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Review question 1: What 1s the Ashtekar
electric field?



Review question 1: What 1s the Ashtekar
electric field?

It 1s a densitized triad field
E? =y/detqEY,
that provides a sort of ‘square root’ of the metric
E?Eib = det g g*.

In other words, to reconstruct the spatial metric you
find the mverse of
7 =EEldety.
We also organized this into a 2-form
E'(x) = E“(x)e., dx® A dx°.

abc
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Review question 2: What 1s the Poynting
vector 1n form language?

Using the same definitions as last time:

E=FEdx+ Edy+ Edz,
B = B.dy ANdz + Bydz Adx + B.dx A dy,
we have the Poynting 3-form P or the 1-form P;:
P=—-—EA% B, or P =—%¢(E A X B).

Alternatively, you can view this as part of the tull
stress-energy and pick out components using your
velocity u:

P = o) A F(u) A xE(u).



Review question 3: When can you write a
physical theory as a gauge theory?

terms of a ““principle

bundle”, e.g. Hopt bundle.

|G.L. Naber, Topology, Geometry, and Gauge Fields]
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When you can cast it 1n
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https://link.springer.com/book/10.1007/978-1-4419-7254-5

Review question 4: Now that we are using
the wedge product, why not use the
oceometric (or Cliftord) product?

Okay, let’s do 1t. For concreteness, let’s introduce
everything in R°. Suppose # and V' € R, then

e

G =0 AT
Suppose {%, 9,2} is a basis for R?, then
W=0F+xAV=—"VAX=-— V¥ ctc,
Also, normalized bivectors, e.g. B = X A Y, satisty:
BB =(XAY)XAY) =XYxy = —xxyy = — 1
and

BBB = (BB)B = — B.



Prologue

Last week 1 was partly enjoying the story-
telling about cats, but you should know...



...there really 1s a ‘cat’ at the heart of
quantum gravity!

I’ll explain.



In a static, weak field there 1s a striking relation between GR and

E&M with the formulation of Newtonian gravity parallel to
electrostatics:

dZ— (g (- Did ..t d

We have a gravitational Gauss’ law

— ;

g =—VCI>, and V -g=—-4zGu .
As 1n E&M this introduces
intriguing non-locality

CJ;? dE = — 47GM

Note well the unusual notation: a
small area elgment oithe surface
1s denoted dE, not dA.

g



For

—
(‘.au§sian g /
a region empty of mass e
d = s =
an gEigaun:
&
small enough that we can take the 2 ALy \«TQ;M -
oravitational field g’ constant, =

4>ng SI;dEO
S S

We’ve arbitrarily oriented things

and so
S

1s a constraint on closed regions.
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In the special case of of a spatial polyhedron

—

&

Remarkably, exactly this identity was used by Hermann
Minkowski to give a complete characterization of convex
polyhedra at the close of the 19th century.

= 1.2 — :
As Ey = 114X 113, we can write
ks

= - =
V= gllz (L3 X 1qy),
or equally well, Ex. 1,

V=2, (E,x Ey
_9 1 2 32

11 Minkowski, Nach. vd Ges. 1897.



http://eudml.org/doc/58391

T'he electric field measures physical areas

. 12
e dy

Lenosth — dr,
g y ‘;( A Qab>

we have

12
ox? ox? ox¢ ox?
Area(d) = @ g =0 a7 dodr.
<

Just as

doc Ot Oc Ot
(Bx. 2 derive this from dArea = |d%’||d7V |sind = |dW] [dv ALl cos*6.)
But, then,

142

e J' ox® ox? oxe 0xd( . ef) o

rea = € ¢ de odt
o\ 0o Ov 0o 01 oy -

[Ashtekar, PRL 57, 2244; Rovelli, Phys. Rev. D 47, 1703]
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https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.57.2244
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.47.1703

T'he electric field measures physical areas

. 12
e dy

Lenosth — dr,
g y ‘;( A Qab>

we have

12
ox? ox? ox¢ ox?
Area(d) = @ g =0 a7 dodr.
<

Just as

doc Ot Oc Ot
(Bx. 2 derive this from dArea = |d%’||d7V |sind = |dW] [dv ALl cos*6.)
But, then,

142

e J' ox® ox? oxe 0xd( . ef) o

rea = € ¢ de odt
o\ 0o Ov 0o 01 oy -

1/2
ox? ox? ox¢ ox? e Fif
= & 2 ) dodr
i

Jdo 0t 0o 071

155



T'he electric field measures physical areas

Now, compute,

1/2
Area(d§) = (eeabefchfEif )) dodt

; ox® ox? ox¢ ox?
Jdo 0t 0o Ot

1/2
= ox® ox? - ox¢ ox?
= e dodr EY e dodr
¢ 0do 07 oo Ot

- . 1/2
= J <(Ef€eabdx“dxb)(E’f efcddxcdxd)>
S

=J (EE) " = | |E|| = E, .
S J§

T'hus, area 1s the norm of (Ashtekar) electric flux through &§.
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T'he electric fluxes provide orientations

T'he norm of the last slide 1s standard, but annoying, 1f we
work with oriented areas and 2-forms, we don’t need 1t!

