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Review question 1: What are the 
conjugate variables that LQG uses in its 
gauge theory description of  GR? 
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The gravitational electric field, , and 
2-form 

. 

The conjugate connection:   ,  with 
 , , and . 

Then: ,  ,  & 
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Review question 1: What are the 
conjugate variables that LQG uses in its 
gauge theory description of  GR? 



Review question 2: Where was the cat 
hiding in quantum gravity? 
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Review question 2: Where was the cat 
hiding in quantum gravity? 
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⃗E 1
⃗E 2

⃗E 3

⃗E 4

A tet satisfies closure: 
. 

Quantize a la SU(2) angular mom.: 

⃗E 1 + ⃗E 2 + ⃗E 3 + ⃗E 4 = 0

| Êℓ | | jℓ mℓ⟩ = γaP jℓ( jℓ + 1) | jℓ mℓ⟩

New ingredient intertwiners: 
 

E.g. the volume of  the tet , 
.

| i⟩ ∈ Inv(ℋj1 ⊗ ℋj2 ⊗ ℋj3 ⊗ ℋj4)
v

| i⟩ = |v j1 j2 j3 j4⟩



Summary Point: What are the observables 
we will work with? 
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Integrals of  the  connection along loops are gauge 
invariant, and diffeomorphically inequivalent loops 
are the only distinct classes, thus, these make up a 
reasonable set of  observables. 

Ai
a

Spin networks provide a basis 
of  indep loops. They carry 
SU(2) irrep labels that give 
the area flux through surfaces 
transverse to the edges and 
intertwiners at the nodes that 
give the quantum numbers of  
the node, e.g. volume.



Today I want to discuss the geometry of  
spacetime and dynamics. We’ll begin with a 
simplified example…
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Prologue



     ,  

where  is the spatial volume of  a 
ball of  test particles initially at rest, 
evolving with respect to the proper 
time of  the central particle, and  &  
are the energy density & pressures in 
the region.  
In the absence of  stress-energy  
                 
and the volume of  the ball is constant 
to 2nd order in time. 

··V
V t=0

= −
1
2 (ρ + Px + Py + Pz)

V(t)

ρ Pi

··V |t=0 = 0

[Baez & Bunn AJP, 73 644]

                                   For example, a passing gravitational 
wave deforms the ball into an ellipsoid, preserving its volume.
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Einstein dynamics—In a local inertial frame the Einstein 
equations can be given a particularly simple form: 

https://arxiv.org/abs/gr-qc/0103044


Now imagine removing most of  the 
test particles, leaving just 4 behind.  

If  you only observe these 4 test 
particles, you will not have a window 
on all of  the degrees of  freedom of  
the gravitational field—just the ones 
that these particles betray.  

A choice that you can make is to 
interpolate these 4 particles with a tet.
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Truncating degrees of  freedom

But, it is essential to keep in mind that this is a choice.
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An example helps to illustrate the point
In signal processing, you frequently interpolate a 
discrete signal with different convenient choices of  
continuous signal:
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[Rovelli & Speziale, PRD 82]

We frequently do this in physics too. The various 
interpolations are: polynomial, like the mode expansion 
in cosmology; piecewise linear, like Regge calculus in 
GR; and piecewise flat, like twisted geometries in LQG. 

https://arxiv.org/abs/1005.2927
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So, there are different types of  discreteness 
in loop gravity that richly interplay
When we work on a fixed graph , we are truncating 
the infinite degrees of  freedom of  the classical 
gravitational field down to a finite number.

Γ

Polyhedra are just 
one choice for 
describing the 
captured geometrical 
degrees of  freedom. 
Others are available.

Loop gravity also predicts an observable discreteness: 
the quantum, spectral discreteness of   and of  . | Êℓ | ̂V



Today’s Discussion

1. Building Space Part II: Spin Networks 

2. The Tetrahedral Anamoly 

3. Discrete Geometry Path Integrals: Spin Foams

12



Today’s Discussion

1. Building Space Part II: Spin Networks 

2. The Tetrahedral Anamoly 

3. Discrete Geometry Path Integrals: Spin Foams

13



14

Much of  loop gravity is constructed in 
parallel with lattice gauge theory (LGT)
Remarkable parallels with lattice gauge theory…: 
1. Hilbert space is constructed over a graph  
2. Holonomies/Wilson loops (half) basic variables 
3. Gauge invariance imposed at graph nodes 

…but, also, key differences: 
1. The quantum variables on the graph  give rise 
to spatial relations, not a consequence of  them 
2. Importantly,  is not endowed with a ‘lattice 
spacing’, no background metric structure

Γ

Γ

Γ
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Similarities to lattice gauge theory: path 
ordering
We use Wilson loops as observables because of  their 
invariance under gauge transformations: 

           

The Ashtekar ‘ ’ is an SU(2) connection, hence non-
abelian, and the holonomy  will only have this 
nice transformation if  we path order . 

