AdS/CFT and Quantum Gravity

Horatiu Nastase
IFT-UNESP

Lectures in the
Basics of Quantum Gravity series ISQG, September-October 2023

Plan:

- Lecture 1. Supergravity and String Theory
-Lecture 2. AdS/CFT and its nontrivial tests
- Lecture 3. Gauge/gravity dualities, the pp wave correspondence and spin chains
-Lecture 4. Holographic Cosmology

Lecture 1

Supergravity and String Theory
-A natural evolution: special relativity \rightarrow general relativity \rightarrow supergravity \rightarrow string theory \rightarrow ?

- We are still missing a nonperturbative (fundamental) version of quantum gravity, that is self-consistent, and predicts a complete set of observables, that we can test.
- M-theory: a set of recipes for various corners in parameters space, not yet a general definition.
- But, use string theory, alternatively, as a duality: AdS/CFT: classical strings (supergravity) for nonperturbative gauge theory. But, also hints of: perturbative gauge theory for nonperturbative strings: quantum gravity.
-Phenomenologically defined AdS/CFT applied to cosmology: holographic cosmology: strongly coupled (nonperturbative) quantum gravity.

Einstein's theory of general relativity:

- A1: Gravity is geometry: matter follows geodesic in curved space, and to us it appears as gravity.
- A2: Matter sources gravity: matter curves space \Rightarrow Princ.:
-1.Physics is invariant under general coordinate transformations:

$$
x_{i}^{\prime}=x_{i}^{\prime}\left(x_{j}\right) \Rightarrow d s^{2}=g_{i j}(x) d x^{i} d x^{j}=g_{i j}^{\prime}\left(x^{\prime}\right) d x^{\prime i} d x^{\prime j}
$$

$\bullet 2$.Equivalence principle: there is no difference between acceleration and gravity

$$
m_{i}=m_{g}, \text { where } \vec{F}=m_{i} \vec{a}(\text { Newton }) \quad \vec{F}_{g}=m_{g} \vec{g}(\text { gravity })
$$

-Dynamics of gravity: Einstein's eqs.
-Define: inverse metric $g^{\mu \nu}=g_{\mu \nu}^{-1}$, and then Christoffel symbol:

$$
\Gamma^{\mu}{ }_{\nu \rho}=\frac{1}{2} g^{\mu \sigma}\left(\partial_{\rho} g_{\nu \sigma}+\partial_{\nu} g_{\sigma \rho}-\partial_{\sigma} g_{\nu \rho}\right),
$$

from $D_{\mu} g_{\nu \rho}=\partial_{\mu} g_{\nu \rho}-\Gamma^{\sigma}{ }_{\mu \nu} g_{\sigma \rho}-\Gamma^{\sigma}{ }_{\mu \rho} g_{\nu \sigma}=0$, and Riemann tensor

$$
R_{\nu \rho \sigma}^{\mu}(\Gamma)=\partial_{\rho} \Gamma^{\mu}{ }_{\nu \sigma}-\partial_{\sigma} \Gamma^{\mu}{ }_{\nu \rho}+\Gamma^{\mu}{ }_{\lambda \rho} \Gamma^{\lambda}{ }_{\nu \sigma}-\Gamma^{\mu}{ }_{\lambda \sigma} \Gamma^{\lambda}{ }_{\nu \rho}
$$

$\bullet \Gamma_{\nu \rho}^{\mu} \sim$ gauge field of gravity. $R^{\mu}{ }_{\nu \rho \sigma} \sim$ field strength. Indeed, analogous to field strength of $S O(d-1,1)$ gauge group,

$$
F_{\mu \nu}^{A}=\partial_{\mu} A_{\nu}^{A}-\partial_{\nu} A_{\mu}^{A}+f_{B C}^{A}\left(A_{\mu}^{B} A_{\nu}^{C}-A_{\nu}^{B} A_{\mu}^{C}\right)
$$

-Then $R^{\mu}{ }_{\nu \rho \sigma} \rightarrow$ tensor, as are $R_{\mu \nu}=R_{\mu \lambda \nu}^{\lambda}, R=R_{\mu \nu} g^{\mu \nu} . R$ is coordinate invariant \rightarrow true measure of curvature of space.
-The simplest choice for action for gravity is correct (compatible with experiment): integral of scalar with invariant measure

$$
S_{\text {gravity:E-H }}=\frac{1}{16 \pi G_{N}} \int d^{d} x \sqrt{-\operatorname{det}\left(g_{\mu \nu}\right)} R
$$

