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Review question 1: What is the Ashtekar 
electric field? 
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Review question 1: What is the Ashtekar 
electric field? 
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It is a densitized triad field 
, 

that provides a sort of  ‘square root’ of  the metric 
. 

In other words, to reconstruct the spatial metric you 
find the inverse of   

. 
We also organized this into a 2-form 

.

Ẽa
i = det qEa

i

Ẽa
i Ẽib = det q qab

qab = Ẽa
i Ẽib/ det q

Ei(x) = Ẽia(x)ϵabcdxb ∧ dxc



Review question 2: What is the Poynting 
vector in form language? 

4

Using the same definitions as last time:  

, 
, 

we have the Poynting 3-form  or the 1-form : 
,  or  . 

Alternatively, you can view this as part of  the full 
stress-energy and pick out components using your 
velocity : 

.

E = Exdx + Eydy + Ezdz
B = Bxdy ∧ dz + Bydz ∧ dx + Bzdx ∧ dy

P P1

P = − E ∧ ⋆SB P1 = − ⋆S (E ∧ ⋆SB)

u
P = g(u) ∧ F(u) ∧ ⋆F(u)



Review question 3: When can you write a 
physical theory as a gauge theory? 
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When you can cast it in 
terms of  a “principle 
bundle”, e.g. Hopf  bundle.

[G.L. Naber, Topology, Geometry, and Gauge Fields]

https://link.springer.com/book/10.1007/978-1-4419-7254-5


6

Review question 4: Now that we are using 
the wedge product, why not use the 

geometric (or Clifford) product? 
Okay, let’s do it. For concreteness, let’s introduce 
everything in . Suppose  and , then 

. 
Suppose  is a basis for , then  

, etc. 
Also, normalized bivectors, e.g. , satisfy: 

 
and 

.

ℝ3 ⃗u ⃗v ∈ ℝ3

⃗u ⃗v := ⃗u ⋅ ⃗v + ⃗u ∧ ⃗v
{ ̂x, ̂y, ̂z} ℝ3

̂x ̂y = 0 + ̂x ∧ ̂y = − ̂y ∧ ̂x = − ̂y ̂x
B = ̂x ∧ ̂y

BB = ( ̂x ∧ ̂y)( ̂x ∧ ̂y) = ̂x ̂y ̂x ̂y = − ̂x ̂x ̂y ̂y = − 1

BBB = (BB)B = − B



Last week I was partly enjoying the story-
telling about cats, but you should know…
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Prologue



…there really is a ‘cat’ at the heart of  
quantum gravity!
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I’ll explain. 



In a static, weak field there is a striking relation between GR and 
E&M with the formulation of  Newtonian gravity parallel to 
electrostatics: 

 

We have a gravitational Gauss’ law 

,     and   . 

ds2 = − (1 + 2Φ)dt2 + (1 − 2Φ)(dx2 + dy2 + dz2)

⃗g = − ⃗∇ Φ ⃗∇ ⋅ g = − 4πGμ

As in E&M this introduces 
intriguing non-locality 

 

Note well the unusual notation: a 
small area element of  the surface 
is denoted , not . 

∮ ⃗g ⋅ d ⃗E = − 4πGM

d ⃗E d ⃗A
9

M

⃗g
d ⃗E



For 

a region empty of  mass  

and  

small enough that we can take the 
gravitational field  constant, 

      

We’ve arbitrarily oriented things 
and so  

               

is a constraint on closed regions.

⃗g

∮𝒮
⃗g ⋅ d ⃗E = ⃗g ⋅ ∮𝒮

d ⃗E = 0.

⃗E 𝒮 = ∮𝒮
d ⃗E = 0
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⃗g ⃗g

⃗g

⃗g
𝒮

d ⃗E

d ⃗E
d ⃗E



Minkowski, Nach. vd Ges. 1897.

In the special case of  of  a spatial polyhedron 

            

Remarkably, exactly this identity was used by Hermann 
Minkowski to give a complete characterization of  convex 
polyhedra at the close of  the 19th century.  

 

⃗E 𝒮 = ∮𝒮
d ⃗E = 0 ⟹ ⃗E 1 + ⃗E 2 + ⃗E 3 + ⃗E 4 = 0.