A(x) → g(x)A(x)g−1(x) − g−1(x)dg(x)
hℓ(x, y) = 𝒫e ∫y

x A → g(x)hℓ(x, y)g−1(y)
W(γ) = tr [g(x)h(x, x)g−1(x)] = tr [h(x, x)]

q
hℓ

𝒫

ℓ
x

y γ
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Similarities to lattice gauge theory: path 
ordering
Holonomies are group elements & should compose 

                                                    . 
For an abelian connection this is immediate: 

. 
But, for a non-abelian connection, it’s not so simple. 
You may have encountered the Baker-Campbell-
Hausdorff  result: 

.

hℓ = hℓ1
hℓ2

eA1+A2 = eA1 eA2

eA1 eA2 = eA1+A2+
1
2 [A1,A2]+⋯

ℓ1x1 x2 x3
ℓ2
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Similarities to lattice gauge theory: path 
ordering
Path ordering restores  even in the 
non-abelian case. It is defined by 

 

with                  parametrized by . 

Ex. 1 Take  constant along the path and show that 
the multiple integrals give  in this case. 
Ex. 2 Take  to be  if   and  if  

 and show that you recover .

eA1+A2 = eA1 eA2

h(x, y) = 𝒫e ∫y
x A = 𝕀 + ∫

1

0
dsA(s) + ∫

1

0
ds1 ∫

1

s1

ds2A(s1)A(s2) + ⋯,

s ∈ [0,1]

A
1/n!

A(s) A1 s ∈ [0,1/2) A2
s ∈ (1/2,1] eA1+A2 = eA1 eA2

ℓ
x

y



18

Similarities to lattice gauge theory
Working with holonomies  there is a natural Hilbert space 
and inner product: 

, 
the space of  square-integrable functions of  the group 
elements with respect to the Haar measure .  

We can extend this to a Hilbert space over a graph  with  
links  and  nodes  using the tensor product: 

. 
But, this space is not yet gauge invariant, so we finally divide 
by the gauge invariance at the nodes: 

.

hℓ

ℋ = L2[G, μH]

μH

Γ L
ℓ N n

ℋL
Γ = L2[GL, μH]

ℋΓ = L2[GL /GN, μH]
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Similarities to lattice gauge theory
“Cylindrical consistency” allows us to extend this 
inner product to get notion of  inner product on two 
different graphs  and . Idea: 

Then,                  . 
This allows a rich connection to continuum field 
theory in limit of  finer and finer graph.

Γ Γ′ 

⟨ΨΓ, ΨΓ′ 
⟩ = ⟨ΨΓ, ΨΓ′ 

⟩Γ′ ′ 
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An important difference: in loop gravity 
there is no fixed lattice spacing
The lattice spacing  of  LGT represents the metrical 
spacing of  the points of  the lattice.  
There can be no such fixed background structure in 
a fully dynamical treatment of  quantum gravity.  
One consequence of  this is that you refine the 
theory by increasing the number of  nodes  of  the 
graph, not changing the spacing :

l

N
l
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The key takeaway: well-defined 
construction of  a kinematical Hilbert space
We have the Hilbert space: 

, 
which consists of  cylindrical functions:  

. 
The holonomies probe the space time curvature around 
closed loops of  the graph   
and  
The fluxes probe the areas  
transverse to the links connecting 
nodes, which give 3D regions of  space

ℋΓ = L2[GL /GN, μH]

f(A) = ΨΓ({hℓ})

Γ
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Warning: A change in notation
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⃗E 1
⃗E 2

⃗E 3

⃗E 4

We have been studying the tetrahedron 
expressed in terms of  electric fluxes: 

. 
Moving forward we will have less need 

to refer to the Ashtekar connection …

⃗E 1 + ⃗E 2 + ⃗E 3 + ⃗E 4 = 0

Ai
a

…and so we will switch to a 
geometrical notation with:  

. 
This will make it more intuitive to 
refer to areas and ‘area vectors’.

⃗A 1 + ⃗A 2 + ⃗A 3 + ⃗A 4 = 0

⃗A 1
⃗A 2

⃗A 3

⃗A 4

more notation: edge , triangle , tet e t τ



The area vectors provide a unified framework for 
Euclidean and Lorentzian discrete geometries. 