\Rightarrow Einstein's equation

$$
8 \pi G\left[\frac{\delta S_{\text {gravity }}}{\sqrt{-g} \delta g^{\mu \nu}}+\frac{\delta S_{\text {matter }}}{\sqrt{-g} \delta g^{\mu \nu}}\right]=0 \Rightarrow R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R=8 \pi G_{N} T_{\mu \nu}
$$

\bullet With $1 /\left(16 \pi G_{N}\right)=M_{\mathrm{PI}}^{2} / 2$, and $[R]=2$, usual QFT logic of constructing actions: in increasing mass dimension. $R=$ the first after 1 , gives equation $g_{\mu \nu}=0$. Next term is $\sim\left[R^{2}\right]=4$ but, since maximum observed radius is $10 \mathrm{~km} \sim\left[10^{-10} \mathrm{eV}\right]^{-1}$,

$$
\frac{R}{M_{\mathrm{PI}}^{2}} \sim \frac{1}{\left([10 k m] M_{\mathrm{PI}}\right)^{2}} \sim\left[10^{-29}\right]^{2}
$$

- Yet $R \times\left(R / M_{\mathrm{PI}}^{2}\right)=R \times\left(8 \pi G_{N} R\right)$ appears in Quantum Gravity and String Theory effective actions: allowed by general relativity! Only unobservable.
\bullet How? Loop (and string α^{\prime}) effects.
-Perturbation in $\kappa_{N}=\sqrt{8 \pi G_{N}}$ for variations in $g_{\mu \nu}: \eta_{\mu \nu}+2 \kappa_{N} h_{\mu \nu}$.
-The Einstein-Hilbert action becomes the Fierz-Pauli action

$$
S_{\mathrm{E}-\mathrm{H}} \simeq S_{\mathrm{F}-\mathrm{P}}=\int d^{4} x\left[-\frac{1}{2}\left(\partial_{\mu} h_{\nu \rho}\right)^{2}+h_{\mu}^{2}-h^{\mu} \partial_{\mu} h+\frac{1}{2}\left(\partial_{\mu} h\right)^{2}\right] .
$$

\bullet In de Donder gauge ($\left.\partial^{\mu}\left(h_{\mu \nu}-\eta_{\mu \nu} h / 2\right)=0\right)$, just a KG action:

$$
S_{\text {F-P,de D }}=\int d^{4} x\left[-\frac{1}{2}\left(\partial_{\mu} \bar{h}_{\nu \rho}\right)^{2}+\frac{1}{4}\left(\partial_{\mu} h\right)^{2}\right] .
$$

- Consider also vertices by expanding $S_{\mathrm{E}-\mathrm{H}}$ to higher orders, e.g. $\mathcal{O}\left(\kappa_{N} h^{3}\right) \Rightarrow$ gravity (+matter) is one-loop nonrenormalizable! $\left[\kappa_{N}\right]=-1<0$, so effective coupling is $\left(\kappa_{N} E\right) \rightarrow \infty$ as $E \rightarrow \infty$.
-Fundamental problem?: not really, one just needs to add more and more terms to the action, e.g. $\frac{1}{M^{2}} R^{2}, \frac{1}{M^{4}} R^{3}$, etc., at increasing loop order, and renormalize at each loop order.
- But suggests more fundamental (perturbative) Quantum Gravity might exist: renormalizable? finite? : supergravity? string theory? First attempt: supergravity: cancelation of some loop divergences between bosons and fermions. Then, string theory: $\alpha^{\prime} \sim \frac{1}{M^{2}}$. All $\frac{1}{M^{2 n}} R^{n+1}$ terms from the start.

Vielbein-spin connection formulation of GR: 1st vs. 2nd order
-Any space is locally flat: tangent space: Lorentz invariance that is local (at any point).