⃗E 1
⃗E 2

⃗E 3

⃗E 4

As , we can write 

, 

or equally well, Ex. 1, 

.

⃗E 2 = 1
2

⃗l14 × ⃗l13

V =
1
6

⃗l12 ⋅ ( ⃗l13 × ⃗l14)

V2 =
2
9

⃗E 1 ⋅ ( ⃗E 2 × ⃗E 3)
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http://eudml.org/doc/58391


Just as 

, 

we have 

. 

(Ex. 2 derive this from .) 
But, then,  

Lengthγ = ∫γ ( ∂xa

∂τ
∂xb

∂τ
qab)

1/2

dτ

Area(𝒮) = ∫𝒮 ( ∂xa

∂σ
∂xb

∂τ
∂xc

∂σ
∂xd

∂τ
(qacqbd − qadqbc))

1/2

dσdτ

dArea = |d ⃗u | |d ⃗v |sin θ = |d ⃗u | |d ⃗v | 1 − cos2 θ

Area(𝒮) = ∫𝒮 ( ∂xa

∂σ
∂xb

∂τ
∂xc

∂σ
∂xd

∂τ
(ϵeabϵfcd det q qef ))

1/2

dσdτ

= …

[Ashtekar, PRL 57, 2244; Rovelli, Phys. Rev. D 47, 1703]
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The electric field measures physical areas

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.57.2244
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.47.1703


Just as 

, 

we have 

. 

(Ex. 2 derive this from .) 
But, then,  

Lengthγ = ∫γ ( ∂xa

∂τ
∂xb

∂τ
qab)

1/2

dτ

Area(𝒮) = ∫𝒮 ( ∂xa

∂σ
∂xb

∂τ
∂xc

∂σ
∂xd

∂τ
(qacqbd − qadqbc))

1/2

dσdτ

dArea = |d ⃗u | |d ⃗v |sin θ = |d ⃗u | |d ⃗v | 1 − cos2 θ

Area(𝒮) = ∫𝒮 ( ∂xa

∂σ
∂xb

∂τ
∂xc

∂σ
∂xd

∂τ
(ϵeabϵfcd det q qef ))

1/2

dσdτ

= ∫𝒮 ( ∂xa

∂σ
∂xb

∂τ
∂xc

∂σ
∂xd

∂τ
(ϵeabϵfcdẼe

i Ẽ
if ))

1/2

dσdτ
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The electric field measures physical areas



Now, compute,  

 

Thus, area is the norm of  (Ashtekar) electric flux through .

Area(𝒮) = ∫𝒮 ( ∂xa

∂σ
∂xb

∂τ
∂xc

∂σ
∂xd

∂τ
(ϵeabϵfcdẼe

i Ẽ
if ))

1/2

dσdτ

= ∫𝒮 (Ẽe
i ϵeab

∂xa

∂σ
∂xb

∂τ
dσdτ Ẽifϵfcd

∂xc

∂σ
∂xd

∂τ
dσdτ)

1/2

= ∫𝒮
((Ẽe

i ϵeabdxadxb)(Ẽifϵfcddxcdxd))
1/2

= ∫𝒮
(EiEi)1/2 = ∫𝒮

| |E | | = E𝒮 .

𝒮
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The electric field measures physical areas
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The electric fluxes provide orientations
The norm of  the last slide is standard, but annoying. If  we 
work with oriented areas and 2-forms, we don’t need it!

This is a good reason to work 
with the flux itself:  

 

The internal  index gives the 
local inertial ( ) flux direction. 

Take note that the internal 
frame needn’t align with the 
coordinate

Ei
𝒮 = ∫𝒮

Ei(x) = ∫𝒮
Ẽia(x)ϵabcdxb ∧ dxc

i
ℝ3 x

y

zZ

X

Y

frame: gauge freedom.
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The electric field 2-form generates rotations
The electric field 2-form is a bivector (in the local cotangent 
space). As such it generates rotations, because 

 

  
(Ex. 3 confirm that to take vectors to vectors, the correct 
action of  this ‘rotor’ is by conjugation, i.e. .) 
Thus, we can think of  our  index as labeling the components 
of  the (dual to the) Lie algebra . Using 
Hodge ( ) and working with a basis :  

.

eθB = 1 + θB +
θ2

2!
BB +

θ3

3!
BBB +

θ4

4!
BBBB + ⋯

= 1 + θB −
θ2

2!
−

θ3

3!
B +

θ4

4!
+ ⋯

= cos θ + sin θ B .

