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Review question 1:  
What is a force?  
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Review question 2: But, given that, then how do 
two charged objects exert forces on one another?  
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In 1870, Maxwell wrote 
in a letter to his wife 
that upon visiting his 
alma mater, Trinity 
College, he’d learned 
there was a legend that 
he used to toss cats  
from school windows to
watch them acrobatically land on their 
padded paws…

Karin Brulliard, “Scientists just can’t stop studying falling cats” Washington Post
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Prologue

https://www.washingtonpost.com/people/karin-brulliard/


“I had to explain that 
the proper method was 
to let the cat drop on a 
table or bed from about 
two inches, and that 
even then the cat lights 
on her feet.”

Karin Brulliard, “Scientists just can’t stop studying falling cats” Washington Post
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https://www.washingtonpost.com/people/karin-brulliard/


The Physics of  Somersaulting and Twisting,  Cliff  Frohlich  
Scientific American,Vol. 242, No. 3 (March 1980), pp. 154-165 
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Using the images below 
Marey was the first 
person to provide an 
explanation, in 1894, 
for the question that 
had long vexed Natural 
Philosophers: How is it 
physically possible for a cat 
to land on its paws?

Before learning the answer, you would be 
right to ask, “Why is this so to physicists?”
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Marey, É.J (1894b). "Des 
mouvements que certains animaux 
exécutent pour retomber sur leurs 
pieds, lorsqu'ils sont précipités 
d'un lieu élevé". La Nature (in 
French). 119: 714–717.
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Marey’s images 
of  a side view…

…and a front 
view.

https://en.wikipedia.org/wiki/%C3%89tienne-Jules_Marey
https://sciences.gloubik.info/spip.php?article134
https://sciences.gloubik.info/spip.php?article134
https://sciences.gloubik.info/spip.php?article134
https://sciences.gloubik.info/spip.php?article134
https://sciences.gloubik.info/spip.php?article134
https://en.wikipedia.org/wiki/La_Nature


The puzzle: Done properly, the cat is released 
from rest with exactly zero net angular 
momentum, .  
How, then, does the cat rotate around to land 
on its feet? 

⃗J = 0
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Today’s Discussion

1. Falling Cats as a Gauge Theory 

2. Electromagnetism as a Gauge Theory 

3. General Relativity as a Gauge Theory: Part I
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A Simplified Model of  the Cat

The ‘body’ of  the cat is 
two massless rods, length , 
ending in equal masses ( ). 

shape coordinate 
orientational coord. 

A ‘muscle’ at  can change 
, but never generates any 

external torque. 
Take the red and green 
masses distinguishable…

R
m

α =
θ =

𝒪
α
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…then  and  are 
distinct configurations, so 

 or .

α (2π − α)

α ∈ [0,2π) α ∈ S1

[Littlejohn & Reinsch, Rev. Mod. Phys. 69, 1997]

https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.69.213


The Cat’s Angular Momentum
Exercise 1 Using your favorite definition of  , and the 
Cartesian space coords, show: ( , etc)  

⃗J
·x := dx/dt

Jtot = Jz = m(xs1
·ys1 − ys1

·xs1) + m(xs2
·ys2 − ys2

·xs2)

= ·θ + ·θ + ·α = 2 ·θ + ·α

13

𝒪

m

m

R

R
θ

α

xs

ys Inspired by the cat, we 
require:  

. 
Then: a change of  shape 
( ) forces a change in 
orientation ( ) in order 
to maintain . 

Jtot = 2 ·θ + ·α = 0

·α ·θ
Jtot = 0



The Cat Constraint
It is no coincidence that  can be removed from  

. 
If  green moves counter-clockwise(ccw) , red 
moves clockwise , total shape change , and 

                                                          

  the bisector of   is fixed.

t
Jtot = 2 ·θ + ·α = 0 ⇝ 2dθ + dα = 0

Δα/2
Δα/2 = Δα

Δθ =
1
2

Δα

∴ α
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Unfortunately, this 
model is too simple to 
capture the cat’s 
reorientation as it falls!…𝒪

m

m

R

R
θ
α

xs

ys



A Brief  Aside on Terminology
We can also introduce different choices of  ‘body’ axes 

.  (*) 
Which axes you use is conventional, we call it a gauge 
convention and Eq. (*) is a gauge transformation. 
Note that  is gauge invariant, while  is not.