- Vielbein e_{μ}^{a} : "square root" of metric, making local Lorentz invariance manifest:

$$
g_{\mu \nu}(x)=e_{\mu}^{a}(x) e_{\nu}^{b}(x) \eta_{a b}
$$

$$
\rightarrow e_{\mu}^{a} \rightarrow \wedge^{a}{ }_{b} e_{\mu}^{b}
$$

- Covariant derivative acting on tensors (bosons): with $\Gamma^{\mu}{ }_{\nu \rho}$

$$
D_{\mu} T_{\nu}^{\rho} \equiv \partial_{\mu} T_{\nu}^{\rho}+\Gamma^{\rho}{ }_{\mu \sigma} T_{\nu}^{\sigma}-\Gamma^{\sigma}{ }_{\mu \nu} T_{\sigma}^{\rho}
$$

-Covariant derivative acting on spinors (fermions): with spin connection $\omega_{\mu}^{a b}$, multiplying the generator of the Lorentz group in the spinor representation, $\frac{1}{4} \Gamma_{a b}$,

$$
D_{\mu} \Psi=\partial_{\mu} \Psi+\frac{1}{4} \omega_{\mu}^{a b} \Gamma^{a b} \Psi
$$

- Second order formulation: $\omega_{\mu}^{a b}=\omega_{\mu}^{a b}(e)$ satisfies " vielbein postulate", or "no torsion constraint" ($T_{\mu \nu}^{a}=$ torsion $)$,

$$
T_{[\mu \nu]}^{a}=D_{[\mu} e_{\nu]}^{a}=\partial_{[\mu} e_{\nu]}^{a}+\omega_{[\mu}^{a b} e_{\nu]}^{b}=0
$$

(if there are no fundamental fermions; if there are, there are extra terms). Equivalently,

$$
D_{\mu} e_{\nu}^{a} \equiv \partial_{\mu} e_{\nu}^{a}+\omega_{\mu}^{a b} e_{\nu}^{b}-\Gamma^{\rho}{ }_{\mu \nu} e_{\rho}^{a}=0
$$

-The solution is

$$
\omega_{\mu}^{a b}(e)=\frac{1}{2} e^{a \nu}\left(\partial_{\mu} e_{\nu}^{b}-\partial_{\nu} e_{\mu}^{b}\right)-\frac{1}{2} e^{b \nu}\left(\partial_{\mu} e_{\nu}^{a}-\partial_{\nu} e_{\mu}^{a}\right)-\frac{1}{2} e^{a \rho} e^{b \sigma}\left(\partial_{\rho} e_{c \sigma}-\partial_{\sigma} e_{c \rho}\right) e_{\mu}^{c}
$$

- Define the field strength of $\omega_{\mu}^{a b}(=S O(1, d-1)$ gauge field)

$$
R_{\mu \nu}^{a b}(\omega)=\partial_{\mu} \omega_{\nu}^{a b}-\partial_{\nu} \omega_{\mu}^{a b}+\omega_{\mu}^{a b} \omega_{\nu}^{b c}-\omega_{\nu}^{a b} \omega_{\mu}^{b c}
$$

- Then we have

$$
R_{\rho \sigma}^{a b}(\omega(e))=e_{\mu}^{a} e^{-1, \nu b} R^{\mu}{ }_{\nu \rho \sigma}(\Gamma(e)), \quad R=R_{\mu \nu}^{a b} e_{a}^{-1 \mu} e_{b}^{-1 \nu}
$$

so that the Einstein-Hilbert action in second order formulation ($\omega=\omega(e)$) is

$$
S_{E H}=\frac{1}{16 \pi G_{N}} \int d^{d} x(\operatorname{det} e) R_{\mu \nu}^{a b}(\omega(e)) e_{a}^{-1, \mu} e_{b}^{-1, \nu}
$$

- But then: first order formulation: $\omega_{\mu}^{a b}=$ independent variable in the same action, rewritten as

$$
\begin{aligned}
S_{E H} & =\frac{1}{16 \pi G_{N}} \frac{1}{4} \int d^{4} x \epsilon^{\mu \nu \rho \sigma} \epsilon_{a b c d} R_{\mu \nu}^{a b}(\omega) e_{\rho}^{c} e_{\sigma}^{d} \\
& =\frac{1}{16 \pi G_{N}} \int \epsilon_{a b c d} R^{a b}(\omega) \wedge e^{c} \wedge e^{d}
\end{aligned}
$$

- Then the $\omega_{\mu}^{a b}$ equation of motion is

$$
T_{[\mu \nu]}^{a} \equiv 2 D_{[\mu} e_{\nu]}^{a}=0
$$

so solving it, we are back at the second order formulation.