Taking  (Euclidean) or  (Lorentzian), 
the closure ,  expresses invariance in either case. 

Counting the edge lengths, we know that a tetrahedron has 6 
independent parameters. The 12 components  are 
clearly overkill, while the 4 magnitudes  are insufficient.  

Closure provides a way out of  this quandary: there are 
precisely 6 independent vars 

, 
due to the 4 constraint equations . 

⃗A t ∈ 𝔰𝔬(3) ⃗A t ∈ 𝔰𝔬(2,1)
∑t

⃗A t = 0

{ ⃗A t}4
t=1

{At}4
t=1

ptt′ 
= sgn(V2

τ ) ⃗A t ⋅ ⃗A t′ 

⃗A ′ t ⋅ ∑t
⃗A t = 0

the volume of  tet Vτ = τ

24



Closure provides a way out of  this quandary: there are 
precisely 6 independent vars 

, 
due to the 4 constraint equations .  

Count: 16   6 (symmetry)  4 (relations)  vars.  

Four of  these variables are the diagonal , i.e. 4 areas; 
the other 2 can be taken to be  and  with  

 
and  a pair of  non-opposite edges in .  
The  are more convenient than the, perhaps, 
 more familiar 3D dihedral angles .

ptt′ 
= sgn(V2

τ ) ⃗A t ⋅ ⃗A t′ 

⃗A ′ t ⋅ ∑t
⃗A t = 0

ptt′ 
− − = 6

ptt = A2
t

pe1
pe2

pe ≡ ptt′ 
= sgn(V2

τ ) ⃗A t ⋅ ⃗A t′ 
, e = t ∩ t′ 

{e1, e2} τ
pe

ϕe = cosh−1/cos−1(pe)

the volume of  tet Vτ = τ

e1

e2

25



Intriguingly, the quantum area geometry of  tetrahedra is non-
commutative. We can see this by looking into the variables .pe

As we just saw the areas  and 2 inner products  completely 
describe a tetrahedron :   ,  &  . 

The area vectors satisfy   with  

. 

For a triple of  triangles  with angle parameters  and : 
 

             

For fixed areas these degrees of  freedom do not commute. Quantum 
mechanically they encode the shape of  a fuzzy quantum tetrahedron.

At pe1
, pe2

τ pτ
tt′ 

≡ pτ
e = sgn(V2

τ) ̂nt ⋅ ̂nt′ pτ
tt = A2

t

{Ai
t , Aj

t} = γcij
k Ak

t = γϵijmκmkAk
t

κij = {
δij if Euclidean
ηij if Lorentzian

(t, t′ , t′ ′ ) pτ
tt′ 

pτ
t′ t′ ′ 

{pτ
tt′ 

, pτ
t′ t′ ′ 

} = κii′ κjj′ Ai
t′ 

Aj
t′ ′ 
{Ai′ 

t , Aj′ 

t } = γϵi′ j′ k′ κii′ κjj′ κkk′ Ai
t′ 

Aj
t′ ′ 

Ak
t

= γ ⃗A t ⋅ ( ⃗A t′ × ⃗A t′ ′ ) = ± γ
9
2

Vol2τ

⃗A 2

⃗A 4

⃗A 3
⃗A 1

26



We will soon see that this means that the tetrahedral 
‘cat’ leaves its paw prints everywhere…

⃗A 2

⃗A 4

⃗A 3
⃗A 1

27
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The prospect of  a geometrical path integral is a constant 
source of  ideas and challenges in quantum gravity 

Fixing a region of  spacetime and some aspects of  the geometry on 
its boundary (e.g. the boundary metric), we aim to sum over all 
spacetime geometries that interpolate these boundary data:  

. 

What is the most convenient set of  variables to work with?  
How should we describe the space of  (unique) geometries? 
How do we properly compose regions to build up larger regions? 

𝒵 = ∫ 𝒟geom exp {iS(geom)}

29



A compelling principle providing the answer to all of  these 
questions at once still seems to be missing…

…however, we can take inspiration from Feynman’s slit screen 
idea and its simplification of  classical trajectories. 

Instead of  considering everywhere curved surfaces, we imagine 
building up curvature out of  flat pieces. This idea has a long 
history, but there is still much to learn of  the choices involved.

