean 306.1

Minuit2 (# function calls)

Mean 315.6

0 100 200 300 400 500 600
nfcn

1

10

210

Mean 315.6

Minuit (# function calls)

Mean 342.8

0 100 200 300 400 500 600
nfcn

1

10

210

Mean 342.8

Minuit2 str1 (# function calls)

Mean 474.5

0 100 200 300 400 500 600
nfcn

1

10

210

Mean 474.5

Minuit2 str2 (# function calls)

Mean 35.35

0 100 200 300 400 500 600
nfcn

210

Mean 35.35

Fumili2 (# function calls)

Mean 1.041

0.6 0.8 1 1.2 1.4 1.6 1.8 2
chi2/ndf

1

10

210

Mean 1.041

Minuit2 (chi2/ndf)

Mean 1.04

0.6 0.8 1 1.2 1.4 1.6 1.8 2
chi2/ndf

1

10

210

Mean 1.04

Minuit (chi2/ndf)

Mean 1.023

0.6 0.8 1 1.2 1.4 1.6 1.8 2
chi2/ndf

1

10

210

Mean 1.023

Minuit2 str1 (chi2/ndf)

Mean 1.111

0.6 0.8 1 1.2 1.4 1.6 1.8 2
chi2/ndf

1

10

210

Mean 1.111

Minuit2 str2 (chi2/ndf)

Mean 1.319

0.6 0.8 1 1.2 1.4 1.6 1.8 2
chi2/ndf

1

10

210

Mean 1.319

Fumili2 (chi2/ndf)

ROOT Minimization Interface

▶ ROOT provides class ROOT::Math::Minimizer as
general interface for minimization

▶ Current default is TMinuit (old Minuit implementation)
● plan to switch to use Minuit2 as default in the next release

▶ implemented by several algorithms
● TMinuit, Minuit2, Fumili, GSL Minimisers and GSL Fitting

algorithms (Levenberg-Marquardt)
● also simulated annealing and Genetic algorithm
● RMinimizer (minimiser based on R algorithms)
● and from Python: scipy.optimize

13

Scipy optimizers

▶ O. Zapata developed an implementation of ROOT::Math::Minimizer
using scipy.optimize

▶ scipy.optimize.minimize provides 
 several minimization algorithms

14

Benchmark using Scipy Minimisers

15Using Scipy Minimizer interface from O. Zapata

Mean 0.005792

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

sec

1

10

210

310
Mean 0.005792

Minuit2 (time)
Mean 0.008144

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

sec

1

10

210

310
Mean 0.008144

Scipy_BFGS (time)
Mean 0.02015

0 0.1 0.2 0.3 0.4 0.5

sec

1

10

210

310 Mean 0.02015

Scipy_Powell (time)
Mean 0.2702

0 0.1 0.2 0.3 0.4 0.5

sec

1

10

210

Mean 0.2702

Scipy_CG (time)

Mean 0.02475

0 0.1 0.2 0.3 0.4 0.5

sec

1

10

210

310 Mean 0.02475

Scipy_Nelder_Mead (time)

Mean 185.7

0 100 200 300 400 500

nfcn

1

10

210

Mean 185.7

Minuit2 (# function calls)

Mean 38.73

0 100 200 300 400 500

nfcn

1

10

210

310 Mean 38.73

Scipy_BFGS (# function calls)

Mean 450.1

0 200 400 600 800 1000 1200 1400 1600 1800 2000

nfcn

1

10

210

Mean 450.1

Scipy_Powell (# function calls)

Mean 1924

0 200 400 600 800 1000 1200 1400 1600 1800 2000

nfcn

1

10

210

Mean 1924

Scipy_CG (# function calls)

Mean 537

0 200 400 600 800 1000 1200 1400 1600 1800 2000

nfcn

1

10

210

Mean 537

Scipy_Nelder_Mead (# function calls)

Mean 1.007

0.6 0.8 1 1.2 1.4 1.6 1.8 2

chi2/ndf

1

10

210

Mean 1.007

Minuit2 (chi2/ndf)

Mean 1.028

0.6 0.8 1 1.2 1.4 1.6 1.8 2

chi2/ndf

1

10

210

Mean 1.028

Scipy_BFGS (chi2/ndf)

