Lecture 3

Gauge/gravity dualities, the pp wave correspondence and spin chains

AdS / CFT: review

-From N D3-branes in two P.O.V.: extremal p-brane (gravitational) solutions vs. endpoints of open strings (Polchinski); in a decoupling limit, we obtain:

- $\mathcal{N}=4$ SYM with gauge group $S U(N)$, in 't Hooft limit: $g_{\mathrm{YM}}^{2} \rightarrow 0, N \rightarrow \infty$, but $\lambda=g_{\mathrm{YM}}^{2} N=4 \pi g_{s} N$ fixed and large, equals string theory in $A d S_{5} \times S^{5}$ background at energy U,

$$
d s^{2}=\alpha^{\prime}\left[\frac{U^{2}}{\sqrt{4 \pi g_{s} N}}\left(-d t^{2}+d \vec{x}_{3}^{2}\right)+\sqrt{4 \pi g_{s} N}\left(\frac{d U^{2}}{U^{2}}+d \Omega_{5}^{2}\right)\right]
$$

-Is a duality: one side is perturbative (e.g., weak gravity), the other nonperturbative (e.g., λ large in QFT).
$\bullet 3$ possible versions of AdS/CFT:
-Weakest: only at $g_{s} \rightarrow 0$ and $g_{s} N$ large \rightarrow string theory \simeq supergravity. α^{\prime} and g_{s} corrections might disagree.
-Stronger: valid at any finite $g_{s} N$, but only at $g_{s} \rightarrow 0, N \rightarrow \infty$, i.e. $\alpha^{\prime} / R^{2}=1 / \sqrt{4 \pi g_{s} N}$ corrections agree, but not g_{s} corrections.
-Strongest: believed to be correct: valid at any $g_{Y M}^{2}$ and N (or g_{s} and α^{\prime}). Obs.: $\lambda=4 \pi g_{s} N \rightarrow 0, N$ small: Quantum Gravity!

Gauge/gravity duality

- Generalize: other max. susy CFT cases: $A d S_{7} \times S^{4}, A d S_{4} \times S^{7}$ \rightarrow "gravity dual". Obtained also from decoupling limits (but of N M2-branes and N M5-branes in M-theory, respectively).
- Conformal invariance \leftrightarrow AdS space. But we can obtain less susy by taking $A d S \times X$, e.g. by dividing by a finite group S^{k} / Γ.
-We can also break conformal invariance \rightarrow replace AdS space.
-Theories with mass gap: AdS space like finite quantum mechanical box: must cut out a thin cylinder from the middle of the AdS cylinder.
- We have an UV-IR correspondence:
$E \sim U=r / \alpha^{\prime} \Rightarrow$ IR in CFT $=r \rightarrow 0(U V)$ in AdS. Cut out around $r=r_{\text {min }}$.
-Motion in $U=r / \alpha^{\prime} \rightarrow$ Renormalization group flow in QFT.

Minimal ingredients to simulate QCD:

- A large N quantum gauge theory $\left(N \rightarrow \infty\right.$ for small g_{s} corrections)
- Boundary at infinity identified with flat space of QCD, but better: field theory at energy scale U corresponds to flat space at position r in the gravity dual.
-Thus $d+1$ dimensional gravity dual corresponds to d-dim. field theory plus its energy scale U.
- Since motion in U is RG flow, mass gap corresponds to minimum r of gravity dual.
- Gauge group appears in gravity dual only through N.

Map field theory/gravity dual

\bullet Global symmetries in Mink $_{d}$ field th. \leftrightarrow gauge symmetries in $\dot{d}+1$-dim. gravity dual. \rightarrow global symmetries of compact space $X_{m} . J_{\mu}^{a}$ couple to A_{μ}^{a}.