⃗v ′ = e−Bθ/2 ⃗v eBθ/2

i
𝔰𝔲(2)* ≅ 𝔰𝔬(3)* ≅ ℝ3

ϵabc {τi}3
i=1 ∈ 𝔰𝔲*(2)

⃗E = Ẽia(x)ϵabcdxb ∧ dxcτi



This furnishes an interpretation of  the closure 

 

Vector  generates gauge rotations:  

….these rotations of  the tetrahedron change its orientation, 
but don’t change its shape (metric geometry)!

⃗E 𝒮 = ∮𝒮
d ⃗E = 0 ⟹ ⃗E 1 + ⃗E 2 + ⃗E 3 + ⃗E 4 = 0.

⃗E 𝒮 = ⃗E 1 + ⃗E 2 + ⃗E 3 + ⃗E 4

R(θ, ̂n) = eθ( ⃗E 1+ ⃗E 2+ ⃗E 3+ ⃗E 4)⋅ ̂n

17

Gauge invariance and embedding
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The ‘cat’ and the tetrahedron are the same!

The  are angular momenta and are 
constrained by . The gauge invariants 

 and  capture the tet’s shape (metric).

{ ⃗E 1, ⋯, ⃗E 4} ⃗E tot = 0
| | ⃗E ℓ | | ⃗E ℓ ⋅ ⃗E m



Today’s Discussion

1. General Relativity as a Gauge Theory Part II:   
the Ashtekar connection 

2. Quantum Tetrahedra 

3. Building Space Part I: Spin Network Motivations
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What’s next? 
We would like to find the variables that, together with the 
electric field, will make up a ‘canonically conjugate’ set.  

If  we think of  the electric field as being a ‘momentum 
variable’ , we want to find the ‘position variable’ , s.t. 

. 

It turns out that the answer will be an -gauge potential  
with  

, 
and called the “Ashtekar connection”. The first step is to find 
Poisson brackets  for GR. 

p q
{q, p} = 1

𝔰𝔲(2) A

{Ai
a(x), Ẽb

j (y)} = δi
jδ

b
aδ(3)(x, y)

{ ⋅ , ⋅ }
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Some basics of  Symplectic & Poisson Geometry
You are certainly familiar with the fact that you can derive the 
Equations of  Motion (EoM) of  a Lagrangian theory from its 
action … 

…but, depending on your exposure to mechanics, you might 
not have seen that you can also use  to derive the symplectic 
potential , symplectic 2-form , and Poisson brackets. 

We have, 

 

and the boundary term, gives , so that . In 
phase space coords , , and 

 .

S

S
θ Ω = − dθ

δS = ∫ δLdt = ∫ ( ∂L
∂q

δq +
∂L
∂ ·q

δ ·q) dt = ∫ [( ∂L
∂q

−
d
dt

∂L
∂ ·q ) δq +

d
dt ( ∂L

∂ ·q
δq)] dt

θ = pdq Ω = dq ∧ dp
ξi = (q, p) Ω = − 1

2 Ωijdξi ∧ dξj

{f, g} := ∂i fΩij∂jg = ∂q f∂pg − ∂p f∂qg
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ADM formulation of  General Relativity
Starting from the Einstein-Hilbert action  

 , 

Richard Arnowitt, Stanley Deser and Charles W. Misner      
(1) made a spacetime split  (take simpler ), 
(2) worked out brackets, and (3) found the conjugate variables 

S = ∫ d4x −g R

ℳ = ℝ × Σ ∂Σ = 0

(∂t)μ
Nnμ

Na∂a

xa

xa

(1) Let 
,  

s.t. . Then, 
 induced 

  leads to 
.

n = − Ndt
nμnμ = − 1

qμν := gμν + nμnν

Kμν := ∇νnμ

Kab = 1
2N ( ·qab − 2D(aNb) )
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ADM formulation of  General Relativity
(2) The 4-dim Ricci scalar becomes   

 , 
and the metric has the block structure 

, 

so that , but . Putting it together  

,  &  , 

and 

,   with  and  constraints.

