QUANTUM INFORMATION TOOLS AT THE INTERFACE BETWEEN QUANTUM THEORY AND GRAVITY

Flaminia Giacomini
ETH Zürich

Image credits: J. Palomino

LECTURE 1: INTRODUCTION

- What is nonclassical spacetime?
- Quantum interferometers
- Bell's theorem
- Generalized Probabilistic Theories
- Process matrices and indefinite causality

HIGH ENERGIES:
PLANCK-SCALE
PHYSICS

LOW ENERGIES: PERTURBATIVE GRAVITY QUANTUM PARTICLES

Image credits: Perimeter Institute

QUANTUM SPACETIME "FUZZINESS"

- Black Holes, spin foams, LQG
- String Theory
- Modified dispersion relations
- (...)

NONCLASSICAL SPACETIME

- Quantum Time and quantum clocks
- Indefinite causal structures
- Lack of classical reference frames
- (...)

Concrete scenarios with immediate physical meaning

GENERAL RELATIVITY

$$
R_{\mu \nu}-\frac{1}{2} R g_{\mu \nu}+\Lambda g_{\mu \nu}=\kappa T_{\mu \nu}
$$

QUANTUM THEORY

$$
T_{\mu \nu} \rightarrow \hat{T}_{\mu \nu}
$$

$$
\begin{aligned}
& g_{\mu \nu}=\eta_{\mu \nu}+h_{\mu \nu} \\
& h_{\mu \nu} \rightarrow \hat{h}_{\mu \nu}
\end{aligned}
$$

CLASSICAL EXAMPLE 1

"Lower is slower"

$$
\tau_{2}=\int_{t_{0}}^{t} d t^{\prime} \sqrt{1+h_{00}\left(z_{2}\right)}
$$

$$
\tau_{1}=\int_{t_{0}}^{t} d t^{\prime} \sqrt{1+h_{00}\left(z_{1}\right)}
$$

Resolving the gravitational redshift across a

 millimetre-scale atomic sampleTobias Bothwell Alexander Staron \& Jun Ye \boxtimes

Nature 602, 420-424 (2022) | Cite this article

Why is this not just classical spacetime?

The perturbation contributes to spacetime too!

CLASSICAL EXAMPLE 2

Lab frame

$$
s(t)=\int_{x_{1}}^{x_{2}} d x \sqrt{1+h_{+}(x-c t)}
$$

GW170817: Observation of Gravitational Waves from a Binary

 Neutron Star InspiralB. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration)

Phys. Rev. Lett. 119, 161101 - Published 16 October 2017

NONCLASSICAL SPACETIME FROM A QUANTUM SOURCE

```
Article | Published: 10 March 2021 LIGHTEST GRAVITY SOURCE: }90\textrm{mg
```

Measurement of gravitational coupling between millimetre-sized masses

Tobias Westphal \triangle, Hans Hepach, Jeremias Pfaff \& Markus Aspelmeyer \triangle

Nature 591, 225-228 (2021) | Cite this article

Leterer | eubisister: 23 Seplember 2019 SUPERPOSED MASS: $10^{-20} g$ Quantum superposition of molecules beyond 25 kDa

Yaakov Y. Fein, Philipp Geyer, Patrick Zwick, Filip Kiałka, Sebastian Pedalino, Marcel Mayor, Stefan Gerlich \& Markus Arndt ${ }^{-}$

Nature Physics 15, 1242-1245 (2019) | Cite this article

LARGEST SUPERPOSITION: 0.5 m Quantum superposition at the half-metre scale
$m \cdot \Delta x \approx 10^{-25} g \cdot m$
T. Kovachy, P. Asenbaum, C. Overstreet, C. A. Donnelly, S. M. Dickerson, A. Sugarbaker, J. M. Hogan \& M. A. Kasevich \square
M. Aspelmeyer, 2203.05587 (2022)

LEVEL 1: We do NOT know which observation would prove in a compelling way that gravity has quantum features.

Good news: There will be experimental guidance!

LEVEL 2: Open questions in quantum gravity show up in this regime (e.g. lack of a classical spacetime, quantum time, indefinite causality, relationalism, partition of Hilbert space into local algebras/subsystems, etc)

LEVEL 3: First-principle approach:
How do we reconcile the principles of GR and QT?
Internal consistency of GR and QT can be tested in thought experiments
NB: quantum information is not tied to a specific regime

STATES, MEASUREMENTS, INTERFERENCE

VECTOR STATES
(more restrictive)

$$
|\psi\rangle \in \mathscr{H} \rightarrow \hat{\rho} \in \mathscr{L}(\mathscr{H})
$$

STATES = DENSITY MATRICES

 (more general)One quantum system (and more)
PURE STATES
$\hat{\rho}=|\psi\rangle\langle\psi|$

$$
\begin{gathered}
\hat{\rho}=\sum_{i} p_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right| \\
\sum_{i} p_{i}=1
\end{gathered}
$$

MIXED STATES

Two quantum systems (and more)

