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Plan:

•Lecture 1. Supergravity and String Theory

•Lecture 2. AdS/CFT and its nontrivial tests

•Lecture 3. Gauge/gravity dualities, the pp wave correspondence

and spin chains

•Lecture 4. Holographic Cosmology
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Lecture 1

Supergravity and String Theory
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.

•A natural evolution: special relativity → general relativity →
supergravity → string theory → ?

•We are still missing a nonperturbative (fundamental) version of

quantum gravity, that is self-consistent, and predicts a complete

set of observables, that we can test.

•M-theory: a set of recipes for various corners in parameters

space, not yet a general definition.

•But, use string theory, alternatively, as a duality : AdS/CFT:

classical strings (supergravity) for nonperturbative gauge the-

ory. But, also hints of: perturbative gauge theory for non-

perturbative strings: quantum gravity.

•Phenomenologically defined AdS/CFT applied to cosmology:

holographic cosmology: strongly coupled (nonperturbative) quan-

tum gravity.
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a) b)

c) d)
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Einstein’s theory of general relativity:

• A1: Gravity is geometry: matter follows geodesic in curved

space, and to us it appears as gravity.

• A2: Matter sources gravity: matter curves space ⇒ Princ.:

•1.Physics is invariant under general coordinate transformations:

x′i = x′i(xj) ⇒ ds2 = gij(x)dx
idxj = g′ij(x

′)dx′idx′j

•2.Equivalence principle: there is no difference between accel-

eration and gravity

mi = mg,where !F = mi!a(Newton) !Fg = mg!g(gravity)

•Dynamics of gravity: Einstein’s eqs.
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•Define: inverse metric gµν = g−1
µν , and then Christoffel symbol:

Γµ
νρ =

1

2
gµσ(∂ρgνσ + ∂νgσρ − ∂σgνρ) ,

from Dµgνρ = ∂µgνρ−Γσµνgσρ−Γσµρgνσ = 0, and Riemann tensor

Rµ
νρσ(Γ) = ∂ρΓ

µ
νσ − ∂σΓ

µ
νρ+ Γµ

λρΓ
λ
νσ − Γµ

λσΓ
λ
νρ

•Γµ
νρ ∼ gauge field of gravity. Rµ

νρσ ∼field strength. Indeed,

analogous to field strength of SO(d− 1,1) gauge group,

FA
µν = ∂µA

A
ν − ∂νA

A
µ + fABC(A

B
µAC

ν −AB
ν A

C
µ ),

•Then Rµ
νρσ → tensor, as are Rµν = Rλµλν, R = Rµνgµν. R is

coordinate invariant → true measure of curvature of space.

•The simplest choice for action for gravity is correct (compatible

with experiment): integral of scalar with invariant measure

Sgravity:E−H =
1

16πGN

∫

ddx
√

−det(gµν)R
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⇒ Einstein’s equation

8πG
[

δSgravity√
−gδgµν

+
δSmatter√
−gδgµν

]

= 0 ⇒ Rµν −
1

2
gµνR = 8πGNTµν

•With 1/(16πGN) = M2
Pl/2, and [R] = 2, usual QFT logic of

constructing actions: in increasing mass dimension. R=the first

after 1, gives equation gµν = 0. Next term is ∼ [R2] = 4 but,

since maximum observed radius is 10km ∼ [10−10eV ]−1,

R

M2
Pl

∼
1

([10km]MPl)
2
∼ [10−29]2.

•Yet R× (R/M2
Pl) = R× (8πGNR) appears in Quantum Gravity

and String Theory effective actions: allowed by general relativity!

Only unobservable.

•How? Loop (and string α′) effects.
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•Perturbation in κN =
√
8πGN for variations in gµν : ηµν+2κNhµν.

•The Einstein-Hilbert action becomes the Fierz-Pauli action

SE−H ( SF−P =
∫

d4x
[

−
1

2
(∂µhνρ)

2 + h2µ − hµ∂µh+
1

2
(∂µh)

2
]

.

•In de Donder gauge (∂µ(hµν− ηµνh/2) = 0), just a KG action:

SF−P,de D =
∫

d4x
[

−
1

2
(∂µh̄νρ)

2 +
1

4
(∂µh)

2
]

.