R(g) = R(q) + (KabKab − K2) + 2∇μ(nμK − nν ∇νnμ)

gμν = (−N2 + ⃗N 2 qabNa

qabNb qab )
gab = qab gab = qab + NaNb

Kab = 1
2N ( ·qab − 2D(aNb) ) π̃ab = ∂L/∂ ·qab = q(Kab − qabK)

S = ∫ dtd3x [π̃ab ·qab − NS̃ − NaC̃a] S̃ C̃a
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ADM formulation of  General Relativity
(3) With the action in hand, they found 

  , 

and so in the ADM phase space it is the spatial metric and the 
(trace-free part) of  the extrinsic curvature that are the 
conjugate variables. The lapse and shift are Lagrange 
multipliers that impose the constraints  

,   

Spatial diffeos:  , 
Scalar (Hamiltonian):  

[Compare E&M:   , 
 acts as a Lagrange mult. that imposes the Gauss law.]

{qab(x), π̃cd(y)} = δc
(aδ

d
b)δ

(3)(x, y)

S = ∫ dtd3x [π̃ab ·qab − NS̃ − NaC̃a]
C̃a = − 2Dbπ̃ab

S̃ = q− 1
2 (qacqbd−

1
2 qabqcd)π̃abπ̃cd − q

1
2 R(q)

F2 → Ea ·Aa + A0𝔇aEa + E2 + B2

A0
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ADM formulation of  General Relativity
A key challenge in gravity is as follows:  
You would like for the algebra of  your constraints on the 
theory to have the same structure as the algebra of  your 
gauge group and this isn't quite true. 

If  we smear constraints:   &   

then, 
 

 

, 
because the last depends on  these do not close to a 
standard Lie algebra…

S(F) = ∫ d3x S̃ F C( ⃗G) = ∫ d3x C̃aGa

{C( ⃗F ), C( ⃗G)} = C(ℒ ⃗F
⃗G)

{S(F), C( ⃗G)} = S(ℒ ⃗G F)

{S(F), S(G)} = C(qabF
↔
∂ bG)

qab
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ADM formulation of  General Relativity
 

 

, 
…failure to close is concerning for quantization, where we 
usually represent symmetries algebraically.  
More generally, 
the brackets between the field variables  and the 
constraints  are also complicated functions of   : 
Dirac called this the hypersurface deformation algebra.  

 Long Ex. 4: Fill in more of  the details of  ADM.

{C( ⃗F ), C( ⃗G)} = C(ℒ ⃗F
⃗G)

{S(F), C( ⃗G)} = S(ℒ ⃗G F)

{S(F), S(G)} = C(qabF
↔
∂ bG)

(qab, π̃ab)
(C, S) (qab, π̃ab)

[ADM, Phys. Rev. 116, 1959 and GRG, 1967]

https://authors.library.caltech.edu/72877/1/PhysRev.116.1322.pdf
https://arxiv.org/abs/gr-qc/0405109
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Connections, connections, connections
Our route to the Ashtekar connection will be to start from the 
ADM variables and to perform a canonical transformation.  

To understand this approach, we will need to recall how the 
spin connection works. For this we return to spacetime briefly. 

The spacetime covariant derivative allows us to parallel 
transport tensors and is usefully expressed in terms of  the 
Levi-Civita connection:  

, 
which is uniquely determined by the two conditions: 

Metric compatibility   ,  
Torsion free    .

∇μvν = ∂μvν + Γν
μσvσ

∇μgρσ = 0

Γν
[μσ] = 0
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But, we have a second kind of  vectors around, those that live 
in the Lorentz frames over every point of   (internal vectors)ℳ

How should we parallel 
transport these? A: the spin 
connection. The idea is 

  

with  the spin connection. 
We have   when 

  

𝒟μvI = eI
ν ∇μvν

= ∂μvI + ω I
μ JvJ,

ωIJ
μ

ω IJ
μ = eI

ν ∇LC
μ eνJ

𝒟μηIJ = 0 ⟺ ω (IJ)
μ = 0

dωeI := deI + ωIJ ∧ eJ = 0

x
y

zZ

X

Y

Connections, connections, connections
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Now let’s understand the spacetime split of  this connection: 
  

.
ω0i → boosts

ωij → spatial rotations
Now, define  

. 