Supersymmetry

-Bose-fermi symmetry. e.g. 2d: 1 Majorana spinor $\Psi+1$ real scalar ϕ. On-shell supersymmetry: 1 bose degree of freedom, 1 fermi d.o.f.

$$
S=-\frac{1}{2} \int d^{2} x\left[\left(\partial_{\mu} \phi\right)^{2}+\bar{\Psi} \not \partial \Psi\right]
$$

-Dimensions: $[\phi]=0,[\Psi]=1 / 2$. Fermi-bose \Rightarrow start as

$$
\begin{aligned}
& \delta \phi=\bar{\epsilon} \Psi \Rightarrow[\epsilon]=-1 / 2 \Rightarrow \\
& \delta \Psi=\not \partial \phi \epsilon
\end{aligned}
$$

- Action is on-shell invariant.
-Off-shell supersymmetry: ψ has 2 d.o.f. \Rightarrow need to add 1 auxiliary field

$$
\begin{aligned}
& S=-\frac{1}{2} \int d^{2} x\left[\left(\partial_{\mu} \phi\right)^{2}+\bar{\Psi} \not \partial \Psi-F^{2}\right] \\
& \delta F=\bar{\epsilon} \not \partial \Psi ; \quad \delta \Psi=\not \partial \phi \epsilon+F \epsilon ; \quad \delta \phi=\bar{\epsilon} \Psi
\end{aligned}
$$

-Also algebra must be satisfied off-shell (without e.o.m.)

Supergravity

-Supergravity $=$ supersymmetric theory of gravity, OR: theory of local supersymmetry.
-Local supersymmetry $\Rightarrow \epsilon^{\alpha}(x) \Rightarrow \exists$ "gauge field of supersymmetry", " $A_{\mu}^{\alpha}(x)$ " \rightarrow gravitino $\psi_{\mu \alpha}(x)$: supersymmetric partner of $e_{\mu}^{a}(x)$.
$\bullet \mathcal{N}=1$ supergravity in $4 \mathrm{~d}:\left\{e_{\mu}^{a}, \Psi_{\mu \alpha}\right\}$. Supersymmetry laws:

$$
\begin{aligned}
& \delta e_{\mu}^{a}=\frac{\kappa_{N}}{2} \bar{\epsilon} \gamma^{a} \Psi_{\mu} \\
& \delta \Psi_{\mu}=\frac{1}{\kappa_{N}} D_{\mu} \epsilon ; \quad D_{\mu} \epsilon=\partial_{\mu} \epsilon+\frac{1}{4} \omega_{\mu}^{a b} \gamma_{a b} \epsilon
\end{aligned}
$$

-Action:

$$
\begin{aligned}
S & =S_{E-H}(\omega, e)+S_{R S}\left(\Psi_{\mu}\right) \\
& =\frac{1}{16 \pi G} \int d^{d} x(\operatorname{det} e) R_{\mu \nu}^{a b}(\omega) e_{a}^{-1 \mu} e_{b}^{-1 \nu}-\frac{1}{2} \int d^{d} x(\operatorname{det} e) \bar{\Psi}_{\mu} \gamma^{\mu \nu \rho} D_{\nu} \Psi_{\rho}
\end{aligned}
$$

- Second order formalism: $e_{\mu}^{a}, \psi_{\mu \alpha}$ indep., $\omega_{\mu}^{a b}$ dependent. However, \exists dynamical fermions, so $\omega_{\mu}^{a b}=\omega_{\mu}^{a b}(e)+\psi \psi$ terms, obtained by varying action with respect to $\omega_{\mu}^{a b}$ (as in first order formalism) $\Rightarrow \omega_{\mu}^{a b}(e, \psi)$.
-First order formalism: $e_{\mu}^{a}, \psi_{\mu \alpha}, \omega_{\mu}^{a b}$ independent.
-In 4d, maximal susy (for multiplets of spins ≤ 2) is $\mathcal{N}=8$. It has graviton e_{μ}^{a}, 8 gravitini $\psi_{\mu \alpha}^{i}, 28$ vectors $A_{\mu}^{I J}, 56$ fermions $\chi_{i j k}^{\alpha}$ and 35 scalars forming a matrix ν.
-It is the dimensional reduction of an $\mathcal{N}=1$ supergravity multiplet in 11 dimensions, with graviton e_{μ}^{a}, gravitino $\psi_{\mu \alpha}$ and 3 -index antisymmetric tensor $A_{\mu \nu \rho}$.
-11d=maximal supergravity, best candidate for a fundamental supergravity. But: potentially non-renormalizable at 7-loops (\exists new super-invariant that one can write at 7-loop order). So no good. Something else? String theory: finite at each loop!!!