2D

30



The additive factorization of  the 
action, 

, 

greatly aids in carrying out a 
path integral:

N

∑
k=1 [ m

2 ( xk − xk−1

Δt )
2

− V(xk−1)]

K(x′ , x, T ) = lim
N→∞ ( m

i2πℏΔt )
N
2 N−1

∏
k=1

∫ dxk exp
i
ℏ

Δt
N

∑
k=1 [ m

2 ( xk − xk−1

Δt )
2

− V(xk−1)]

Indeed, were it not for the coupling of  the intervals  and 
 through , we could factor this into a product of  

amplitudes for each interval. 

(xk+1 − xk)
(xk − xk−1) xk

31



Let us focus on one pair of  these 
variables:  and , say.  
We can further decouple these 
variables by introducing an 
intermediate gluing point 

x1 x2

q

e− (x2 − x1)2
2(t2 − t1) =

1
𝒩 ∫ dq e− (x2 − q)2

2 t2 ⋅ e
(q − x1)2

2 t1

Several facets to :  

▲ From the perspective of  the initial  variables,  further factorizes the  
amplitudes; this, of  course, at the cost of  a new integration variable, the . 

▲ The discrete trajectory can bend further at ; additional dynamics . 

▲ A straight line trajectory is completely unaffected by introduction of  . 

▲ The  variable can even be used to impose constraints on the segments 
it connects.

q

x q x
q

q V(q)

q

q

q

32



Geometrical Variables—Choosing variables in the geometrical 
path integral has myriad consequences
We will:  
1. See how area variables lead to flat classical solutions in the 

unconstrained theory. 
2. Study constraints on the classical theory cast in these variables and 

discover why they can only be imposed weakly in the quantum 
theory. This allows us to define a geometrical path integral.  

3. Show that weak constraints lead to a surprisingly rich interplay of  
the model parameters in geometrical expectation values. 
Nonetheless, numerics show that classical geometries emerge in 
certain parameter regimes, evidence of  good spin foam dynamics. 

4. Present a newer spin foam model called an ‘effective spin foam’. 
This will be complementary to the many excellent introductions 
available in the literature to the EPRL-FK spin foam models.  

33
[Perez, Living Reviews in Relativity]

https://arxiv.org/abs/1205.2019


Regge Calculus

In Regge Calculus we describe 
spacetime by a triangulation of  
flat pieces glued together to give 
curvature. 

This, once again, cuts the 
degrees of  freedom of  gravity 
down to a finite number and 
greatly eases their study.  

It is also essential for doing 
numerics.

34



A dimensional ladder helps to illustrate some salient aspects of  
Regge Calculus

In 2D it is clear how curvature 
becomes concentrated on the 

-dimensional ‘bones’. 

In 3D we see an intriguing 
alignment between the metrical 
and symplectic aspects: the bones 
are 1D edges, whose lengths 
give the metric;  
meanwhile the conjugate 
curvature angle is compact and 
leads to quantization of  lengths

(d − 2)
2D

3D
35



t

In 4D the bones are 2D triangles .  

One is forced to choose between: 
the apparent metrical length 
variables , with a complicated 
conjugate variable 

or 
The curvature angle around the 
bone, which is conjugate to the 
area of  the triangle . Again as the 
curvature angle is compact, the 
areas are quantized. 

t

l

t

The 2nd choice is harmonious with LQG, and is the focus of  
effective spin foam models.

36



Area Regge Calculus

In standard Regge Calculus we 
treat the lengths of  edges as 
variables… 

…in Area Regge Calculus it’s 
the areas of  triangles. This 
provides a closer connection to 
area geometry, its quantization, 
and loop quantum gravity.

37



In 4D we triangulate using 4-simplices—the 4D analog of  
tetrahedra—which are made up of  5 vertices, 10 edges, 10 triangles, 
and 5 tetrahedra. 

[Recall Heron:  
] A2

t (l1, l2, l3) = 1
16 (l1 + l2 + l3)(l1 + l2 − l3)(l1 − l2 + l3)(−l1 + l2 + l3)

l1

l3

l2t
Locally the functions  (c.f. Heron) can be 
inverted to give edge lengths . Systems of  
such equations will, in general, give you a 
finite, discrete set of  roots for the . 

At(l)
Lσ

e (a)

Lσ
e (a)

The  (or 3D dihedral angles) 
of  tetrahedra in the 
triangulation distinguish such 
roots, and we can consistently 
follow a root of  interest. 

pe

t

38



The inversion of  the last slide is what allows us to convert 
standard Length Regge Calculus into Area Regge Calculus

The Regge Action for a 4D triangulation  is  
 ,  

where  
. 