- P_{μ} Noether current: $T_{\mu \nu} \leftrightarrow$ (couples to) $g_{\mu \nu}$. So d-dim. transl. inv. \leftrightarrow diffeomorphism invariance in $d+1$ dimensions.
- Open/closed coupling: $g_{s}=g_{Y}^{2} /(4 \pi)$.
- Gauge invariant operators \leftrightarrow (sourced by) gravity dual fields in $d+1$ dimensions: •Supergravity fields in $d+1$ dim. (reduced on $\left.X_{m}\right) \leftrightarrow$ SYM operators (made of adjoints) (" glueballs").
-For quarks (fundamentals of gauge group and of some global symmetry G), introduce SYM fields for the group G in the gravity dual, coupling to G-charged, pion-like operators (made of quarks), so "SYM \leftrightarrow pion fields".
-Thus: supergravity modes \leftrightarrow glueballs, SYM fields \leftrightarrow mesons.
- Mass spectrum of tower of glueballs = mass spectrum for wave eq. of sugra mode in gravity dual. Similar for mesons.
\bullet Baryons: more than two fields, e.g. $B^{I J K}=\epsilon_{i j k} q^{I i} q^{J j} q^{K k}$. In field theory: solitonic. \rightarrow e.g. topological solitons in Skyrme model. In gravity dual: solitons: branes wrapped on cycles.
- Wave functions of states in field theory, $e^{i k \cdot x}$, correspond to gravity dual wave functions $\Phi\left(x, U, X_{m}\right)=e^{i k \cdot x} \Psi\left(U, X_{m}\right)$.

General properties for gravity duals for QCD-like, or SQCD-

 like theories:-At high energy: conformal (all mass scales irrelevant). Thus, for $U \rightarrow \infty, A d S_{5} \times X_{5}$, or maybe with subleading corrections to metric.
-At low energy, mass gap, so gravity dual must terminate at some $U_{\text {min }}$, such that "warp factor" U^{2} in front of $d \vec{x}^{2}$ remains finite.
-For fundamental quarks, open string modes on some brane must be introduced. Couple to meson-like operators. Alternative: free probe branes, probing physics at various energy scales.
-If QCD-like theory has global symm. (like flavor, or R, symm.), gravity dual, so X_{m}, must have this.
-All previous examples: "top-down": system of branes in a decoupling limit gives a well-defined (heuristically derived) holographic map $Q F T \rightarrow$ gravity dual. We hope this will happen for actual QCD.

- But: gravity is always holographic (a lot of evidence for this, including black holes in general relativity). Furthermore, with AdS asymptotics, we have: a) a finite time to get to the boundary, where QFT sits. b) $A d S_{d+1}$ symmetry $=$ conformal $M i n k_{d}$ symmetry $=S O(d, 2)$.
-Then, also: " bottom-up". Construct gravity theory in AdS (not from brane system) and see if phenomenology fits something we want.
-AdS/CMT: phenomenological approach. "Top-down": define some known duality, see if physics of QFT matches anything. OR: " bottom-up" : construct AdS theory that, given holographic map, would imply wanted properties for the (unknown!) field theory, and then calculate other properties.

Example 1: Gravity dual of Lifshitz points

-CMT: usually nonrelativistic. Construct nonrelativistic gravity dual. E.G.: "Lifshitz scaling":

$$
t \rightarrow \lambda^{z} t, \quad \vec{x} \rightarrow \lambda \vec{x}
$$

$z=$ dynamical critical exponent. Model example:

$$
\mathcal{L}=\int d^{2} x d t\left[\left(\partial_{t} \phi\right)^{2}-k\left(\vec{\nabla}^{2} \phi\right)^{2}\right] .
$$

-Then, phenomenological gravity bgr. for Lifshitz scaling,

$$
d s_{d+1}^{2}=R^{2}\left(-\frac{d t^{2}}{u^{2 z}}+\frac{d \vec{x}^{2}}{u^{2}}+\frac{d u^{2}}{u^{2}}\right)
$$

(obs.: geodesically incomplete for $z \neq 1$ at $u=\infty$) has scaling invariance

$$
t \rightarrow \lambda^{z} t, \quad \vec{x} \rightarrow \lambda \vec{x}, \quad u \rightarrow \lambda u
$$

with generator (Killing vector)

$$
D=-i\left(z t \partial_{t}+x^{i} \partial_{i}+u \partial_{u}\right)
$$

- Calculate symmetry algebra, together with $M_{i j}, P_{i}, H$ (rotations, space/time translations): Lifshitz algebra!