T'his 15 a good reason to work
with the flux itselt:

B [ ) — [ Eiloe di dr
5 s

T'he internal i index gives the

local inertial (R?) flux direction.

'Take note that the internal

frame needn’t align with the
coordinate frame: gauge freedom.

1%



T'he electric field 2-form generates rotations

T'he electric field 2-form 1s a bivector (in the local cotangent
space). As such it generates rotations, because
o 6> o*
05
e — 1 1 0B +EBB +§BBB +mBBBB o

9¢ 6’ 0*

B 1
. 3 4!
=cos@ +sind B.

= | FOB

(Lx. 3 confirm that to take vectors to vectors, the correct
action of this ‘rotor’ is by conjugation, i.e. V' = e 5%277¢5%2 )

'T'hus, we can think of our i index as labeling the components
of the (dual to the) Lie algebra 8u(2)* = 80(3)* =~ R”. Using
Hodge (¢,,) and working with a basis {z,}7_, € 8u"(2):

E = E"%(x)e

abc
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(Gauge 1mvariance and embedding

T'his furnishes an interpretation of the closure

J§
Vector E = fl 4 fz - E} - E} generates gauge rotations:

R(O.7) = ee(E1+E’2+E'3+E’4)-ﬁ

....these rotations of the tetrahedron change its orientation,

but don’t change its shape (metric geometry)!
17



'The ‘cat’ and the tetrahedron are the same!

The {fl, _)4} are angular momenta and are
Constramed d by £ E for — 9. Thc gauge Invariants
|| E Lﬂ\ | and E o ' E ., capture the tet’s shape (metric).

18



Today’s Discussion

I. General Relativity as a Gauge 'T'heory Part 11:
the Ashtekar connection

2. Quantum Tetrahedra

3. Building Space Part I: Spin Network Motivations
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What’s next?

We would like to find the variables that, together with the
electric field, will make up a ‘canonically conjugate’ set.

It we think of the electric field as being a ‘momentum
variable’ p, we want to find the “position variable’ g, s.t.

aanE =1

It turns out that the answer will be an 8u(2)-gauge potential A
with

(AL, EY()} = 6:626(x, ),

and called the “Ashtekar connection™. 'I'he first step 1s to find
Poisson brackets { -, - } tor GR.

2]



Some basics of Symplectic & Poisson Geometry

You are certainly familiar with the fact that you can derive the
Equations of Motion (ELoM) of a LLagrangian theory from its
achen S . ..

...but, depending on your exposure to mechanics, you might
not have seen that you can also use § to derive the symplectic
potential 8, symplectic 2-form Q = — df, and Poisson brackets.

We have,

Jil T Ll
08 = |oLdt = |\ —o0g +—06q | dt = — ——— ] 0g+ oq | | dt
dq g dg  di dg dt \ dq

and the boundary term, gives 6 = pd%, so that Q = dg A dp. Ir_1
phase space coords &' = (¢, p), Q = —-Q;d¢* Ad¢/, and

8} = 0;fQ%;g =0,/0,8 — 9,fd_g.
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ADM formulation of General Relativity

Starting from the Einstein-Hilbert action
i Jd4x —92R,

Richard Arnowitt, Stanley Deser and Charles W. Misner
(1) made a spacetime split #/ = R X X (take simpler 0% = 0),
(2) worked out brackets, and (3) found the conjugate variables

(1) Let

)Y
Xa.(t+dt) / t+dt e th,
)
s = . hen

9, = =2, T mdlced

/ K= v n lcddsie

L
Kap = 55(qap = 2DNy) ).

a




ADM formulation of General Relativity
(2) The 4-dim Ricci scalar becomes
R(g) = R(¢) + (K*K,, — K*) + 2V ,(n*K — n*V n*)

and the metric has the block structure

so that g, = g, but g% = g® + N°N?. Putting it together

K., = 52(day — 2DNyy), & #% = 0L19g,, = /q(K™ — g*°K),

a

and

S—did » [ﬁ“bq'ab — NS — N“Ca] , with § and C, constraints.

