Data Analysis Framework

New Developments in Minuit2

L. Moneta, O. Zapata, H. Deminsky

Norfolk, Virginia, USA « May 8-12, 2023

P

Computing in High Energy & Nuclear Physics

Minuit2

» Minuit
e Popular minimisation program developed in the 1970s by F. James.
e |tis a Variable metric method (quasi-Newton method) based on the DFP /
BFGS update of the inverse Hessian matrix.
e Work extremely well for fitting (e.g. parameter estimation) and it is has been
used extensively in HEP.
e available in ROOT since the beginning in the TMinuit class.

» Minuit2
e improved version re-written in C++ classes of Minuit

e available in ROOT and as a standalone version
B e.g. used by the iMinuit Python package

e already in use in the statistical analysis of LHC experiments

Minuit Algorithm

» Start with an initial approximation of inverse Hessian, H = (V2f(x))~!
e e.g. use diagonal second derivatives

» lterate :
e compute new step direction as p, = — Hg where g = Vf(x;)
e perform line search for optimal point x; | = X, + ap;
S = M1 T Xk
e compute the new gradient g atx;,,;andy, = g1 — &
Update inverse Hessian matrix H, according to BFGS or DFP update formula
T T T T T
Ny S 5.8 5.8 H H
BFGS : H,,, = (I — 22 H,(1 - 2%) + 2% pepo g, = H + 2ok TRk T
I's Is Is st 'H,
Vi Sk Vi Sk Vi Sk k Yk Yie Yk

e stop iteration when the Expected Distance from the Minimum (EDM)
p =g Hg issmall

» EDM provides a scale-invariant quantity to tell the convergence of method.
e This is unique in Minuit!

Advantages of Minuit

» Method work very well, superior to gradient descent methods
e much less number of iteration to converge
e approximate Hessian converge to true Hessian at the minimum
e use regularisation of Hessian by correcting for non-positive defined Hessian
B add some offset to the diagonal of H to make it positive defined
e no need to perform matrix inversion at each iteration
e self-correcting if approximation is not good enough

» Disadvantage:

e require a fairly good initial Hessian approximation for having a fast convergence

B second diagonal derivatives are often good enough (define scale)
e Sensitive to initial parameters, it is a local minimiser, can get stuck in local minimum
e Sensitive to bad numerical precision in function and gradient calculation
e Does not scale to problems with huge number of parameters

B proofed to work to > ~ 1000 parameters (e.g Higgs combination fits)

B will not work for training deep learning models with million of parameters

* need to use gradient descent in these cases

External Gradient and Hessian

» Minuit computes (by default) numerically the gradient using

a 3 points rule and adaptive step size
e algorithm well-tested and robust
e Essential having good numerical derivatives when gradient is
close to zero (near the minimum) to converge rapidly

» Support for external gradient
e needed for users exploiting Automatic Differentiation (AD)

» Option to provide external Hessian or only the diagonal of

the Hessian (needed for seeding)
e without providing Hessian, Minuit2 computes it numerically

Other new improvements in Minuit2

» Improved debugging
e can return all minimisation iteration status
e can provide a detailed output for each iteration in debug mode

» Possibility to add callbacks which can be called at each iteration

» Thread-safety: Minuit can work in multi-threads if user provided
function can
e support for likelihood or gradient parallelisation

» Addition of new minimization methods:
e BFGS: use standard BFGS formula instead of the default hybrid
mode of using BFGS or DFP formula depending on some conditions

Specialized Algorithms for Fitting

» When minimising Least-square functions:
P9 =3 g0 =3 (R B09Y

O°F) ,
a.'l,','al‘j - 6.'17,3113]ka

B Ofr
Oz Z 2fr o0 Oz;
6f,c ofi O*F Ofr Of
= +) 2f ~ 2——.
Z O, 0z Z K 3% 0z;0x; Zk: dz; Oz;

this can be neglected
when residuals f are

small Hk ~ J]{Jk

Many algorithms have been developed on this idea (Levenberg-Marquardt method, Fumili,...)

Specialized Fitting Methods

» Hessian can be computed directly from the first derivatives of the model
function
e ltis like linear approximation of a non-linear least-square problems

» This approximation is also valid in the case of binned likelihood fits.
e but not really for standard unbinned maximum likelihood fits

» Advantage:
e positive defined and easy to calculate (one can use a 2-point rule)
e faster to converge than standard Minuit/BFGS methods

» Disadvantage:
e Initial point need to be close enough to the minimum to have the approximation
H, ~ J J, valid
e require a more complex interface, user needs to provide the Jacobian matrix
(number of fit points , number of parameters) at each iteration

Fumili Algorithm

» Old algorithm proposed already in 1961 by I. Silin

» Implemented later in the CERN library and made also available to
ROOT with TFumili class.