Ex.2:Gravity dual to Galilean and Schrödinger symmetries

- Larger algebras: -conformal Galilean algebra: $M_{i j}, P_{i}, H, D$, but also conserved rest mass, or particle number N and Galilean boosts

$$
t \rightarrow t, \quad x_{i} \rightarrow x_{i}-v_{i} t
$$

-For $z=2$, extra generator C, special conformal generator: Schrödinger algebra (symmetry of the Schrödinger equation of a free particle). •AdS/CFT realization (geometrical): $d+2$ dimensional gravity dual (ξ, u extra):

$$
d s^{2}=R^{2}\left(-\frac{d t^{2}}{u^{2 z}}+\frac{d \vec{x}^{2}}{u^{2}}+\frac{d u^{2}}{u^{2}}+\frac{2 d t d \xi}{u^{2}}\right)
$$

\bullet Not time-reversal invariant $(t \leftrightarrow-t)$, nonsingular: conformal to pp wave: $d s^{2}=\frac{R^{2}}{u^{2}}\left(-d t^{2} u^{2(1-z)}+2 d t d \xi+d \vec{x}^{2}+d u^{2}\right)$.
-Invariant under scaling

$$
t^{\prime}=\lambda^{z} t, \quad \vec{x}^{\prime}=\lambda \vec{x}, \quad u^{\prime}=\lambda u, \quad \xi^{\prime}=\lambda^{2-z} \xi
$$

for generator

$$
D=-i\left(z t \partial_{t}+x^{i} \partial_{i}+u \partial_{u}+(2-z) \xi \partial_{\xi}\right) .
$$

Ex.3:The holographic superconductor Gubser, 2008; Hartnoll,

Herzog, Horowitz, 2008
-Ingredients: a) $A d S_{4}$ background: CFT near transition point. High T_{c} superconductors (non-Fermi liquids) are $2+1 \mathrm{~d}$. b) charge transport: conserved $U(1) J_{\mu}$, dual to A_{μ}. c) Temperature, so black hole in $A d S_{4}$. d) symmetry breaking, so $\langle\mathcal{O}\rangle \neq 0$, for a complex field charged under $U(1)$. s wave superconductors \Rightarrow charged scalar ψ.
-Lagrangian for gravity theory $(d=3)$

$$
\mathcal{L}=\frac{1}{2 \kappa^{2}}\left(R+\frac{d(d-1)}{R^{2}}\right)-\frac{1}{4 g^{2}} F_{\mu \nu}^{2}-\left|\left(\partial_{\mu}-i q A_{\mu}\right) \psi\right|^{2}-m^{2} \psi^{2}-V(\psi)
$$

\bullet Want $\psi \neq 0$ near BH horizon, for $T<T_{c}$, and $\psi=0, T>T_{C}$. AdS-RN ($\underset{d s}{ }{ }^{\text {Gubser }} \underset{f(r) d t^{2}}{=} \frac{d r^{2}}{f(r)}+r^{2} d \Omega_{2, k}^{2}, \quad f(r)=k-\frac{2 M}{r}+\frac{Q^{2}}{4 r^{2}}+\frac{r^{2}}{R^{2}}$

$$
A_{0}(r) \equiv \Phi(r)=\frac{Q}{r}-\frac{Q}{r_{H}}, \quad \psi=0,
$$

-The scalar ψ is a probe in background. Boundary conditions

$$
\psi=\frac{\psi^{(1)}}{r}+\frac{\psi^{(2)}}{r^{2}}+\ldots, \quad \Phi=\mu-\frac{\rho}{r}+\ldots
$$

but both ψ_{1}, ψ_{2} normalizable. Then, condensates

$$
\left\langle\mathcal{O}_{i}\right\rangle=\frac{2 \Delta_{i}-d}{R} \psi_{\left(2 \Delta_{i}-d\right)}=\sqrt{2} \psi^{(i)} \propto\left(1-T / T_{c}\right)^{1 / 2}, \quad i=1,2 .
$$