•Consider also vertices by expanding SE−H to higher orders,
e.g. O(κNh3) ⇒ gravity (+matter) is one-loop nonrenor-
malizable! [κN ] = −1 < 0, so effective coupling is (κNE) → ∞
as E → ∞.
•Fundamental problem?: not really, one just needs to add more
and more terms to the action, e.g. 1

M2R
2, 1

M4R
3, etc., at increas-

ing loop order, and renormalize at each loop order.
•But suggests more fundamental (perturbative) Quantum Grav-
ity might exist: renormalizable? finite? : supergravity? string
theory? First attempt: supergravity: cancelation of some loop
divergences between bosons and fermions. Then, string theory:
α′ ∼ 1

M2. All 1
M2nR

n+1 terms from the start.
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Vielbein-spin connection formulation of GR: 1st vs. 2nd
order

•Any space is locally flat: tangent space: Lorentz invariance that
is local (at any point).

•Vielbein eaµ: ”square root” of metric, making local Lorentz
invariance manifest:

gµν(x) = eaµ(x)e
b
ν(x)ηab

→ eaµ → Λa
be

b
µ.

•Covariant derivative acting on tensors (bosons): with Γµ
νρ

DµT
ρ
ν ≡ ∂µT

ρ
ν + ΓρµσT

σ
ν − ΓσµνT

ρ
σ

•Covariant derivative acting on spinors (fermions): with spin
connection ωab

µ , multiplying the generator of the Lorentz group
in the spinor representation, 1

4Γab,

DµΨ = ∂µΨ+
1

4
ωab
µ ΓabΨ
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•Second order formulation: ωab
µ = ωab

µ (e) satisfies ”vielbein pos-

tulate”, or ”no torsion constraint” (Ta
µν=torsion),

Ta
[µν] = D[µe

a
ν] = ∂[µe

a
ν] + ωab

[µe
b
ν] = 0

(if there are no fundamental fermions; if there are, there are

extra terms). Equivalently,

Dµe
a
ν ≡ ∂µe

a
ν + ωab

µ ebν − Γρµνe
a
ρ = 0

•The solution is

ωab
µ (e) =

1

2
eaν(∂µe

b
ν − ∂νe

b
µ)−

1

2
ebν(∂µe

a
ν − ∂νe

a
µ)−

1

2
eaρebσ(∂ρecσ − ∂σecρ)e

c
µ .

•Define the field strength of ωab
µ (=SO(1, d− 1) gauge field)

Rab
µν(ω) = ∂µω

ab
ν − ∂νω

ab
µ + ωab

µ ω
bc
ν − ωab

ν ω
bc
µ .
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•Then we have

Rab
ρσ(ω(e)) = eaµe

−1,νbRµ
νρσ(Γ(e)) , R = Rab

µνe
−1 µ
a e−1 ν

b

so that the Einstein-Hilbert action in second order formulation
(ω = ω(e)) is

SEH =
1

16πGN

∫

ddx(det e)Rab
µν(ω(e))e

−1,µ
a e−1,ν

b .

•But then: first order formulation: ωab
µ = independent variable

in the same action, rewritten as

SEH =
1

16πGN

1

4

∫

d4xεµνρσεabcdR
ab
µν(ω)e

c
ρe

d
σ

=
1

16πGN

∫

εabcdR
ab(ω) ∧ ec ∧ ed

•Then the ωab
µ equation of motion is

Ta
[µν] ≡ 2D[µe

a
ν] = 0

so solving it, we are back at the second order formulation.
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Supersymmetry

•Bose-fermi symmetry. e.g. 2d: 1 Majorana spinor Ψ + 1 real
scalar φ. On-shell supersymmetry: 1 bose degree of freedom,
1 fermi d.o.f.

S = −
1

2

∫

d2x[(∂µφ)
2 + Ψ̄∂/Ψ]

•Dimensions: [φ] = 0, [Ψ] = 1/2. Fermi-bose ⇒ start as

δφ = ε̄Ψ ⇒ [ε] = −1/2 ⇒
δΨ = ∂/φε

•Action is on-shell invariant.