e |tis using the Hessian approximation combined with a trust region
method.
B a multidimensional parallelepiped ("box") is defined around the point
and used its intersection with the Newton direction for the next step
B size of the parallelepiped changes dynamically
+ depending on the function improvements and the expectation from a
quadratic approximation.
» Faster than Minuit for least-square/binned likelihood when the

starting point is close enough to the solution

Fumili2

» New implementation of Fumili integrated into Minuit2 library
e re-using Minuit2 interfaces classes
e working well for least-square and binned likelihood fits

P Based on trust-region using
dogleg step
e trust region can be scaled
using a metric defined
by the diagonal of the
approximated Hessian

Gauss—Newton step

Steepest descent direction

10

Benchmark Results

» Use a binned likelihood to fit signal peak over some background

Minuit2 (time) Minuit (time) Minuit2_BFGS (time) Fumili2 (time) Fumili (time)
[(Wean_____oorer) (Mean_____0013%7) [(Mean ooz 10° [(Mean ____ooose2s) 10'F o 0005
Minuit2 fit bench
10k 0
10
e S\ Tof 3 ok
103 Minuit2 CPU=1295s Nfail=8,9
RS iF L3 1k
M 01 0.0 01 0.0:
N s m s
10? N Minuit2 (# function calls) Minuit (# function calls) Minuit2_BFGS (# function calls) Fumili2 (# function calls) Fumili (# function calls)
T 70z T 775 o ean T57) wE e =)
42/ ndf = 1001 /993 10°
10 w0 3971295 b
P2 0.498 + 0.004 | 3
5 w2227 | 10k
1 o5 0.9998 = 0.0004 i 3
T M S Oy M)
3 i nion ien ien nton
Minuit2 (chi2/ndf) Minuit (chi2/ndf) Minuit2_BFGS (chi2/ndf) Fumili2 (chi2/ndf) Fumili (chi2/ndf)
Tiean Tow] Tioan 7o) Tioan 7o) Tean Toor) Tean To5])
:
1000 bins - 7 parameters
diff t dat d diff t
initial parameter values t ! t L
. . 1
chizindt chizindt anizindt i T " izingt

Benchmark Results (2)

» Using initial parameters values further away from minimum solution

Minuit2 (time) Minuit (time) Minuit2 str1 (time) Minuit2 str2 (time) Fumili2 (time)
m 07T
Fumili2 fit bench wE
104 104
Dt ~S ™\ r 10 10f 10|
8 \ ‘ Fumili2 CPU=857s Nfail =133, 188
10 N
T
N
N,
\
|
sec sec sec
10° M
"y Minuit2 str1 (# function calls) Minuit2 str2 (# function calls) Fumili2 (# function calls)
Tear 75]) ean Tis) Tiean =)
10
10 %2 Indf 1001/993 3
PO 3971=9.4
p1 0.9989 = 0.0086 107
p2 0.498 = 0.004 | 10
p3 4022 247 L] wof
P4 009955 = 0.00427
1 p5 0.9998 = 0.0004
p6 0.05059 = 0.00171
]] i R R L
0 0.5 1 15 2 25 3
0040050060 0050000500 g
nfen nfen nfon nfen nfon
Minuit2 (chi2/ndf) Minuit (chi2/ndf) Minuit2 str1 (chi2/ndf) Minuit2 str2 (chi2/ndf) Fumili2 (chi2/ndf)
Tean o) e 51) e T e K | Tean gEGEN]
. . .
Using a starting point
f_t f _I ' 1of 3 1of 1ok
F 1 F F “

chizindt chizind! chiindt chizindt chizindt

ROOT Minimization Interface

» ROOT provides class ROOT: :Math: :Minimizer as
general interface for minimization

» Current default is TMinuit (old Minuit implementation)
e plan to switch to use Minuit2 as default in the next release

» implemented by several algorithms
e TMinuit, Minuit2, Fumili, GSL Minimisers and GSL Fitting
algorithms (Levenberg-Marquardt)
e also simulated annealing and Genetic algorithm
RMinimizer (minimiser based on R algorithms)
e and from Python: scipy.optimize

13

Scipy optimizers

» O. Zapata developed an implementation of ROOT::Math::Minimizer
using scipy.optimize

» scipy.optimize.minimize provides
several minimization algorithms

method : str or callable, optional
Type of solver. Should be one of
¢ ‘Nelder-Mead' (see here)
e 'Powell’ (see here)
e 'CG' (see here)
e 'BFGS’' (see here)

scipy.optimize.minimize + Newton-CG (see here)
e 'L-BFGS-B' (see here)
scipy.optimize.minimize(fun, x0, args=(), method=None, jac=None, hess=None, * 'TNC' (see here)

e 'COBYLA' (see here)
e 'SLSQP’' (see here)
e ‘trust-constr’(see here)

hessp=None, bounds=None, constraints=(), tol=None, callback=None, options=None)

e ‘dogleg’ (see here)

e ‘trust-ncg’ (see here)

e ‘trust-exact’ (see here)
e ‘trust-krylov’ (see here)