24



ADM formulation of General Relativity
(3) With the action in hand, they found

(4, 7)) = 85526, ),

and so 1n the ADM phase space 1t 1s the spatial metric and the
(trace-free part) of the extrinsic curvature that are the
conjugate variables. The lapse and shift are Lagrange
multipliers that impose the constraints

S = s |7°q,, — NS — N,C,

Spatial diffeos: C¢ = — 2D, 7%,
Scalar (Hamiltonian): S = q_%(qacqbd— %qachd)it“bft"d — ¢?R(q)
[Compare E&M: F? - E9A_+ A,D E*+ E* + B?,

Ay acts as a Lagrange mult. that imposes the Gauss law.]
25



ADM formulation of General Relativity

A key challenge 1n gravity 1s as follows:

You would like for the algebra of your constraints on the
theory to have the same structure as the algebra of your
gauge group and this 1sn't quite true.

If we smear constraints: S(F) = | xS F & C(ﬁ) = | d’x C’aG“

then = >
{C(F), C(G)} = A(ZF06)

(S(F), C(G)} = S(Z = F)
(S(F),S(G)} = C(q*F 3 ,G),

because the last depends on ¢’ these do not close to a
standard lLie algebra...

26



ADM formulation of General Relativity
(C(F), C(G)} = C(Z+G)
(S(F), C(G)} = S(Z=F)
(S(F), S(G)} = C(q**F 3,G),

...Tailure to close 1s concerning for quantization, where we
usually represent symmetries algebraically.

More generally;

the brackets between the field variables (g,;, #%°) and the
constraints (C, S) are also complicated functions of (g, #*):
Dirac called this the hypersurtace deformation algebra.

Long Ex. 4: Fill in more ot the details of ADM.

[ADM, Phys. Rev. 116, 1959 and GRG, 1967]



https://authors.library.caltech.edu/72877/1/PhysRev.116.1322.pdf
https://arxiv.org/abs/gr-qc/0405109

Connections, connections, connections

Our route to the Ashtekar connection will be to start from the
ADM variables and to perform a canonical transformation.

'lo understand this approach, we will need to recall how the
spin connection works. For this we return to spacetime briefly.

T'he spacetime covariant derivative allows us to parallel
transport tensors and 1s usetully expressed in terms of the
Lewvi-Civita connection:

e v 1% O
Vo= d ek e
which 1s uniquely determined by the two conditions:
=

Metric compatibility V s

Forsion itee " ITY =10

|pol

28



Connections, connections, connections

But, we have a second kind ot vectors around, those that live
in the Lorentz frames over every point of . (internal vectors)

How should we parallel
transport these? A: the spin
connection. The idea 1s

s 2 v
Dy =e,V,v
= o
— aﬂv + @, Vs
with a)lﬁj the spin connection.

We have a)ﬂU = ¢, V;“ e when

i igra
In'=0 = o, 7 =0

de  =de Yo he, =0

2



Spin connection split

Now let’s understand the spacetime split of this connection:
0 — boosts

o' — spatial rotations.

Now, define

e ik
' = zejka)a :

Just as the spacetime spin
connection 18 determined by
the tetrad, here we have

' =t 2,
1s determined by the triad.

30



T'he Ashtekar connection at last
Recalleg  — Elelfyél] and define

K=K F
The pg term of the ADM Lagrangian becomes

%G = \[q(K® — qVK)2E B, = 2E[K;, + 9(*).

Thus, E and K are conjugate variables and schematically

g- 7y =1, 149,91 =0, 7,7} =
(K,E)=1, {K,K})=0, {E,E}=0
Connections have the freedom that you can add any vector, so

Ashtekar connection: A :=T" +iK!, wit

= —1

Thus retaining conjugacy of (K, E), and making A a connection.

il



A crux 1ssue with Ashtekar’s connection
You will have noticed the i =4/—1 appearing in the definition.

T'his makes the original Ashtekar connection a complex
variable. T'here 15 a good reason for this choice...

...further analysis reveals that K! = w,”, the boost part. And
the Lorentz group has a very nice decomposition over C:

31(2,C) = 3u(2,C) & 3u(2,0).

T'he original Ashtekar connection 1s the selt-dual factor.

Unfortunately, to make sense of the quantum theory, you
would need to be able to find the ‘real parts’ of your operators
and no one has yet found a teasible scheme for doing so.