θ′ = θ + α

α θ
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A (Less) Simplified Model of  the Cat
Exercise 2 With a bit more 
algebra this time, show: 

  

Define 
, 

then,  

 

Jtot = (4 + 2 cos β) ·θ
+(3 + 2 cos β) ·α

+ (1 + cos β) ·β = 0

·θ = Aα
·α + Aβ

·β

Aα = −
3 + 2 cos β
4 + 2 cos β

,

Aβ = −
1 + cos β

4 + 2 cos β
.
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shape space: 

θ

(α, β)



A Geometric Phase for the Cat
We have 

 

To calculate the total change in , call it , we 
integrate 

.

·θ = Aα
·α + Aβ

·β, Aα = −
3 + 2 cos β
4 + 2 cos β

, Aβ = −
1 + cos β

4 + 2 cos β
.

θ Δθ

Δθ = ∫ Aαdα + ∫ Aβdβ
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α

β

2π

2π

Shape Space

(αo, βo)

(α1, β1) Notice that  doesn’t depend 
on how fast you traverse the 
curve: we call it a “geometric 
phase” or “Berry phase” in QM. 

Δθ



Does this model capture the Cat Trick?

Consider the closed path in shape space shown 
below, along path  we have, (i)

Δθ(i) = ∫
π/2

0
Aαdα = ∫

π/2

0
−

3 + 2 cos β
4 + 2 cos β β=0

dα = −
5π
12

= − 75∘
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π
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π
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Does this model capture the Cat Trick?
Exercise 3 Prove: 

 

.  
Our ‘cat’ has changed orientation!

Δθ(ii) = −
π
4

+
π

6 3
= − 27.7∘, Δθ(iii) =

3π
8

= 67.5∘, Δθ(iii) =
3π
8

= 27.7∘,

Δθtot = Δθ(i) + Δθ(ii) + Δθ(iii) + Δθ(iv) = − 7.5∘
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A real cat has even 
more shape 

parameters and does 
this incredibly 

efficiently!



Shape Space can be and is Topologically Rich
Our shape space is a torus: 

Exercise 4 Repeat the calculation of   for the - 
and the -cycles. Draw the ‘cat’ before and after 
traversal of  these cycles. [Hint: because of  the 
topology of  our shape space, these are closed 
paths that begin where they end.]

Δθ a
b
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For many reasons differential forms are useful
Each time we worked with a cat model we found 

. 
Whatever our coordinates, say , we will 
generally have  

,     , 
with  the “potential 1-form”. The appearance 
of  differential forms suggests introduction of  the 
“field strength” 

. 

dθ = Aαdα + Aβdβ
xμ

A = Aμdxμ μ ∈ {0,1,2,3}
A

F := dA = 1
2 (∂aAb − ∂bAa)dxa ∧ dxb, a, b ∈ {1,2}
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Begin asides: on the wedge product
On any vector space we can define a wedge product 

. 
We call the result a “bivector” and geometrically it 
is the oriented area of  the parallelogram spanned 
by  and : 

In a basis  of  the 2D span of   and  it is  

⃗a ∧ ⃗b = − ⃗b ∧ ⃗a

⃗a ⃗b

{e1, e2} ⃗a ⃗b
⃗a ∧ ⃗b = (a1e1 + a2e2) ∧ (b1e1 + b2e2) = (a1b2 − a2b1)e1 ∧ e2

23

⃗a

⃗b ⃗a ∧ ⃗b

⃗a

⃗b ⃗b ∧ ⃗a



Wedges, Dets, Volume Forms  and All That
You will have noticed that the wedge of  the last slide 
has  as its component. This is useful! 

Do a linear trans.  on  to get , then 
 

In coordinates, the physical volume depends on the 
metric : 

.  

Under a coord. change , 

.

det (a1 b1

a2 b2)
T {e1, e2} {f1, f2}

f1 ∧ f2 = (T1
1e1 + T2

1e2) ∧ (T1
2e1 + T2

2e2) = (det T) e1 ∧ e2 .

gμν

vol = | det gμν | dx1 ∧ ⋯ ∧ dxn

dxμ′ = Tμ′ 

ν dxν

vol′ = det T−1 | det gμν | det T dx1 ∧ ⋯ ∧ dxn = vol
24



Volume Form Example: Polar Coordinates
Polar coordinates  for the plane 

 

Here 

              , 

and so  
.