•Off-shell supersymmetry: Ψ has 2 d.o.f. ⇒ need to add 1
auxiliary field

S = −
1

2

∫

d2x[(∂µφ)
2 + Ψ̄∂/Ψ− F2]

δF = ε̄∂/Ψ; δΨ = ∂/φε+ F ε; δφ = ε̄Ψ

•Also algebra must be satisfied off-shell (without e.o.m.)
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Supergravity

•Supergravity = supersymmetric theory of gravity, OR: theory

of local supersymmetry.

•Local supersymmetry ⇒ εα(x) ⇒ ∃ ”gauge field of supersym-

metry”, ”Aαµ(x)” → gravitino Ψµα(x): supersymmetric partner

of eaµ(x).

•N = 1 supergravity in 4d: {eaµ,Ψµα}. Supersymmetry laws:

δeaµ =
κN
2
ε̄γaΨµ

δΨµ =
1

κN
Dµε; Dµε = ∂µε+

1

4
ωab
µ γabε

•Action:

S = SE−H(ω, e) + SRS(Ψµ)

=
1

16πG

∫

ddx(det e)Rab
µν(ω)e

−1µ
a e−1ν

b −
1

2

∫

ddx(det e)Ψ̄µγ
µνρDνΨρ
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•Second order formalism: eaµ,ψµα indep., ωab
µ dependent. How-

ever, ∃ dynamical fermions, so ωab
µ = ωab

µ (e)+ψψ terms, obtained

by varying action with respect to ωab
µ (as in first order formalism)

⇒ ωab
µ (e,ψ).

•First order formalism: eaµ,ψµα,ωab
µ independent.

•In 4d, maximal susy (for multiplets of spins ≤ 2) is N = 8. It

has graviton eaµ, 8 gravitini ψi
µα, 28 vectors AIJ

µ , 56 fermions χαijk
and 35 scalars forming a matrix ν.

•It is the dimensional reduction of an N = 1 supergravity multi-

plet in 11 dimensions, with graviton eaµ, gravitino ψµα and 3-index

antisymmetric tensor Aµνρ.

•11d=maximal supergravity, best candidate for a fundamental

supergravity. But: potentially non-renormalizable at 7-loops (∃
new super-invariant that one can write at 7-loop order). So no

good. Something else? String theory: finite at each loop!!!
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String theory

•Nambu-Goto action for bosonic string = area of ”worldsheet”

spanned by string × string tension. Generalization of particle

action: area of worldsheet. Xµ(σ, τ)= coordinates in spacetime.

ξa = (σ, τ) = intrinsic coordinates on worldsheet.

SNG = −
1

2πα′

∫

dσdτ
√

det(hab)

where hab =metric induced on worldsheet (pullback)

ds2ind = dxµdxνgµν(X) = dξµdξνhab(ξ) ⇒
hab(σ, τ) = ∂aX

µ∂bX
νgµν(X)

•Is worldsheet diffeomorphism (gen. coord., or reparametriza-

tion) invariant.

•(Quantum) parameters: α′, [α′] = −2, so α′ ∝ GN , and string

coupling gs (VEV, not parameter).
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•First order form: again introduce auxiliary field = independent

worldsheet metric.

•⇒ Polyakov action. In flat spacetime,

SP [X, γ] = −
1

4πα′

∫

dσdτ
√
−γγab∂aXµ∂bX

νηµν

•Symmetries:

-Spacetime Poincare invariance

-Worldsheet diffeomorphism invariance: X ′µ(σ′, τ ′) = Xµ(σ, τ)

-Worldsheet Weyl invariance: γ′ab = e2ω(σ,τ)γab

•Use them to fix conformal (unit) gauge: γαβ = ηαβ.
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•Action becomes

S = −
T

2

∫

d2σηαβ∂αX
µ∂βX

νηµν

→ action for free massless scalars in 2d: conformally invariant

(conf. inv. = residual gauge invariance: dependence on σ + τ

only), with equations of motion

!Xµ =
(

∂2

∂σ2
−
∂2

∂τ2

)

Xµ = 0 ⇒ Xµ(σ, τ) = Xµ
R(σ− τ)+Xµ

L(σ+ τ)

•Boundary term: gives string types:

−
1

2πα′

∫

dτ
√
−γδXµ∂σXµ

∣

∣

∣

∣

σ=l

σ=0
= 0 ⇒

•Closed strings (periodic): Xµ(τ, l) = Xµ(τ,0); γab(τ, l) =

γab(τ,0).