SEPARABLE STATES
$\hat{\rho}_{12}=\sum_{i} p_{i} \hat{\rho}_{1}^{i} \otimes \hat{\rho}_{2}^{i}$

ENTANGLED STATES

$$
\hat{\rho}_{12} \neq \sum_{i} p_{i} \hat{\rho}_{1}^{i} \otimes \hat{\rho}_{2}^{i}
$$

- Global phases are NOT observable
- Relative phases are observable

MEASUREMENTS

\mathscr{M}_{i}^{a} is a Completely Positive (CP) trace non-increasing map
$\left\{\mathscr{M}_{i}^{a}\right\}_{i=1}^{N}$ is a QUANTUM INSTRUMENT

$$
p(i \mid a, \rho)=\operatorname{Tr}\left[\mathscr{M}_{i}^{a}(\hat{\rho})\right]
$$

EXAMPLE: A MACH-ZEHNDER INTERFEROMETER

QI TOOLS: DEVICE-INDEPENDENT THINKING

"First, some good news: quantum field theory is based on the same quantum mechanics that was invented by Schrödinger, Heisenberg, Pauli, Born and others in 1925-26 and has been used ever since in atomic, molecular, nuclear, and condensed matter physics."

Steven Weinberg, Quantum Field Theory Chapter 2

1)Physical States are rays in a Hilbert space
2)Observables are hermitian operators
3)Born rule

1) Quantum superposition or entanglement
2) Action in path integral
3) Expectation values in Heisenberg picture
4) Emission of quantised radiation
5) Measurements do not commute

Underlying common structure?

OPERATIONAL APPROACH
A theory is characterised by the set of probabilities No ontological commitment

1) The rules of the game are known in advance
2) The players can think of a common strategy to win the game
3) The players cannot communicate during the game: no-signalling resources
"Bell locality means that the process by which each player generates the output does not take into account the
other player's input. In other words, all correlations between the players' outputs is due to the shared resource"

LOCAL CAUSALITYILOCAL REALISM
$P(x, y \mid a, b)=\int d \lambda Q(\lambda) P_{\lambda}(x \mid a) P_{\lambda}(y \mid b)$

$$
\begin{aligned}
& x=y \text { if }(a, b)=\{(0,0),(0,1),(1,0)\} \\
& x=-y \text { if }(a, b)=(1,1)
\end{aligned}
$$

CHSH INEQUALITY (Clauser, Horne, Shimony, Holt 1969)

$$
S=\left\langle x_{0} y_{0}\right\rangle+\left\langle x_{0} y_{1}\right\rangle+\left\langle x_{1} y_{0}\right\rangle-\left\langle x_{1} y_{1}\right\rangle<2<\underbrace{\curvearrowleft}_{\text {Local Realism }} 2 \sqrt{2}
$$

THE OPERATIONAL APPROACH AND DEVICE INDEPENDENCE

$$
P(a \mid P, T, M)
$$

EXAMPLE 1: BIT EXAMPLE 2: QUBIT $N=K=2$

K (degrees of freedom):
minimum number of measurements needed to determine the state

N (dimension):

maximum number of states that can be perfectly distinguished
CAREFUL!
With normalisation
K -> K-1

PREPARATION 2

$$
|\Psi\rangle_{12}=\frac{1}{\sqrt{2}}\left(|\uparrow \uparrow\rangle_{12}+|\downarrow \downarrow\rangle_{12}\right)
$$

Discard 2

$$
\hat{\rho}=\frac{1}{2}(|\uparrow\rangle\langle\uparrow|+|\downarrow\rangle\langle\downarrow|)
$$

Preparation 1 is EQUIVALENT to Preparation 2

The set of states is CONVEX (comes from probabilistic description)

$$
P(a \mid \omega, M)=\sum_{i} p_{i} P\left(a \mid \omega_{i}, M\right) \quad \omega=\sum_{i} p_{i} \omega_{i}
$$

Convex state space $\omega \in \Omega$
Measurements $\quad f \in \mathscr{F}$

KINEMATICS

$$
\sum_{i} f_{i}(\omega)=1 \quad \forall \omega \in \Omega
$$

PURE STATES: extremal states of the set MIXED STATES: convex combinations of pure states

TRANSFORMATIONS

$$
\mathcal{T}\left(\sum_{i=1}^{n} p_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|\right)=\sum_{i=1}^{n} p_{i} \mathcal{T}\left(\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|\right)
$$

COMPOSITION (related to locality)
Rules to embed states, measurements, and transformations
Rules to obtain reduced states

Compose spaces A and B $\star: V_{\mathrm{A}} \times V_{\mathrm{B}} \rightarrow V_{\mathrm{C}}$
independent
preparations $\quad V_{\mathrm{A}} \otimes V_{\mathrm{B}} \subseteq V_{C}$ joint space = Tomographic Locality (valid in classical and quantum theory)

SO, WHAT IS QUANTUM?