In Length Regge Calculus (LRC) we take  
   and  

Δ

SRegge = ∑
t

At ϵt

ϵt = 2π − ∑
σ⊃t

θσ
t

At = At(l) θσ
t = θσ

t (l)

and varying  w.r.t. the bulk lengths  gives the eqs. of  motion  

,   which limit, for finer & finer , to the Einstein eqs.

SLRC l

∑
t⊃e

∂At

∂le
ϵt(l) = 0 Δ

t

39



In standard Regge Calculus we treat the lengths of  edges as 
vars, while in Area Regge Calculus it’s the areas of  triangles

A 4-simplex has ten edges and ten faces. 
Locally the functions  can be inverted 
to give edge lengths . 

Considering areas  as variables we can 
define Area Regge Calculus (ARC) via the 
action  

 .

At(l)
Lσ

e (a)

a

SARC = ∑
t

at ϵt(a)

The dihedral and deficit angles are obtained using . 
Strikingly, variation of  this action gives eqs. of  motion 

,   which impose flatness on .

θσ
t (a) = θσ

t (Lσ(a))

δSARC = ϵt(a) + ∑
t

atδϵt = ϵt(a) = 0 Δ
0  (due to the Schläfli identity)

t
Lσ

e

40



Adding Constraints to the Theory

We can understand this difference in eqs. 
of  motion between ARC and LRC as due 
to a differing # of  degrees of  freedom. 

Gluing along the tetrahedron with orange 
vertices, 6 edge lengths are matched, but 
only 4 areas. 

Pτ,σ
e

This mismatch can be resolved by introducing the  
dot products : 

 is the dihedral angle around edge  in tet . 
Two neighboring simplices , glued along , will have the same 
lengths in  if  the constraints 

 are imposed on non-opposite edges .

ptt′ 

Pτ,σ
e (a) = Pτ

e(Lσ(a)) e τ

{σ, σ′ } τ
τ

Pτ,σ
ei

(a) − Pτ,σ′ 
ei

(a) = 0, i = 1,2 ei
41



ARC with these constraints imposed leads 
to the same equations of  motion as LRC.  

But, imposing 
 

at non-opposite edges  leads to highly 
non-local constraints on the theory with 
the geometry of  tetrahedron  being fixed 
by area variables throughout the simplices 
 and . We don’t want this.

Pτ,σ
ei

(a) − Pτ,σ′ 
ei

(a) = 0, i = 1,2

ei

τ

σ σ′ 

Pτ,σ
e

Returning to our comparison with the path integral in 1D 
Quantum Mechanics is useful here…

42



The additive factorization of  the 
action, 

, 

greatly aids in carrying out a 
path integral:

N

∑
k=1 [ m

2 ( xk − xk−1

Δt )
2

− V(xk−1)]

K(x′ , x, T ) = lim
N→∞ ( m

i2πℏΔt )
N
2 N−1

∏
k=1

∫ dxk exp
i
ℏ

Δt
N

∑
k=1 [ m

2 ( xk − xk−1

Δt )
2

− V(xk−1)]

We noticed that were it not for the coupling of  the intervals 
 and  through , we could factor this into a 

product of  amplitudes for each interval. 
(xk+1 − xk) (xk − xk−1) xk

43



We can localize constraints to a single 4-
simplex by introducing the two additional 
variables  per  to our theory and 
imposing 

. 

The advantage of  these localized 
constraints is that they preserve additive 
factorization of  the Regge action and allow 
us to write the path integral in a product 
factorized form.  

pτ
ei

τ

𝒞i ≡ pτ
ei

− Pτ,σ
ei

(a) = 0, i = 1,2

Importantly, as we’ve seen, dot products at a pair of  non-opposite 
edges  do not commute. Instead 

,   with  non-opposite.

(e1, e2)

{pτ
e1

, pτ
e2

} = ± γ
9
2

Vol2τ (e1, e2)

Pτ,σ
e

44



We can localize constraints to a single 4-
simplex by introducing the two additional 
variables  per  to our theory and 
imposing 

. 

The advantage of  these localized 
constraints is that they preserve additive 
factorization of  the Regge action and allow 
us to write the path integral in a product 
factorized form.  

pτ
ei

τ

𝒞i ≡ pτ
ei

− Pτ,σ
ei

(a) = 0, i = 1,2

Importantly, as we’ve seen, dot products at a pair of  non-opposite 
edges  do not commute. Instead 

,   with  non-opposite.

(e1, e2)

{pτ
e1

, pτ
e2

} = ± γ
9
2

Vol2τ (e1, e2)

Pτ,σ
e

2nd class 
constraints

45



The Area Regge action, , factorizes additively. 
Boundaries of  the triangulation  are readily included.