Just as the spacetime spin 
connection is determined by 
the tetrad, here we have  

, 
is determined by the triad.

Γ i
a :=

1
2

ϵi
jkω

jk
a

Γ i
a = Γ i

a (E)

x
y

zZ

X

Y

Spin connection split
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Recall   and define 
.  

The  term of  the ADM Lagrangian becomes 

.  

Thus,  and  are conjugate variables and schematically  
  

  . 
Connections have the freedom that you can add any vector, so 

Ashtekar connection:   ,  with . 
Thus retaining conjugacy of  , and making  a connection.

qab = Ei
aEj

bδij

Ki
a = KabEbi

p ·q

π̃ab ·qab = q(Kab − qabK)2 ·Ei(aEi
b) = 2Ẽa

i
·Ki

a + ∂t( * )

Ẽ K
{q, π̃} = 1, {q, q} = 0, {π̃, π̃} = 0

{K, Ẽ} = 1, {K, K} = 0, {Ẽ, Ẽ} = 0

Ai
a := Γi

a + 𝗂 Ki
a 𝗂 := −𝟣

(K, E) A

The Ashtekar connection at last
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You will have noticed the  appearing in the definition.  
This makes the original Ashtekar connection a complex 
variable. There is a good reason for this choice… 

…further analysis reveals that , the boost part. And 
the Lorentz group has a very nice decomposition over : 

. 
The original Ashtekar connection is the self-dual factor. 

Unfortunately, to make sense of  the quantum theory, you 
would need to be able to find the ‘real parts’ of  your operators 
and no one has yet found a feasible scheme for doing so. 

𝗂 = −𝟣

Ki
a = ω 0i

a
ℂ

𝔰𝔩(2,ℂ) = 𝔰𝔲(2,ℂ) ⊕ 𝔰𝔲(2,ℂ)

A crux issue with Ashtekar’s connection
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Instead the most common practice is to work with a real 
connection variable 

Ashtekar-Barbero connection:   ,  with . 

The ‘Barbero-Immirzi’ parameter  is a new free parameter 
of  the theory. We will see its physical meaning briefly.  

Remarkably: , , & 
. But, there is a tension between:  

(i) Real variables  
(ii) Poisson commuting connection 

(iii) spacetime covariance

Ai
a := Γi

a + γ Ki
a γ ∈ ℝ

γ

{Ai
a(x), Ẽb

j (y)} = γδi
jδ

b
aδ(3)(x, y) {A, A} = 0

{Ẽ, Ẽ} = 0

The Ashtekar-Barbero connection 
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The action is now 

 

with  
Gauss constraint                    
Spatial diffeos                     

 Scalar constraint         

and the field strength 

 .

S[Ai
a, Eb

j ] =
1

2γκ ∫ dtd3x [Ẽa
i

·Ai
a − Ai

0𝒢i − NS̃ − NaC̃a]

𝒢i := DaẼa
i ≃ 0

C̃a := Ẽb
i F

i
ab ≃ 0

S̃ := 1
2 ϵij

kẼa
i Ẽb

j F
k

ab ≃ 0

Fi
ab = 2∂[aAi

b] + ϵi
jkAi

aAj
b

Gravity as an SU(2) gauge theory



Today’s Discussion

1. General Relativity as a Gauge Theory Part II:   
the Ashtekar connection 

2. Quantum Tetrahedra 

3. Building Space Part I: Spin Network Motivations
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It’s high time that we did some quantum mechanics and our 
tetrahedron is an ideal starting point: 

           ⃗E 𝒮 = ∮𝒮
d ⃗E = 0 ⟹ ⃗E 1 + ⃗E 2 + ⃗E 3 + ⃗E 4 = 0.