String theory

-Nambu-Goto action for bosonic string $=$ area of "worldsheet" spanned by string \times string tension. Generalization of particle action: area of worldsheet. $X^{\mu}(\sigma, \tau)=$ coordinates in spacetime. $\xi^{a}=(\sigma, \tau)=$ intrinsic coordinates on worldsheet.

$$
S_{N G}=-\frac{1}{2 \pi \alpha^{\prime}} \int d \sigma d \tau \sqrt{\operatorname{det}\left(h_{a b}\right)}
$$

where $h_{a b}=$ metric induced on worldsheet (pullback)

$$
\begin{aligned}
d s_{i n d}^{2} & =d x^{\mu} d x^{\nu} g_{\mu \nu}(X)=d \xi^{\mu} d \xi^{\nu} h_{a b}(\xi) \Rightarrow \\
h_{a b}(\sigma, \tau) & =\partial_{a} X^{\mu} \partial_{b} X^{\nu} g_{\mu \nu}(X)
\end{aligned}
$$

-Is worldsheet diffeomorphism (gen. coord., or reparametrization) invariant.
$\bullet\left(\right.$ Quantum) parameters: $\alpha^{\prime},\left[\alpha^{\prime}\right]=-2$, so $\alpha^{\prime} \propto G_{N}$, and string coupling g_{s} (VEV, not parameter).
-First order form: again introduce auxiliary field $=$ independent worldsheet metric.
$\bullet \Rightarrow$ Polyakov action. In flat spacetime,

$$
S_{P}[X, \gamma]=-\frac{1}{4 \pi \alpha^{\prime}} \int d \sigma d \tau \sqrt{-\gamma} \gamma^{a b} \partial_{a} X^{\mu} \partial_{b} X^{\nu} \eta_{\mu \nu}
$$

-Symmetries:
-Spacetime Poincare invariance
-Worldsheet diffeomorphism invariance: $X^{\mu}\left(\sigma^{\prime}, \tau^{\prime}\right)=X^{\mu}(\sigma, \tau)$
-Worldsheet Weyl invariance: $\gamma_{a b}^{\prime}=e^{2 \omega(\sigma, \tau)} \gamma_{a b}$

- Use them to fix conformal (unit) gauge: $\gamma_{\alpha \beta}=\eta_{\alpha \beta}$.
- Action becomes

$$
S=-\frac{T}{2} \int d^{2} \sigma \eta^{\alpha \beta} \partial_{\alpha} X^{\mu} \partial_{\beta} X^{\nu} \eta_{\mu \nu}
$$

\rightarrow action for free massless scalars in 2d: conformally invariant (conf. inv. = residual gauge invariance: dependence on $\sigma+\tau$ only), with equations of motion
$\square X^{\mu}=\left(\frac{\partial^{2}}{\partial \sigma^{2}}-\frac{\partial^{2}}{\partial \tau^{2}}\right) X^{\mu}=0 \Rightarrow X^{\mu}(\sigma, \tau)=X_{R}^{\mu}(\sigma-\tau)+X_{L}^{\mu}(\sigma+\tau)$
-Boundary term: gives string types:

$$
-\left.\frac{1}{2 \pi \alpha^{\prime}} \int d \tau \sqrt{-\gamma} \delta X^{\mu} \partial_{\sigma} X_{\mu}\right|_{\sigma=0} ^{\sigma=l}=0 \Rightarrow
$$

-Closed strings (periodic): $X^{\mu}(\tau, l)=X^{\mu}(\tau, 0) ; \quad \gamma_{a b}(\tau, l)=$ $\gamma_{a b}(\tau, 0)$.

- Neumann open strings (free endpoints, $v=c$): $\partial^{\sigma} X^{\mu}(\tau, 0)=$ $\partial^{\sigma} X^{\mu}(\tau, l)$.
-Dirichlet open strings (fixed endpoints): $\delta X^{\mu}(\tau, 0)=\delta X^{\mu}(\tau, l)=$ 0 .
-(Virasoro) Constraints: equations of motion of $\gamma_{a b}$ (fixed to unit) $\equiv T_{a b}=0$

$$
\begin{gathered}
T_{a b}=-\left.\frac{1}{4 \pi} \frac{1}{\sqrt{-\gamma}} \frac{\delta S_{P}}{\gamma^{a b}}\right|_{\gamma_{\omega \omega}=\eta_{a s}}=\frac{1}{\alpha^{\prime}}\left(\partial_{a} X^{\mu} \partial_{b} X_{\mu}-\frac{1}{2} \eta_{a b} \partial_{c} X^{\mu} \partial^{c} X_{\mu}\right) \Rightarrow \\
\alpha^{\prime} T_{01}=\alpha^{\prime} T_{10}=\dot{X} \cdot X^{\prime}, \quad \alpha^{\prime} T_{00}=\alpha^{\prime} T_{11}=\frac{1}{2}\left(\dot{X}^{2}+X^{\prime 2}\right) .
\end{gathered}
$$