(r, θ)

area = dx ∧ dy

= | det gμν | dr ∧ dθ

gμν = (1 0
0 r2)

area = dx ∧ dy = rdr ∧ dθ = dr ∧ rdθ

25



Converting between tensor and wedge bases
I blew past a notational subtlety: we defined 

. 
What are the components of  ? Usually, ‘components’ 
means in a tensor basis, i.e., . 
Let’s guess , and check 

F := dA = 1
2 (∂aAb − ∂bAa)dxa ∧ dxb, a, b ∈ {1,2}

F
F = Fabdxa ⊗ dxb

Fab = ∂aAb − ∂bAa
1
2 Fabdxa ∧ dxb = 1

2 Fab(dxa ⊗ dxb − dxb ⊗ dxa)

= 1
2 Fabdxa ⊗ dxb− 1

2 Fabdxb ⊗ dxa

= 1
2 Fabdxa ⊗ dxb− 1

2 Fbadxa ⊗ dxb

= 1
2 (Fab − Fba)dxa ⊗ dxb

= Fabdxa ⊗ dxb ✓
26



Volume Forms and Tensor Densities 
In coordinates, it can be useful to break the volume 
form up. The Levi-Civita symbol is helpful: 

 

It’s called a symbol because it is not a tensor: e.g., it 
doesn’t transform as one. However, its complete 
antisymmetry means that you can compute ’s 
with it (like the wedge): 

.

ϵ̃μ1μ2⋯μn
=

+1 if μ1μ2⋯μn is an even permutation of 01⋯(n − 1),
−1 if μ1μ2⋯μn is an odd permutation of 01⋯(n − 1),
0 otherwise .

det

ϵ̃μ′ 1μ′ 2⋯μ′ n
det T = ϵ̃μ1μ2⋯μn

Tμ1
μ′ 1

Tμ2
μ′ 2

⋯Tμn
μ′ n

27



Volume Forms and Tensor Densities 
For example, consider a coordinate transformation 

, then, 

 

This is almost a tensor; it only fails because of  a power 
of   up front (called the ‘density weight’);  we 
term objects that transform with such powers “tensor 
densities” & denote them with the over tilde .  
(Recall: Ashtekar’s , densitized triad.)   

Tμ
μ′ 

=
∂xμ

∂xμ′ 

ϵ̃μ′ 1μ′ 2⋯μ′ n
=

1
det T

ϵ̃μ1μ2⋯μn
Tμ1

μ′ 1
Tμ2

μ′ 2
⋯Tμn

μ′ n

= det
∂xμ′ 

∂xμ
ϵ̃μ1μ2⋯μn

Tμ1
μ′ 1

Tμ2
μ′ 2

⋯Tμn
μ′ n

.

det |∂xμ′ /∂xμ |

˜
Ẽa

i (x) □
28



Final comments on the ‘cat’
The field strength 

, 
gives us another way to compute :  

 

Why does this work? It’s due to Stokes’ theorem: 

.

F := dA = 1
2 (∂aAb − ∂bAa)dxa ∧ dxb, a, b ∈ {1,2}

Δθtot

Δθtot = ∫
π/2

0 ∫
π/2

0
F = ∫

π/2

0 ∫
π/2

0 (
∂Aβ

∂α
−

∂Aα

∂β ) dα ∧ dβ .

Δθtot = ∫ ∫Ω
F = ∫ ∫Ω

dA = ∮∂Ω
A
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Gauge Invariance
For our 2nd ‘cat’, body axes  (slide 15) can 
be rich, e.g. pick  aligned with the blue mass and 

.      [Ex. 5 Prove this slide] 
Once again  

, 

 where   and  , but(!) 

. 

Or, more succinctly, if  , then  
.

(x′ b, y′ b)
x′ b

θ′ = θ + λ(α, β)

dθ′ = A′ αdα + A′ βdβ

A′ α = Aα + ∂αλ A′ β = Aβ + ∂βλ

F′ = ∂αA′ β − ∂βA′ α = F + ∂α∂βλ − ∂β∂αλ = F

A → A + dλ
F′ = d(A + dλ) = dA + d2λ = F
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Today’s Discussion

1. Falling Cats as a Gauge Theory 

2. Electromagnetism as a Gauge Theory 

3. General Relativity as a Gauge Theory: Part I
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I draw from the wonderful book Gauge Fields, Knots, and Gravity, by J. Baez 
and  J. P. Muniain, World Scientific, 1994 in this section.



The form language in E&M
Experience with calculations in E&M highlights 
electric and magnetic fluxes, suggesting again 

, 
. 

Why these forms? Ans: Ex. 6 Confirm that  
 has 2-form components  and  

 has a single 3-form component  

Thus, two of  the static Maxwell Eqns. are 
  and  . 

E = Exdx + Eydy + Ezdz
B = Bxdy ∧ dz + Bydz ∧ dx + Bzdx ∧ dy

dE ⃗∇ × ⃗E
dB ⃗∇ ⋅ ⃗B

dE = 0 dB = 0
32



The form language in E&M
Just as with the cat, we can collect these forms into 
a field strength: 

, 

where 

, and we have . 