SRegge = ∑t at ϵt
Δ

From the definition of  the deficit angle 
, 

we see that the area Regge action factorizes   
. 

The last equality defines the triangle and simplex actions 
   and   . 

Here the index  allows for triangulations with boundary: 
it is 1 for triangles on the boundary and 2 for triangles in the bulk.

ϵt = 2π − ∑
σ⊃t

θσ
t

SARC = ∑
t

at ϵt = ∑
t

ntπat − ∑
σ

∑
t⊃σ

atθσ
t (a) ≡ ∑

t

Sa
t (a) + ∑

σ

Sa
σ(a)

Sa
t = ntπat Sa

σ(a) = − ∑
t⊃σ

atθa
t (Lσ(a))

nt ∈ {1,2}

46



To this action we add a set of  functions  that impose the 
constraints; these act to glue simplices through tetrahedra 

g
τ

. 

This constraint discussion was classical, finally we come to our 
quantum input: the discrete area spectrum found above 

,   with  . 

(Again  is an half-integer spin label and  is the area gap.) But, this 
leads to an important tension…

STot = ∑
t

Sa
t (a) + ∑

σ

Sa
σ(a) + ∑

τ⊂blk
gσ,σ′ 

τ (a)

a( j) = γaP j( j + 1) ∼ γaP( j + 1/2) aP = 8πℏG/c3

j γ

47



We are forced to navigate between Scylla—reducing too much 
the density of  states—and Charybdis—imposing dynamics that 
does not match GR  weak imposition of  constraints.⇝

If  we impose the constraints too strongly, there will be no 
tetrahedra with (half-integer) areas that satisfy them.
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Defining an Effective Spin Foam model
In this context we can define the spin foam  

, 

with 

       and       . 
In practice, we take  for spins satisfying the constraints. 
The factors  implement the constraints: imposing these sharply, 
with  if  satisfied and 0 else, leads to diophantine eqs. for the 
constraints that will only be satisfied for rare and special labels ; 

this is the key fact that  weak imposition of  the constraints

𝒵 = ∑
{jt}

μ( j)∏
t

𝒜t( j)∏
σ

𝒜σ( j) ∏
τ∈blk

Gσ,σ′ 
τ ( j)

𝒜t = eiγntπ( jt+ 1
2 ) 𝒜σ = e−iγ∑t⊃σ ( jt+ 1

2 )θσ
t ( j)

μ( j) = 1

Gσ,σ′ 
τ

Gσ,σ′ 
τ = 1

{jt}

⇝

We implement the constraints with  
.Gσ,σ′ 

τ ( j) = ⟨𝒦τ( ⋅ ; Pτ,σ
ei

( j)) |𝒦τ( ⋅ ; Pτ,σ′ 

ei
( j))⟩

Coherent state 
peaked on ’sP
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Inputs and Approximations for the Numerics

The spin foam  
, 

with , 

       and       . 

To keep the numerics tractable researchers: 

▲ consider symmetry reduced triangulations 

▲ approximate the coherent inner products by real gaussians with 
widths determined by the  non-commutation 

▲ and consider scaling with both  and .

𝒵 = ∑
{jt}

μ( j)∏
t

𝒜t( j)∏
σ

𝒜σ( j) ∏
τ∈blk

Gσ,σ′ 
τ ( j)

μ( j) = 1

𝒜t = eiγntπ( jt+ 1
2 ) 𝒜σ = e−iγ∑t⊃σ ( jt+ 1

2 )θσ
t ( j)

{𝒞i, 𝒞j} = ± γ(9/2)Vol2τ

j γ
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Overview of  Results

Remarks

𝒞i = pτ
ei

− Pτ,σ
ei

(a) != 0

In quantizing the geometry of  3D/4D triangulations we: 
   ▲ use area vectors  in  as SU(2)/SU(1,1) angular momentum operators 

   ▲ scale the normals by , the area gap (Barbero-Immirzi parameter) 

   ▲ leverage closure and global rotations to parametrize tetrahedral geometries by 

        four areas  and two inner products  

Gluing tetrahedra to form a 4-simplex leads to an over parametrization, so we 

   ▲ impose constraints to ensure consistent length assignments 

   ▲ There are two non-commuting constraints  per tetrahedron — second class

⃗A t τ

γ

at pτ
ei

𝒞i

Uncertainty relations and the area spectrum prevent a sharp imposition of  the constraints 
in the quantum theory 
   ▲ In Effective Spin Foams (ESF), we implement constraints weakly, similarly to EPRL-FK 