Benchmark using Scipy Minimisers

Minuit2 (time) Scipy_BFGS (time) Scipy_Powell (time) Scipy_CG (time) Scipy_Nelder_Mead (time)
o Mean __0.005792] Mean 0.02015 Mean 0.2702] 10 Mean 0.02475

10°]

Minuit2 (# function calls) Scipy_BFGS (# function calls) Scipy_Powell (# function calls) Scipy_Nelder_Mead (# function calls)
Mean 185.7 ' Mean 3673 Mean 4501 Mean 537
107
10
10°
10
10 10
13 1 +
200 o Rl 0 400 600 800 1000 72(400 600 80
Minuit2 (chi2/ndf) Scipy_BFGS (chi2/ndf) Scipy_Powell (chi2/ndf) Scipy_CG (chi2/ndf) Scipy_Nelder_Mead (chi2/ndf)
Mean 1.007] Mean 1.028 Mean 115] Mean 1.006
of scipy with

T

Using Scipy Minimizer interface from O. Zapata 15

iminuit

Jupyter-friendly Python frontend to Minuit2 C++ library in ROOT

Part of Scikit-HEP project, developed in sync with ROOT

Backend in particle and astroparticle physics libraries zfit, pyhf, gammapy, flavio, ctapipe, ...
Easy to install: pip install iminuit installs precompiled binary package on all major platforms
Comprehensive documentation with many tutorials

100 % test coverage

Batteries included: shipped with common cost functions for statistical fits
* Binned and unbinned maximum-likelihood
* Template fits (new): including mix of templates and parametric models HD, A. Abdelmotteleb EPJ C 82,

1043 (2022)

* Non-linear regression with (optionally robust) weighted least-squares
* Gaussian penalty terms
* Cost functions can be combined by adding: total cost = cost_1 + cost_2

Support for SciPy minimisers as alternatives to Minuit’s Migrad algorithm
Smart visualization of fit results in Jupyter notebooks + interactive fits

https://scikit-hep.org/
https://github.com/zfit/zfit
https://github.com/scikit-hep/pyhf
https://github.com/gammapy/gammapy
https://github.com/flav-io/flavio
https://github.com/cta-observatory/ctapipe
https://iminuit.readthedocs.io/en/stable/
https://link.springer.com/article/10.1140/epjc/s10052-022-11019-z
https://link.springer.com/article/10.1140/epjc/s10052-022-11019-z
https://link.springer.com/article/10.1140/epjc/s10052-022-11019-z
https://link.springer.com/article/10.1140/epjc/s10052-022-11019-z
https://link.springer.com/article/10.1140/epjc/s10052-022-11019-z
https://link.springer.com/article/10.1140/epjc/s10052-022-11019-z

Example fit with interactive fitting widget

y

mport numpy as np
from scipy.stats
from iminuit import Minuit, cost

truth = 100., 200., 0.3, 0.1, 0.7, 0.2

scaled_cdf(xe, nl, n2, mul, sigmal, mu2, sigma2):
return nl * norm.cdf(xe, mul, sigmal) + n2 % norm.cdf(xe, mu2, sigma2)
xe = np.linspace(@, 1)
= np.diff(scaled_cdf(xe, *xtruth))
np.random.default_rng(1).poisson(m)

cost.ExtendedBinnedNLL(n, xe, scaled_cdf)
Minuit(c, *truth)

.inter]
& interactive

High performance fitting in Python with iminuit

» Using Python not performance bottleneck, if numerical code is accelerated with Numba JIT
* Crucial for high performance: accelerated parallelized SIMD-friendly PDF and accelerated unbinned likelihood function
» Benchmarks for unbinned likelihood fit of normal distribution with parameters u, o

= ROOFit
RooFit_BatchMode
= = RooFit_ NumCPU

=+ RooFit_NumCPU_BatchMode ~

1071 E _

] * iminuit

* iminuit.cost.UnbinnedNLL
~* numba-accelerated normal distribution from

10-2 4 numba-stats package

] e automatic parallelization and fastmath

L

runtime / sec

1073 4
] Up to 100x faster than RooFit (C++)

with NumCPU (parallel computation)
and BatchMode (= fastmath) options

10! 107 103 104 10° 106
number of data points

https://github.com/HDembinski/numba-stats
https://numba.pydata.org/
https://iminuit.readthedocs.io/en/stable/benchmark.html

Conclusions

» Minuit is more than 50 years old but it still the best minimization
algorithm for HEP fitting problems

» Minuit2 implementation will be made soon the default in ROOT
e improved recently by adding Fumili and BFGS
e add support for external gradient and Hessian (for AD users)
e improve logging and usability
e multi-thread-safe if user provided function is

» Python version (iminuit) available for the Python user community

» Future work:
e integrate more trust-region based methods in generic mimimizations
e implement support for non-trivial parameter constraints

19