Mean 1.15

0.6 0.8 1 1.2 1.4 1.6 1.8 2

chi2/ndf

1

10

210

Mean 1.15

Scipy_Powell (chi2/ndf)

Mean 1.226

0.6 0.8 1 1.2 1.4 1.6 1.8 2

chi2/ndf

1

10

210

Mean 1.226

Scipy_CG (chi2/ndf)

Mean 1.006

0.6 0.8 1 1.2 1.4 1.6 1.8 2

chi2/ndf

1

10

210

Mean 1.006

Scipy_Nelder_Mead (chi2/ndf)

Poor performance  
o f scipy w i th
respect to Minuit!

• Jupyter-friendly	Python	frontend	to	Minuit2	C++	library	in	ROOT

• Part	of	Scikit-HEP	project,	developed	in	sync	with	ROOT

• Backend	in	particle	and	astroparticle	physics	libraries	zfit,	pyhf,	gammapy,	flavio,	ctapipe,	...

• Easy	to	install:	pip	install	iminuit	installs	precompiled	binary	package	on	all	major	platforms

• Comprehensive	documentation	with	many	tutorials

• 100	%	test	coverage 

• Batteries	included:	shipped	with	common	cost	functions	for	statistical	fits

• Binned	and	unbinned	maximum-likelihood

• Template	fits	(new):	including	mix	of	templates	and	parametric	models	HD,	A.	Abdelmotteleb	EPJ	C	82,	

1043	(2022)

• Non-linear	regression	with	(optionally	robust)	weighted	least-squares

• Gaussian	penalty	terms

• Cost	functions	can	be	combined	by	adding:	total_cost	=	cost_1	+	cost_2

• Support	for	SciPy	minimisers	as	alternatives	to	Minuit’s	Migrad	algorithm

• Smart	visualization	of	fit	results	in	Jupyter	notebooks	+	interactive	fits

https://scikit-hep.org/
https://github.com/zfit/zfit
https://github.com/scikit-hep/pyhf
https://github.com/gammapy/gammapy
https://github.com/flav-io/flavio
https://github.com/cta-observatory/ctapipe
https://iminuit.readthedocs.io/en/stable/
https://link.springer.com/article/10.1140/epjc/s10052-022-11019-z
https://link.springer.com/article/10.1140/epjc/s10052-022-11019-z
https://link.springer.com/article/10.1140/epjc/s10052-022-11019-z
https://link.springer.com/article/10.1140/epjc/s10052-022-11019-z
https://link.springer.com/article/10.1140/epjc/s10052-022-11019-z
https://link.springer.com/article/10.1140/epjc/s10052-022-11019-z

Example fit with interactive fitting widget

High performance fitting in Python with iminuit

• iminuit

• iminuit.cost.UnbinnedNLL

• numba-accelerated	normal	distribution	from	

numba-stats	package

• automatic	parallelization	and	fastmath

Up	to	100x	faster	than	RooFit	(C++) 
with	NumCPU	(parallel	computation) 
and	BatchMode	(≈	fastmath)	options

• Using	Python	not	performance	bottleneck,	if	numerical	code	is	accelerated	with	Numba	JIT

• Crucial	for	high	performance:	accelerated	parallelized	SIMD-friendly	PDF	and	accelerated	unbinned	likelihood	function

• Benchmarks	for	unbinned	likelihood	fit	of	normal	distribution	with	parameters	𝜇,	𝜎

https://github.com/HDembinski/numba-stats
https://numba.pydata.org/
https://iminuit.readthedocs.io/en/stable/benchmark.html

Conclusions

▶ Minuit is more than 50 years old but it still the best minimization
algorithm for HEP fitting problems

▶ Minuit2 implementation will be made soon the default in ROOT
● improved recently by adding Fumili and BFGS
● add support for external gradient and Hessian (for AD users)
● improve logging and usability
● multi-thread-safe if user provided function is

▶ Python version (iminuit) available for the Python user community
▶ Future work:

● integrate more trust-region based methods in generic mimimizations
● implement support for non-trivial parameter constraints

19