Another approach is to impose constraints classically and quantize the reduced phase space 

   ▲ this leads to a phase space with a complicated topology: still an open issue
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Effective Spin Foam models

 is the measure term. We anticipate that this can be fixed by demanding invariance under 
coarse graining or implementing an approximate version of diffeomorphism invariance
μ(a)

 is the area Regge action and determines the oscillatory part of the partition functionSARC(a)

 implements the generalized triangle inequalities for a 4-simplexΘtr
σ(a)

 implements the constraints between the areas weakly via a GaussianGσ,σ′ 
τ (a)

ESF can be used to study many features of quantum gravity, such as sum over orientations, 
causal structures, topology change, etc. 

The structure of  an effective spin foam can be decomposed into four 
parts. These models are discrete path integrals for a fixed 
triangulation  with Δ

𝒵ESF = ∑
{at}

μ(a) exp ( i
ℏ

SARC(a))∏
σ

Θtr
σ(a) ∏

τ

Gσ,σ′ 
τ (a)
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Weak Constraints and the semiclassical regime of  the 
theory
Gluing more simplices, the constraints  will impose further 
relations between the areas.  

Given a 4-simplex , the  reduce the 20 variables  to 10 areas  
.       

For example, if  , then  appears both in  and in , and 
      (area constraints). 

These constraints lead to: consistent lengths; a non-locality (involving 
pairs of  simplices); and can be written in terms of  local  variables. 

Discrete area eigenvalues and the constraints lead to diophantine 
equations with few or no solutions when constraints are imposed strongly.  

Hence, we will impose constraints weakly, but as strongly as allowed by 
the uncertainly relations in order to get good dynamics.

𝒞i

σ 𝒞i (at, pτ
e) at

𝒞i = pτ
ei

− Pτ,σ
ei

(a) != 0

τ ⊂ σ ∩ σ′ pτ
ei

σ σ′ 

Pτ,σ
ei

(a) − Pτ,σ′ 
ei

(a) != 0

pτ
ei
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More Details on Implementing the Constraints
In an LQG quantization, the two angle d.o.f.  are intertwiners 
   ▲ There is an SU(2) coherent state construction for the intertwiner space 

   ▲ the coherent states  are peaked on the  ‘angle’ parameters 

Gluing two simplifies  and  along a shared tetrahedron  

   ▲ amounts to integrating two coherent states over  and gives the inner product 

  

   ▲ gives a function peaked on the constraints  

For Effective Spin Foams, we will approximate  with a gaussian function 

, 

Here  is the deviation determined by the commutation relations .

pτ
ei

𝒦τ( . , Pτ,σ
ei

(a)) Pτ,σ
ei

(a)

σ σ′ τ

τ

Gσ,σ′ 
τ (a) ≡ ⟨𝒦τ( . , Pτ,σ

i (a)) |𝒦τ( . , Pτ,σ′ 
i (a))⟩

𝒞i = Pτ,σ
ei

(a) − Pτ,σ′ 
ei

(a)

Gσ,σ′ 
τ

Gσ,σ′ 
τ (a) = 𝒩 exp (−

𝒞2
1 + 𝒞2

2

4Σ2 )
Σ2 Σ2 = ℓ2

P γ(9/2)Vol2τ
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Weak Constraints
It will be useful to zoom out and consider a simple toy model with 
weak constraints. This will give a sense of  their general behavior: 

Consider the oscillatory integral  

. 

We impose a constraint  in both a strong & a weak manner and 
compute expectation values for  using 

 

with  and . 

∫ ∫ eiλS(x,y)e−μ𝒞(x,y)2dxdy

𝒞
𝒪 = e−x2

⟨𝒪⟩μ =
∫ ∞

−∞
∫ ∞

−∞
exp (iλ(x2 + y2)) exp (−μ(y − x + 2)2) exp (−x2) dydx

∫ ∞
−∞

∫ ∞
−∞

exp (iλ(x2 + y2)) exp (−μ(y − x + 2)2) dydx

S = x2 + y2 𝒞 = y − (x − 2)
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Weak Constraints
Take the oscillatory integral  

      , 

with  and .  
The constrained action  has a critical point at 

, and hence the classical expectation value is 
 Compare

∫ ∫ eiλS(x,y)e−μ𝒞(x,y)2dxdy

S = x2 + y2 𝒞 = y − (x − 2)

S = x2 + (x − 2)2

(x, y) = (1, − 1)
⟨𝒪⟩Cl = e−1 ≈ 0.368.

x
y

S
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Why does the expectation value escape at large ? 