- Closed strings: expand $X_{R}^{\mu}(\tau-\sigma)$ and $X_{L}^{\mu}(\tau+\sigma)$ in Fourier modes $\alpha_{n}^{\mu}, \tilde{\alpha}_{n}^{\mu}$,

$$
X^{\mu}(\sigma, \tau)=x^{\mu}+\alpha^{\prime} p^{\mu} \tau+i \frac{\sqrt{2 \alpha^{\prime}}}{2} \sum_{n \neq 0} \frac{1}{n}\left[\alpha_{n}^{\mu} e^{-i n(\tau-\sigma)}+\tilde{\alpha}_{n}^{\mu} e^{-i n(\tau+\sigma)}\right] .
$$

- Neumann open strings: identify $\alpha_{n}^{\mu}=\tilde{\alpha}_{n}^{\mu}$.
- Fourier modes L_{m}, \bar{L}_{m} of constraints T_{--}, T_{++}are L_{m}, \bar{L}_{m}, for closed strings

$$
L_{m}=\frac{1}{2} \sum_{n=-\infty}^{+\infty} \alpha_{m-n}^{\mu} \alpha_{n}^{\mu}, \quad \bar{L}_{m}=\frac{1}{2} \sum_{n=-\infty}^{+\infty} \tilde{\alpha}_{m-n}^{\mu} \tilde{\alpha}_{n}^{\mu} .
$$

and $H=L_{0}+\bar{L}_{0}=0$ (closed) or $H=L_{0}$ (open) give (classically)
$M_{\text {closed }}^{2} \equiv-p_{\mu} p^{\mu}=\frac{2}{\alpha^{\prime}} \sum_{n \geq 1}\left(\alpha_{-n}^{\mu} \alpha_{n}^{\mu}+\tilde{\alpha}_{-n}^{\mu} \tilde{\alpha}_{n}^{\mu}\right), \quad M_{\text {open }}^{2} \equiv-p_{\mu} p^{\mu}=-\frac{\alpha_{0}^{2}}{2 \alpha^{\prime}}=\frac{1}{\alpha^{\prime}} \sum_{n \geq 1} \alpha_{-n}^{\mu} \alpha_{n}^{\mu}$
-What does the string action represent? Particle action: is first quantized: Need to also define vertices and propagators. String action: defines the propagator; vertex is unique!!
-Quantization: $\alpha_{-n}^{\mu}, \tilde{\alpha}_{-n}^{\mu}$: creation operators. More precisely, $\alpha_{m}^{\mu}=\sqrt{m} a_{m}^{\mu}, \alpha_{-m}^{\mu}=\sqrt{m} a_{m}^{\dagger \mu}$ for $m>0$.
\bullet But \exists gauge inv.: easiest in light-cone gauge. $X^{ \pm}$auxiliary, X^{i} physical. Then $H=p^{-}$and the open string mass spectrum is

$$
M^{2} \equiv 2 p^{+} p^{-}-p^{i} p^{i}=\frac{1}{\alpha^{\prime}}(N-a), \quad N=\sum_{n \geq 1} \alpha_{-n}^{i} \alpha_{n}^{i}=\sum_{n \geq 1} n a_{n}^{\dagger i} a_{n}^{i},
$$

where

$$
a=-\sum_{i=1}^{D-2} \sum_{n \geq 1} \frac{n}{2}=-\frac{D-2}{2} \sum_{n \geq 1} n=\frac{D-2}{24}=1 \Rightarrow D=26 .
$$

-Bosonic closed string spectrum is similar, but with N and \bar{N},

$$
\sim a_{n_{1}}^{i_{1}} \ldots a_{n_{k}}^{i_{k}} \tilde{a}_{m_{1}}^{\tilde{i}_{1}} \ldots \tilde{\alpha}_{m_{j}}^{\tilde{m}_{j}}|0\rangle
$$

with the constraint $P=L_{0}-\bar{L}_{0}=0$, so $N=\bar{N}$. Spectrum \rightarrow different fields \Rightarrow String theory $=$ field theory of infinite number of different kinds of fields.