52



'The Ashtekar-Barbero connection

Instead the most common practice 1s to work with a real
connection variable

Ashtekar-Barbero connection: A!:=T" +yK', withy € R.

T'he ‘Barbero-Immirzi’ parameter y 1s a new free parameter
of the theory. We will see its physical meaning briefly.

Remarkably [Al(x), Eb(y)} — ;/6’5b5(3)(x VWA Al =0 &
FEEY — 0 Biit there 1S a tension between:

(1) Real variables

(11) Poisson commuting connection

(111) spacetime covariance

33



Gravity as an SU(2) gauge theory

'The action 1s now

. e & = . . -
SIALE = |didx [EPALAlC. NS N'LC |

2yK |
with
(Gauss constraint o =D
Spatial ditfeos C.=FF =D
Scalar constraint S %eljkE?EfFabk =210
and the field strength

Fi, = 20,AL + €', ALAT

34
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2. Quantum Tetrahedra
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QQuantization of Geometry: Area

It’s high time that we did some quantum mechanics and our
tetrahedron 1s an 1deal starting point:

—

S§

As we have seen, each ot the fluxes E,
can be thought of as an angular
momentum vector:

Let #Z;, be carrier space of SU(2) irrep

with basis |j,m,), then

.| 1jomp) = yap\[i, Gy + D | jomy)

where ap := 877G/c® & Barbero-Immirzi y sets an ‘area gap’.
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Quantization of Geometry: tetrahedra

'I'he magnetic quantum number m, belies orientation
dependence. This makes sense for each of the facets, but 1t

must go away for the tet as a whole: El e E2+ E3+ E4 — 0

encodes the rotational imnvariance of the tet.

lTo achieve this at the quantum
mechanical level, we must search for
rotationally invariant states ot the
product of the irreps:

iy eV, @K, @K, I,).

We call such an invariant state an
“Intertwiner’ and

[0} = i1 J3da) = Z T jymy) Ly mo) Ly ma) [ Jamy).

/
m.s 37



Quantization of Geometry: tetrahedra

T'he classical geometry we studied at the outset suggests one way
to construct an intertwiner. We saw that

V2—EE’ (E <)
_9 1 2 £/

T'his 1s clearly a rotational invariant
and 1t we construct the corresponding
operator then its eigenvalues, v say,
would provide a very physical set of
basis states:

[3) = |V j1J2J3J4)-
T'his highlights an important physical

point—a classical tet 1s determined by,

e.g., its 6 edge lengths. A quantum tet by only 5 parameters

and hence 1s quantum mechanically tuzzy.
38
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Gravity as an SU(2) x Ditl(#) gauge theory

Over the course of the discussion we have come to
understand that GR 1s a gauge theory, but an unusual one
with a gigantic gauge group: 1n addition to local changes of
frame we have the entirety ot the ditfeos to consider.

Ditteos are a large part of what makes quantum gravity hard!

Observables relative: &  Geometries hard to distinguish:
Not scalars
a4
P(x) = ¢'(x),
but relative scalars although

P(x(y)). 40@ A O A @)



What are the observables 1n a gauge theory?
Abelian Non-Abelian

F=(E. B) local F 1s not gauge invariant

P.Py : :
2. A = (nﬂy = )A” Still possible

h(x,y) = Pe k4
s aebangd =
: — g()h(x, g (y)

Both lead to Wilson loops
W(y) = tr [g(x)h(x x)g_l(x)] tr [h(x, x)].

Why aren’t the W(y) observables used more often?

T'he trouble 1s that they distinguish D & O :




A beautiful 1dea: spin networks

T'hese two 1ssues, each respectively from gravity and gauge
theory, cancel each other out in a gauge formulation ot GR!




A beautiful 1dea: spin networks

T'hese two 1ssues, each respectively from gravity and gauge
theory, cancel each other out in a gauge formulation ot GR!




Spin network states

A spin network 1s a collection of
intertwiners at each node with colored
links representing flux irreps of SU(2)

connecting them:
7 L SUO)ISHO)

Connectivity 1s apparent, but there 1s
no reference to a background
ogeometry on which they sit—they
quantum mechanically manifest space.

Smaller graphs I" can be embedded 1n
larger graphs, representing more and
more captured degrees of freedom.

Penrose, several; Rovelli & Smolin, PRD
b2 5745 Nlajor AP 67 972 - -
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https://math.ucr.edu/home/baez/penrose/
https://arxiv.org/abs/gr-qc/9505006
https://arxiv.org/abs/gr-qc/9505006
https://arxiv.org/abs/gr-qc/9905020

Thank you!
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