There is an interplay between the integrand’s oscillations and the 
gaussian constraints:

λ

λ = 5
λ = 15

G
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Weak Constraints
We can also investigate truncating the bounds 

⟨𝒪⟩μ =
∫ X

−X
∫ X

−X
exp (iλ(x2 + y2)) exp (−μ(y − x + 2)2) exp (−x2) dydx

∫ X
−X

∫ X
−X

exp (iλ(x2 + y2)) exp (−μ(y − x + 2)2) dydx
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Semiclassical Regime

The # of  oscillations of  the phase factor occurring over the width 
of  the Gaussian (near const. crit. pt.) should be less than a 
number of  order 1. 

We turn this into a 1D problem by considering the direction of  
the steepest change of  the constraint and require 

. 

Plugging in these factors for the Effective Spin Foam models gives 

. 

This formula is the key to understanding the ‘flatness problem’: 
the semiclassical regime is not just !

⃗c = ⃗∇ C/ | ⃗∇ C |

λ × ( ⃗∇ S ⋅ ⃗c ) const. crit. pt.
× σ( ⃗c ) ≲ 𝒪(1)

γat

ℓP
ϵt = γ jϵt ≲ 𝒪(1)

j ≫ 1

gaussian width in  direction⃗c
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Numerical Results

I will present results for the following triangulation 



Symmetry reduced numerical triangulation: 
 consists of  6 simplices around one edgeΔ

We apply a certain symmetry reduction, so that there are only       
3 bndry and 3 bulk areas (4 bndry lengths and 1 bulk length).   

There are 3 simplices of  type 1 and three simplices of  type 2. In 
each type, all simplices have the same geometry. 

The path integral involves 1 bulk variable in LRC and 3 area 
variables in (constrained) ARC. However, making use of  the fall 
off  of  the  functions, we can significantly reduce the summation 
range and gain time savings in the numerics.

G



Symmetry reduced numerical triangulation: 
 consists of  6 simplices around one edgeΔ

For completeness, here is the definition of  this : Δ

vertices: m,n=0,1;   i,j=2,3,4 k=5,5’
simplices: (0,1,2,3,5) (01,2,3,5’)

(0,1,2,4,5) (0,1,2,4,5’)
(0,1,3,4,5) (0,1,3,4,5’)

lengths:            blk            blk 

areas:
             blk              blk

             blk                blk

l01 = t l01 = t

lmi = lik ≡ x lmi = lik ≡ x

lij ≡ y lij ≡ y

lm5 ≡ z lm5′ ≡ z′ 

A(x, x, y) A(x, x, y)

A(x, x, t) A(x, x, t)

A(x, x, z) A(x, x, z′ )

A(z, z, t) A(z′ , z′ , t)



This model illustrates that spin foams can avoid the flatness 
problem in a range of  spin  and Barbero-Immirzi parameter j γ

γ

blue  
orange  
green

= Δ1

= Δ2

= Δ3

LRC value 
ϵ (A(x, x, t)) = 3.22

ℜ[ϵ (A(x, x, t))]

E.g. at , for  we have  
     ,    , and 

γ = 0.1 Δ3

ϵ(A(x, x, t)) = 3.19 − 0.20i ϵ(A(z, z, t)) = − 1.32 + 0.18i

ϵ(A(z′ , z′ , t)) = − 0.59 + 0.07i

Compare the LRC 
values:

 
 

and 

ϵ(A(x, x, t)) = 3.22

ϵ(A(z, z, t)) = − 1.36

ϵ(A(z′ , z′ , t)) = − 0.607



Effective Spin Foam models

 is the measure term. We anticipate that this can be fixed by demanding invariance under 
coarse graining or implementing an approximate version of diffeomorphism invariance
μ(a)

 is the area Regge action and determines the oscillatory part of the partition functionSARC(a)

 implements the generalized triangle inequalities for a 4-simplexΘtr
σ(a)

 implements the constraints between the areas weakly via a GaussianGσ,σ′ 
τ (a)

ESF can be used to study many features of quantum gravity, such as sum over orientations, 
causal structures, topology change, etc. 

The structure of  an effective spin foam can be decomposed into four 
parts. These models are discrete path integrals for a fixed 
triangulation  with Δ

𝒵ESF = ∑
{at}

μ(a) exp ( i
ℏ

SARC(a))∏
σ

Θtr
σ(a) ∏

τ

Gσ,σ′ 
τ (a)
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Thank you!
My son, Milo, doing 

 calculations in 2013…

…and studying 
Jimmy in 2022
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