- Massless fields: $A_{\mu \nu}=\alpha_{-1}^{\mu} \tilde{\alpha}_{-1}^{\nu} \mid 0>=\left\{A_{((\mu \nu))}=g_{\mu \nu}, A^{[\mu \nu]}=\right.$ $\left.B^{\mu \nu}, \phi=A^{\mu \mu}\right\} \rightarrow$ spacetime fields.
-Thus: metric $g_{\mu \nu}$ is among quantum modes of the string \Rightarrow String theory is a theory of quantum gravity!
- Massless fields create a spacetime background for string
-Superstring: Supersymmetric string. In Green-Schwarz formulation, spacetime susy + " κ symmetry". (Fix a gauge for κ symmetry \Rightarrow worldsheet susy). Introduce $\theta^{A}=$ spacetime spinors and worldsheet scalars. Replace $\partial_{a} X^{\mu}$ with spacetime susy invariant

$$
\Pi_{a}^{\mu}=\partial_{a} X^{\mu}-i \bar{\theta}^{A} \Gamma^{\mu} \partial_{a} \theta^{A}
$$

invariant under

$$
\delta X^{\mu}=-\bar{\epsilon}^{A} \Gamma^{\mu} \partial_{a} \theta^{A}, \quad \delta \theta^{A}=\epsilon^{A}
$$

$$
S=-\frac{1}{4 \pi \alpha^{\prime}} \int d \tau d \sigma \sqrt{-\gamma} \gamma^{a b} \Pi_{a}^{\mu} \Pi_{b}^{\nu} g_{\mu \nu}+\int d \tau d \sigma \epsilon^{a b} \Pi_{a}^{M} \Pi_{b}^{N} B_{M N}
$$

-flat space:

$$
B \equiv \epsilon^{a b} \Gamma_{a}^{M} \Pi_{b}^{N} B_{M N}=-i d X^{\mu} \wedge\left(\bar{\theta}^{1} \Gamma_{\mu} d \theta^{2}-\bar{\theta}^{2} \Gamma_{\mu} d \theta^{1}\right)+\bar{\theta}^{1} \Gamma^{\mu} d \theta^{1} \wedge \bar{\theta}^{2} \Gamma_{\mu} d \theta^{2}
$$

-Kappa symmetry,

$$
\delta_{\kappa} \theta^{A}=-2 \Gamma_{\mu} \Pi_{a}^{\mu} \kappa^{A a}, \quad \delta_{\kappa} X^{\mu}=-\bar{\theta}^{A} \Gamma^{\mu} \delta \theta^{A}, \ldots
$$

is fixed by the condition (together with lightcone gauge for bosons)

$$
\Gamma^{+} \theta^{1}=\Gamma^{+} \theta^{2}=0, \quad \Gamma^{ \pm}=\left(\Gamma^{0} \pm \Gamma^{9}\right) / \sqrt{2}
$$

and $\theta^{A \alpha}$ are regrouped as 2-comp. Majorana worldsheet spinors S^{m}, m spinor of $S O(8)$ (now, $d=10$, so $S O(8)=$ little group),

$$
S_{\mathrm{lC}}=-\frac{1}{4 \pi \alpha^{\prime}} \int d^{2} \sigma\left[\partial_{a} X^{i} \partial^{a} X^{i}+2 \alpha^{\prime} \bar{S}^{m} \gamma^{a} \partial_{a} S^{m}\right]
$$

-Supersymmetry means tachyons (and other states) are out of the spectrum. Vacuum: massless states $A^{\mu \nu}=\left\{g^{\mu \nu}, B^{\mu \nu}, \phi\right\}+$ others

- No divergences at any loop: Feynman diagrams involve worldsheets: no point singularities: interactions spread out over sheet
-T-duality of closed and open strings: symmetry of string perturbation theory on compact spaces.
\bullet For a string winding m times around X^{25}, bound. cond.