[From now on , Heaviside-Lorentz units, and frequently .]

F = B + E ∧ dt =
1
2

Fμνdxμ ∧ dxν

Fμν =

0 −Ex −Ey −Ez

Ex 0 Bz −By

Ey −Bz 0 Bx

Ez By −Bx 0

dF = 0

c = 1 x0 = t

33



The form language in E&M
Now relax the static assumption [ , 

] and decompose the exterior derivative 
into spatial and time pieces (spacetime split): 

 

here  is a multi-index running over  2-forms. 
Now, 

 

E = E(xμ)
B = B(xμ)

dB = dSB + dt ∧ ∂tB
= ∂iBIdxi ∧ dxI + dt ∧ ∂tB (i = 1,2,3)

= ( ⃗∇ ⋅ ⃗B )dx ∧ dy ∧ dz + dt ∧ ∂tB,

I B′ s

0 = dF = dB + dE ∧ dt
= dSB + dt ∧ ∂tB + dSE ∧ dt ⟹ {dSB = 0

∂tB + dSE = 0
34



The Hodge dual…
  …or Hodge star, , is an operation that takes a 
-form to an -form, in an -dim. manifold. 

For example, on flat   
 

The logic is that for any two -forms  and  
, 

with  a proportionality constant. The constant 
can be fixed using the inverse metric 

⋆
p (n − p) n

ℝ3

⋆ dx = dy ∧ dz, ⋆ dy = dz ∧ dx, ⋆ dz = dx ∧ dy .

p ω μ
ω ∧ ⋆μ = k vol

k k

k := ⟨ω = e1 ∧ ⋯ ∧ ep, μ = f1 ∧ ⋯ ∧ f p⟩ = det[g(ei, f j)]
= det[gμν(ei)μ( f j)ν]
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The Hodge dual…
  …can also be expressed in coordinates. A close 
relative of  the Levi-Civita symbol we already met 
is the Levi-Civita tensor 

. 
In these terms,  

, 

where the  indices have been raised using . As 
the name suggests, dualizing twice gives 

, 
with  the # of  minus signs in the metric signature.

ϵμ1μ2⋯μn
= |g | ϵ̃μ1μ2⋯μn

(⋆A)μ1⋯μn−p
=

1
p!

ϵν1⋯νp
μ1⋯μn−p

Aν1⋯νp

ν gμν

⋆ ⋆ A = (−1)p(n−p)+sA
s

36



The other two Maxwell equations
Ex. 7 Check that 

. 

Introducing , 
the other two Maxwell equations are 

.

(⋆F)μν =

0 Bx By Bz

−Bx 0 Ez −Ey

−By −Ez 0 Ex

−Bz Ey −Ex 0

J := jxdx + jydy + jzdz − ρdt = j − ρdt

⋆ d ⋆ F = J

37



The electromagnetic gauge potential
Just as for the cat, things simplify even more with 
a gauge potential 

. 
The 1st pair of  Maxwell Eqs. become trivial  

, 
and the 2nd pair are 

. 
As before, we have a gauge freedom, with 

  and   
giving the same 

F = dA

dF = d2A = 0

⋆ d ⋆ F = ⋆ d ⋆ dA = J

A A′ = A + dλ
F .

38



Temporal gauge
In Minkowski spacetime 

,  
and temporal gauge is the choice , or, more 
generally, if  spacetime is , . 

Then,  
, 

and 
. 

Next, specify Cauchy data  at any time 
…

A = A0dt + A1dx + A2dy + A3dz
A0 = 0

ℝ × S A(∂t) = 0

F = dA = dt ∧ ∂tA + dSA

E = − ∂tA, B = dSA

(A, E)
{t} × S

39



Temporal gauge
…the 1st pair of  Maxwell Eqs. are again trivial, 
but the 2nd pair constrain and evolve this data:  

   and    . 

The first of  these Eqs. is the analog of  our 
 condition for the cat; it constrains the 

given data  at any time  and is Gauss’ law, 
, in form language.  

Using  from the previous slide, we have 
  

as Eqs. to evolve the initial data. 

⋆S dS ⋆S E = ρ −∂tE + ⋆S dS ⋆S B = j

Jtot = 0
(A, E) t⃗∇ ⋅ ⃗E = ρ

E = − ∂tA
∂t(A, E) = (−E, ⋆S dS ⋆S dSA − j)

40



The physics of  the electromagnetic potential
You may be wondering what  tells us physically.  

