
Batch Generator for training Machine 
Learning models from ROOT datasets

T

ScalingPerformance

Introduction

Dante Niewenhuis
University of Amsterdam

d.niewenhuis@hotmail.com

Lorenzo Moneta
CERN

lorenzo.moneta@cern.ch

Our Approach

How to use

Future Work

Parallel
• Loading Chunks takes significantly longer than loading batches.

• This results in irregular loading times (see fig 1)

• Loading chunks can be done while processing batches

RBatchGenerator consists of two steps:

1. Chunking: Load the next chunkSize rows 

from the data file into the RTensor.

2. Batching: Create batches of BatchSize from 

the Chunk of data. The batches consist of 

random entries from the Chunk. The batches 

can be returned in different types.

Github

Increasing file size has little effect 
on the memory usage of the 
RBatchGenerator.

The RBatchGenerator performs 
similarly to TensorFlow on data that 
can fit into memory

• Load directly from disk to GPU

• Loading more complex data

• Using multiple RDataFrames

• More complex RDataFrame interaction

• RBatchGenerator is invoked using a 
single line of code

• Depending on the need, three types 
of output can be returned

• RBatchGenerator can be used 
directly in the Fit function:

Fig5: Memory usage by RBatchGenerator at 
different chunk sizes and TensorFlow at 

increasing file size.

Fig4: Histogram of the batch loading time for 
RBatchGenerator and TensorFlow

Fig2: Batch Loading time for 
parallel and non-parallel 

implementation

T

Chunking Batching

Processing

Chunking BatchingLoading Thread

Machine Learning Thread Processing

Chunking Batching

Processing

Fig3: Parallel implementation of RBatchGenerator

ROOT file

Chunk

Chunk

Chunk

1. Chunking 2. Batching

RDataFrame
(on disk)

RTensor 
(in memory)

Output format

Fig1: Implementation of the RBatchGenerator

Generating batches from data is a vital part of many Machine 
Learning processes. However, ROOT doesn't have an easy way 
to get batches from a ROOT file. In this work we propose 
RBatchGenerator, a BatchGenerator build on top of the 
RDataFrame data structure.

Goals:

• Performance should be similar to popular AI tools.

• The BatchGenerator should be able to scale to large file sizes.

• It should be easy to use.

https://github.com/DanteNiewenhuis/root/tree/BatchGenerator_C++ 

RDataFrame provides extensive tools such as 
easy data filtering and defining of new 
columns. However, because in ROOT events 
are read sequentially, the classic approach is 
unviable.

Common Approach
Most batch generators follow the following 
steps:

1. Define a method to get data from event i.
2. Create batches of data by traversing the 

indices randomly.

https://github.com/DanteNiewenhuis/root/tree/BatchGenerator_C

	Slide 1: Batch Generator for training Machine Learning models from ROOT datasets