$$
X^{25}(\tau, \sigma+2 \pi)=X^{25}(\tau, \sigma)+2 \pi \alpha^{\prime} w
$$

-The classical solution is

$$
X^{25}(\tau, \sigma)=X_{L}+X_{R}=x_{0}+\alpha^{\prime} p \tau+\alpha^{\prime} w \sigma+i \sqrt{\frac{\alpha^{\prime}}{2}} \sum_{n \neq 0} \frac{e^{-i n \tau}}{n}\left(\alpha_{n} e^{i n \sigma}+\tilde{\alpha}_{n} e^{-i n \sigma}\right)
$$

where $p=n / R$ and $w=m R / \alpha^{\prime}$. The constraint is now $L_{0}-\tilde{L}_{0}=$ $\alpha^{\prime} p w+N^{\perp}-\tilde{N}^{\perp}$ and gives the spectrum

$$
\begin{aligned}
M_{\mathrm{compact}}^{2} & =p^{2}+w^{2}+\frac{2}{\alpha^{\prime}}\left(N^{\perp}+\tilde{N}^{\perp}-2\right) \\
& =\left(\frac{n}{R}\right)^{2}+\left(\frac{m R}{\alpha^{\prime}}\right)^{2}+\frac{2}{\alpha^{\prime}}\left(N^{\perp}+\tilde{N}^{\perp}-2\right)
\end{aligned}
$$

- We observe the T-duality symmetry of the spectrum

$$
M^{2}(R ; n, m)=M^{2}(\tilde{R} ; m, n)
$$

extended to

$$
x_{0} \leftrightarrow q_{0} ; \quad p \leftrightarrow w ; \quad \alpha_{n} \leftrightarrow-\alpha_{n} ; \quad \tilde{\alpha}_{n} \leftrightarrow \tilde{\alpha}_{n}
$$

-This T-duality exchanges then:

$$
X^{25}(\tau, \sigma) X_{L}(\tau+\sigma)+X R(\tau-\sigma) \leftrightarrow X^{\prime 25}(\tau, \sigma)=X_{L}(\tau+\sigma)-X_{R}(\tau-\sigma)
$$

\bullet T-duality of open strings: Do the same exchange for the open string solution. Obtain

$$
\begin{aligned}
X^{\prime 25}(\tau, \sigma) & =X_{L}^{25}(\tau+\sigma)-X_{R}^{25}(\tau-\sigma)=q_{0}^{25}+\sqrt{2 \alpha^{\prime}} \alpha_{0}^{25} \sigma+\sqrt{2 \alpha^{\prime}} \sum_{n \neq 0} \frac{\alpha_{n}^{25}}{n} e^{-i n \tau} \sin n \sigma, \\
\alpha_{0}^{25} & =\frac{1}{\sqrt{2 \alpha^{\prime}}} \frac{x_{2}^{25}-x_{1}^{25}}{\pi} .
\end{aligned}
$$

-But then the boundary condition changes from Neumann to Dirichlet and vice versa,

$$
\partial_{\alpha} X^{25}=\epsilon_{\alpha \beta} \partial_{\beta} X^{\prime 25}
$$

-Reminder: Vary Polyakov action \Rightarrow equations of motion, and boundary term

$$
\delta S_{P, b d .}=-\left.\frac{1}{2 \pi \alpha^{\prime}} \int d \tau \sqrt{-\gamma} \delta X^{\mu} \partial^{\sigma} X_{\mu}\right|_{\sigma=0} ^{\sigma=\pi} \Rightarrow
$$

- Neumann boundary condition: $\partial^{\sigma} X_{\mu}=\left.0\right|_{\sigma=0, \pi} \Rightarrow$ endpoints of string move at the speed of light: usual.
-Dirichlet boundary condition: $\delta X^{\mu}=\left.0\right|_{\sigma=0, \pi} . \Rightarrow X^{\mu}=$ constant at $\sigma=0, \pi . \rightarrow$ endpoints fixed.
\bullet We can have Neumann for $p+1$ coordinates and Dirichlet for $D-p-1 \Rightarrow$ "Dp-brane".
- Spacetime fields can excite coordinates X^{μ} transverse to the Dp-brane (Dirichlet directions) \rightarrow fluctuations \Rightarrow this is Dp-brane is a dynamical object.

a) Open string between two D-p-branes ($p+1$ dimensional "walls"). b)The endpoints of the open string are labelled by the D-brane they end on (out of N D-branes), here $|i\rangle$ and $|j\rangle$.

a)

b)
a) Closed string colliding with a D-brane, exciting an open string mode and making it vibrate b) String worldsheet corresponding to it, with a closed string tube coming from infinity and ending on the D-brane as an open string boundary. Allows us to calculate the D-brane action and couplings.