It’s a little more abstract than for the cat, but still 
remarkable and still an angle: 

A charge  interacting with the electromagnetic 
field has a quantum state , the phase of  which is 
modified as it travels along a path , specifically 

 ; 
the angle captured by the potential is the angle in 
the complex plane describing the phase of  the 
wave function!

A

q
ψ

γ
ψ → e− i

ℏ q ∫γ Aψ

41
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Changing perspective
We are now in an excellent position to setup 
General Relativity as a gauge theory.  

However, to do so we have to understand a 
somewhat surprising vantage on what the 
gravitational field is.  

In particular, we will move away from viewing 
the metric  as the gravitational field; 
observations and the equivalence principle will 
drive the shift in perspective. 

gμν(x)

43



What an observer measures
We have recently lost the great Jim Hartle. His 
book Gravity has a nice treatment of  observations: 
     E = − p ⋅ uobs = − p ⋅ e0̂

44

τ
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X
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The gravitational field
Spacetime curves and varies from point to point. 
Generally, there is no privileged coordinate 
choice throughout, so we work with arbitrary 
labels of  points .  

However, Einstein’s great insight was that there is 
always a local, freely falling frame in which the 
effects of  gravity are erased. Call the coordinates 
of  this local frame . Find  at each pt . 

Expand:      

xμ

XI XI(x) P

XI(x) ≈
∂XI

∂xμ
x=x(P)

xμ := eI
μ(xP)xμ

45



The gravitational field
In this cotetrad description,  

 
the gravitational field translates between or 
‘solders’ the orthonormal and coordinate frames: 
as a 1-form it acts on the coordinate basis  via 

. 
Of  course, the inner product of  basis vectors is 

. 
In an orthonormal frame we contract components 

 !

eI = eI
μ(x)dxμ, I ∈ {0,1,2,3},

∂μ

eI(∂μ) = eI
μ

(∂μ) ⋅ (∂ν) := g(∂μ, ∂ν) = gμν

(∂μ) ⋅ (∂ν) = ηIJeI(∂μ)eJ(∂ν) = ηIJeI
μeJ

ν = gμν
46



The tetrad…
… is just the inverse of  the cotetrad 

 

and describes the coordinate components ( ) of  an 
orthonormal frame of  vectors. This time we have 
  . 

We refer to the orthonormal frame as the internal 
space (  indices) and spacetime ( ) indices. Of  
course, the internal metric  is invariant under 
Lorentz transformations and any frame so related 
provides another valid orthonormal frame. 

eμ
I

μ

gμνe
μ
I eν

J = ηIJ

I, J μ, ν
ηIJ

47



Spacetime split
As we did in electromagnetism, we now make a 
split of  spacetime into space and time. This is 
because we are initially going to develop a 
Hamiltonian formalism for GR.  

Along a spatial slice, our frame becomes a triad 
  for space,  internal space.Ea

i , a = 1,2,3 i = 1,2,3
48



Ashtekar’s electric field
And, finally we arrive at Ashtekar’s electric field 

, 
here  is the spatial metric on a spatial slice. 
The associated two-form will be one of  a pair of  
central canonically conjugated fields 

.

Ẽa
i = det qabEa

i

qab

Ẽi(x) = Ẽia(x)ϵabcdxb ∧ dxc

49



Next time…
Ashtekar’s electric field 

. 
Next time we will develop this as an  gauge 
theory and find the associated connection . 

Ẽi(x) = Ẽia(x)ϵabcdxb ∧ dxc

SU(2)
A

50
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Thank you!



52

I am hugely grateful to the Quantum Information Structure of  
Spacetime (QISS) Project and to the Perimeter Institute for 
Theoretical Physics for their support of  my work.  

My work on these lectures was made possible through the support of  the ID# 62312 grant 
from the John Templeton Foundation, as part of  the ‘The Quantum Information Structure of  
Spacetime’ Project (QISS). The opinions expressed in this project/publication are those of  the 
author(s) and do not necessarily reflect the views of  the John Templeton Foundation.  

Research at Perimeter Institute is supported in part by the Government of  Canada through 
the Department of  Innovation, Science and Economic Development Canada and by the 
Province of  Ontario through the Ministry of  Colleges and Universities. 

http://%7Bhttps://www.templeton.org/grant/the-quantuminformation-structure-ofspacetime-qiss-second-phase%7D%7B
http://%7Bhttps://www.templeton.org/grant/the-quantuminformation-structure-ofspacetime-qiss-second-phase%7D%7B