Quantization of  Geometry: Area

⃗E 1
⃗E 2

⃗E 3

⃗E 4

As we have seen, each of  the fluxes  
can be thought of  as an angular 
momentum vector: 
Let  be carrier space of  SU(2) irrep 
with basis , then  

 

⃗E ℓ

ℋjℓ

| jℓ mℓ⟩

| Êℓ | | jℓ mℓ⟩ = γaP jℓ( jℓ + 1) | jℓ mℓ⟩

where  & Barbero-Immirzi  sets an ‘area gap’.aP := 8πℏG/c3 γ
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The magnetic quantum number  belies orientation 
dependence. This makes sense for each of  the facets, but it 
must go away for the tet as a whole:   
encodes the rotational invariance of  the tet. 

mℓ

⃗E 1 + ⃗E 2 + ⃗E 3 + ⃗E 4 = 0

Quantization of  Geometry: tetrahedra

To achieve this at the quantum 
mechanical level, we must search for 
rotationally invariant states of  the 
product of  the irreps: 

. 

We call such an invariant state an 
“intertwiner” and

| i⟩ ∈ Inv(ℋj1 ⊗ ℋj2 ⊗ ℋj3 ⊗ ℋj4)

.| i⟩ = | i j1 j2 j3 j4⟩ := ∑
m′ s

im1⋯m4 | j1 m1⟩ | j2 m2⟩ | j3 m3⟩ | j4 m4⟩

⃗E 1
⃗E 2

⃗E 3

⃗E 4
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The classical geometry we studied at the outset suggests one way 
to construct an intertwiner. We saw that 

. V2 =
2
9

⃗E 1 ⋅ ( ⃗E 2 × ⃗E 3)

Quantization of  Geometry: tetrahedra

This is clearly a rotational invariant 
and if  we construct the corresponding 
operator then its eigenvalues,  say, 
would provide a very physical set of  
basis states: 

. 
This highlights an important physical 
point—a classical tet is determined by,

v

| i⟩ = |v j1 j2 j3 j4⟩

e.g., its 6 edge lengths. A quantum tet by only 5 parameters 
and hence is quantum mechanically fuzzy.
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Over the course of  the discussion we have come to 
understand that GR is a gauge theory, but an unusual one 
with a gigantic gauge group: in addition to local changes of  
frame we have the entirety of  the diffeos to consider. 

Diffeos are a large part of  what makes quantum gravity hard! 
Observables relative:       &     Geometries hard to distinguish: 
Not scalars 
   , 
but relative scalars             although 
       .

ϕ(x) → ϕ′ (x′ )

ϕ(x(ψ))

Gravity as an SU(2)  gauge theory× Diff(ℳ)

∼

≁≁
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             Abelian                                    Non-Abelian 
1.   local                   is not gauge invariant 

2.          Still possible 

3.                  

Both lead to Wilson loops 
. 

Why aren’t the  observables used more often? 

The trouble is that they distinguish                    &                .

F = (E, B) F

AT
μ = (ημν −

pμpν

p2 ) Aν

∮ A → ∮ A + ∮ dλ
hγ(x, y) = 𝒫e ∫y

x A

→ g(x)h(x, y)g−1(y)

W(γ) = tr [g(x)h(x, x)g−1(x)] = tr [h(x, x)]
W(γ)

What are the observables in a gauge theory?

0
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These two issues, each respectively from gravity and gauge 
theory, cancel each other out in a gauge formulation of  GR!

A beautiful idea: spin networks
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These two issues, each respectively from gravity and gauge 
theory, cancel each other out in a gauge formulation of  GR!

A beautiful idea: spin networks



Connectivity is apparent, but there is 
no reference to a background 
geometry on which they sit—they 
quantum mechanically manifest space.  

Smaller graphs  can be embedded in 
larger graphs, representing more and 
more captured degrees of  freedom.

Γ

Penrose, several; Rovelli & Smolin,  PRD 
52, 5743; Major, AJP 67, 972; …

Γ
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Spin network states
A spin network is a collection of  
intertwiners at each node with colored 
links  representing flux irreps of  SU(2) 
connecting them: 

.ℋΓ = L2[SU(2)L /SU(2)N]

https://math.ucr.edu/home/baez/penrose/
https://arxiv.org/abs/gr-qc/9505006
https://arxiv.org/abs/gr-qc/9505006
https://arxiv.org/abs/gr-qc/9905020
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Thank you!
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