•Neumann open strings (free endpoints, v = c): ∂σXµ(τ,0) =

∂σXµ(τ, l).

•Dirichlet open strings (fixed endpoints): δXµ(τ,0) = δXµ(τ, l) =

0.
18
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•(Virasoro) Constraints: equations of motion of γab (fixed to
unit) ≡ Tab = 0

Tab = −
1

4π

1
√
−γ

δSP

δγab

∣

∣

∣

∣

γab=ηab

=
1

α′

(

∂aX
µ∂bXµ −

1

2
ηab∂cX

µ∂cXµ

)

⇒

α′T01 = α′T10 = Ẋ ·X ′ , α′T00 = α′T11 =
1

2
(Ẋ2 +X ′2).

•Closed strings: expand Xµ
R(τ − σ) and Xµ

L(τ + σ) in Fourier

modes αµn, α̃
µ
n,

Xµ(σ, τ) = xµ + α′pµτ + i

√
2α′

2

∑

n/=0

1

n

[

αµ
ne

−in(τ−σ) + α̃µ
ne

−in(τ+σ)
]

.

•Neumann open strings: identify αµn = α̃µn.
•Fourier modes Lm, L̄m of constraints T−−, T++ are Lm, L̄m, for
closed strings

Lm =
1

2

+∞
∑

n=−∞
αµ
m−nα

µ
n , L̄m =

1

2

+∞
∑

n=−∞
α̃µ
m−nα̃

µ
n.

and H = L0+L̄0 = 0 (closed) or H = L0 (open) give (classically)

M2
closed ≡ −pµp

µ =
2

α′

∑

n≥1

(αµ
−nα

µ
n+α̃

µ
−nα̃

µ
n) , M2

open ≡ −pµp
µ = −

α2
0

2α′ =
1

α′

∑

n≥1

αµ
−nα

µ
n
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•What does the string action represent? Particle action: is first
quantized: Need to also define vertices and propagators. String
action: defines the propagator; vertex is unique!!

•Quantization: αµ−n, α̃
µ
−n: creation operators. More precisely,

αµm =
√
maµm, αµ−m =

√
ma†µm for m > 0.

•But ∃ gauge inv.: easiest in light-cone gauge. X± auxiliary, Xi

physical. Then H = p− and the open string mass spectrum is

M2 ≡ 2p+p− − pipi =
1

α′(N − a) , N =
∑

n≥1

αi
−nα

i
n =

∑

n≥1

na†in a
i
n ,

where

a = −
D−2
∑

i=1

∑

n≥1

n

2
= −

D − 2

2

∑

n≥1

n =
D − 2

24
= 1 ⇒ D = 26.

•Bosonic closed string spectrum is similar, but with N and N̄ ,

∼ ai1n1...a
ik
nkã

ĩ1
m1...α̃

ĩj
mj |0〉 ,

with the constraint P = L0 − L̄0 = 0, so N = N̄ . Spectrum
→ different fields ⇒ String theory = field theory of infinite
number of different kinds of fields.
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•Massless fields: Aµν = αµ−1α̃
ν
−1|0 >= {A((µν)) = gµν, A[µν] =

Bµν,φ = Aµµ} → spacetime fields.

•Thus: metric gµν is among quantum modes of the string ⇒
String theory is a theory of quantum gravity!

•Massless fields create a spacetime background for string

•Superstring: Supersymmetric string. In Green-Schwarz for-

mulation, spacetime susy + ”κ symmetry”. (Fix a gauge for κ

symmetry ⇒ worldsheet susy). Introduce θA = spacetime spinors

and worldsheet scalars. Replace ∂aXµ with spacetime susy in-

variant

Πµ
a = ∂aX

µ − iθ̄AΓµ∂aθ
A

invariant under

δXµ = −ε̄AΓµ∂aθ
A, δθA = εA
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S = − 1

4πα′

∫

dτdσ
√
−γγabΠµ

aΠ
ν
bgµν +

∫

dτdσεabΠM
a ΠN

b BMN

•flat space:

B ≡ εabΠM
a ΠN

b BMN = −idXµ ∧ (θ̄1Γµdθ
2 − θ̄2Γµdθ

1) + θ̄1Γµdθ1 ∧ θ̄2Γµdθ
2

•Kappa symmetry,

δκθ
A = −2ΓµΠ

µ
aκ

Aa , δκX
µ = −θ̄AΓµδθA , ...

is fixed by the condition (together with lightcone gauge for
bosons)

Γ+θ1 = Γ+θ2 = 0 , Γ± = (Γ0 ± Γ9)/
√
2

and θAα are regrouped as 2-comp. Majorana worldsheet spinors
Sm, m spinor of SO(8) (now, d = 10, so SO(8)=little group),

Slc = −
1

4πα′

∫

d2σ
[

∂aX
i∂aXi +2α′S̄mγa∂aS

m
]

.

•Supersymmetry means tachyons (and other states) are
out of the spectrum. Vacuum: massless states Aµν = {gµν, Bµν,φ}+
others
•No divergences at any loop: Feynman diagrams involve world-
sheets: no point singularities: interactions spread out over sheet
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•T-duality of closed and open strings: symmetry of string
perturbation theory on compact spaces.
•For a string winding m times around X25, bound. cond.

X25(τ, σ+2π) = X25(τ,σ) + 2πα′w.
•The classical solution is

X25(τ,σ) = XL +XR = x0 + α′pτ + α′wσ+ i

√

α′

2

∑

n/=0

e−inτ

n
(αne

inσ + α̃ne
−inσ) ,

where p = n/R and w = mR/α′. The constraint is now L0−L̃0 =
α′pw +N⊥ − Ñ⊥ and gives the spectrum

M2
compact = p2 + w2 +

2

α′
(N⊥ + Ñ⊥ − 2)

=
(

n

R

)2
+

(

mR

α′

)2
+

2

α′
(N⊥ + Ñ⊥ − 2).

•We observe the T-duality symmetry of the spectrum

M2(R;n,m) = M2(R̃;m,n).

extended to

x0 ↔ q0; p ↔ w; αn ↔ −αn; α̃n ↔ α̃n ,
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•This T-duality exchanges then:

X25(τ, σ)XL(τ+σ)+XR(τ−σ) ↔ X ′25(τ,σ) = XL(τ+σ)−XR(τ−σ)
•T-duality of open strings: Do the same exchange for the

open string solution. Obtain

X ′25(τ,σ) = X25
L (τ + σ)−X25

R (τ − σ) = q250 +
√

2α′α25
0 σ+

√

2α′
∑

n/=0

α25
n

n
e−inτ sinnσ ,

α25
0 =

1√
2α′

x25
2 − x25

1

π
.

•But then the boundary condition changes from Neumann to

Dirichlet and vice versa,

∂αX
25 = εαβ∂βX

′25.
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•Reminder: Vary Polyakov action ⇒ equations of motion, and
boundary term

δSP,bd. = −
1

2πα′

∫

dτ
√
−γδXµ∂σXµ|σ=πσ=0 ⇒

•Neumann boundary condition: ∂σXµ = 0|σ=0,π ⇒ endpoints of
string move at the speed of light: usual.

•Dirichlet boundary condition: δXµ = 0|σ=0,π. ⇒ Xµ = constant
at σ = 0, π. → endpoints fixed.

•We can have Neumann for p + 1 coordinates and Dirichlet for
D − p− 1 ⇒ ”Dp-brane”.

•Spacetime fields can excite coordinates Xµ transverse to the
Dp-brane (Dirichlet directions) → fluctuations ⇒ this is Dp-brane
is a dynamical object.
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a) b)

a) Open string between two D-p-branes (p + 1 dimensional ”walls”). b)The

endpoints of the open string are labelled by the D-brane they end on (out of

N D-branes), here |i〉 and |j〉.

a) b)

a) Closed string colliding with a D-brane, exciting an open string mode and

making it vibrate b) String worldsheet corresponding to it, with a closed

string tube coming from infinity and ending on the D-brane as an open string

boundary. Allows us to calculate the D-brane action and couplings.
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