$$
\begin{gathered}
\Omega_{A}=\left\{\begin{array}{c}
\text { N-outcome classical probability theory } \\
\left.\mathscr{F}=\left(p_{1}, \cdots, p_{n}\right) \in \mathbb{R}^{N} \mid p_{i} \geq 0, \sum_{i} p_{i}=1\right\} \\
\left\{0 \leq f(\omega) \leq 1 \mid \omega \in \Omega_{A}\right\}
\end{array}\right.
\end{gathered}
$$

N-outcome quantum probability theory

$$
\begin{array}{cc}
\Omega_{A}=\left\{\rho \in H_{N}(\mathbb{C}) \mid \rho \geq 0, \operatorname{Tr}(\rho)=1\right\} & \text { REMEMBER THIS } \\
\mathscr{F}=\left\{0 \leq f(\rho) \leq 1 \mid \rho \in \Omega_{A}\right\} & \text { FOR LATER! }
\end{array}
$$

EXAMPLE in QT: Completely Positive maps $\left\{M_{i}^{A, B}\right\}_{i=1}^{N}$ $\sum_{i} M_{i}^{A, B}$ also trace-preserving

Set of measurements can be fully characterised from this definition.

EXAMPLE 1: NONLINEAR QUANTUM MECHANICS

$$
i \frac{\partial \psi}{\partial t}=-\nabla^{2} \psi+\epsilon f\left(|\psi|^{2}\right)+V \psi
$$

e.g. SchrödingerNewton equation

Arbitrary pure states $|\psi\rangle,|\phi\rangle$

It is possible to devise a procedure to distinguish perfectly any two states

The theory acquires CLASSICAL FEATURES

Nonlinear dynamics changes the kinematics of the theory

Can we use theory-independent methods to talk about spacetime?

CAUSALITY WITHOUT SPACETIME

CAUSALITY IN THE OPERATIONAL APPROACH

Nothing travels faster than light

CAUSALITY IN THE OPERATIONAL APPROACH

CAUSALITY IN THE OPERATIONAL APPROACH

WHAT HAPPENS TO CAUSALITY IF GRAVITY IS QUANTUM?

QUANTUM THEORY

Entanglement, superposition...

Spacetime is the stage in which events happen: causal structure is a priori fixed.

The theory is probabilistic.

GENERAL RELATIVITY

Gravitating objects determine the causal structure

Spacetime is the actor: causal structure is dynamical.

The theory is deterministic.

PROCESS MATRIX FORMALISM

Operational definition of causality: possibility of signalling
Remember?

QUANTUM LOCAL OPERATIONS

Completely Positive maps $\left\{M_{i}^{A, B}\right\}_{i=1}^{N}$

$$
\sum_{i} M_{i}^{A, B} \text { also trace-preserving }
$$

OPPOSITE GAME: Fix measurements, Derive states

- Positivity of probabilities:

$$
\operatorname{Tr} M_{i}^{A} \otimes M_{j}^{B} W \geq 0
$$

- Normalisation of probabilities:

$$
\sum_{i j} \operatorname{Tr} M_{i}^{A} \otimes M_{j}^{B} W=1
$$

W matrices:

1. are positive operators
2. are normalised
3. live on a subspace of the total Hilbert space

$$
\begin{aligned}
& W \geq 0 \\
& \operatorname{Tr}_{I} W=\mathbb{1}_{O} \\
& P W=W
\end{aligned}
$$

Process matrices specify the signalling properties between the local laboratories.

No-signalling from B to A

$$
\sum_{j} p(i, j \mid x, y)=p(i \mid x) \quad \forall i, x
$$

No-signalling from A to B

$$
\sum_{i} p(i, j \mid x, y)=p(j \mid y) \quad \forall j, y
$$

Does not rely on a spacetime structure!

- Scenarios in which the order (signalling) between A and B is not definite
- No logical paradoxes

Alice and Bob have to collaborate to win the game.
They can only communicate once.
They know that the input is binary.

O. Oreshkov, F. Costa, C. Brukner, Nat. Commun. 3, 1092 (2012)
C. Branciard et al New J. Phys. 18, 013008 (2016)

A DIFFICULT CASE

$$
W_{O C B}=\frac{1}{4}\left[\mathbb{1}+\frac{1}{\sqrt{2}}\left(Z_{B}+Z_{A_{I}} \lambda \quad Z_{B_{O}}\right)\right]
$$

OPEN QUESTION (intensely investigated):
Which process matrices can be physically realised?

ADVANTAGES AND DISADVANTAGES

FULLY THEORY INDEPENDENT ARGUMENTS ARE VERY HARD!

More theory independence often means less details

Not obvious how to "traslate" notions

DEVICE-INDEPENDENT

 THINKING

Generalised Probabilistic Theories (GPTs)

Process matrices and indefinite causality

Internal consistency

Hybrid models

Systematic characterisation of physical properties

Robustness of the results independently of the theory (see Bell's theorem)

THANK YOU!

Swiss National
Science Foundation
ETHzürich