The Penrose limit and pp waves

-PP waves: In flat space:

$$
d s^{2}=2 d x^{+} d x^{-}+H\left(x^{+}, x^{i}\right)\left(d x^{+}\right)^{2}+\sum d x_{i}^{2}
$$

Linearized solution is exact! Only nontrivial Ricci is $R_{++}=$ $-\frac{1}{2} \partial_{i}^{2} H\left(x^{+}, x^{i}\right)$. Here: waves not localized in x^{+}.
-In supergravity: 11d sugra, pp wave solutions with

$$
\begin{aligned}
& F_{4}=d x^{+} \wedge \phi: \quad F_{(4)+\mu_{1} \mu_{\mu} \mu_{3}}=\phi(3) \mu_{1} \mu_{2} \mu_{3} \\
& d \phi=0, \quad d * \phi=0, \quad-\partial_{i}^{2} H=|\phi|^{2} .
\end{aligned}
$$

\bullet-For $H=\sum_{i j} A_{i j} x^{i} x^{j},-2 \operatorname{Tr} A=|\phi|^{2}$, we have solutions with $1 / 2$ susy, but there is a unique solution with FULL susy,

$$
\begin{aligned}
& H=\sum_{i, j} A_{i j} x^{i} x^{j}=-\sum_{i=1,2,3} \frac{\mu^{2}}{9} x_{i}^{2}-\sum_{i=4}^{9} \frac{\mu^{2}}{36} x_{i}^{2} \\
& \phi=\mu d x^{1} \wedge d x^{2} \wedge d x^{3} .
\end{aligned}
$$

-In 10d IIB sugra, pp wave solutions with

$$
\begin{aligned}
& F_{5}=d x^{+} \wedge(\omega+* \omega): \quad F_{+\mu_{1} . \mu_{4}}=\omega_{\mu_{1} . \ldots \mu_{4}} ; \quad F_{+\mu_{5} . \ldots \mu_{8}}=\omega_{\mu_{5} . \ldots \mu_{8}} \\
& H=\sum_{i j} A_{i j} x^{i} x^{j} ; \quad \phi=\phi_{0}, \quad d \omega=0, \quad d * \omega=0, \quad \partial_{i}^{2} H=-|\omega|^{2} .
\end{aligned}
$$

- Again, solutions have $1 / 2$ susy, but \exists ! solution with full susy,

$$
H=-\frac{\mu^{2}}{64} \sum_{i} x_{i}^{2} ; \quad \omega=\frac{\mu}{2} d x^{1} \wedge d x^{2} \wedge d x^{3} \wedge d x^{4} .
$$

-Penrose limit: Penrose theorem: near a null geodesic in any metric, the spacetime becomes a pp wave. Null geodesic defined by $V=Y^{i}=0, U=\tau$, we can always put the metric in form (Penrose):

$$
d s^{2}=d V\left(d U+\alpha d V+\sum_{i} \beta_{i} d Y^{i}\right)+\sum_{i j} C_{i j} d Y^{i} d Y^{j}
$$

where U, V are lightcone coords., and take the limit

$$
U=u ; \quad V=\frac{v}{R^{2}} ; \quad Y^{i}=\frac{y^{i}}{R} ; \quad R \rightarrow \infty
$$

to obtain a pp wave (in "Rosen coordinates"; after a coordinate change, previous form: "Brinkmann coordinates")

- Interpretation of Penrose limit: boost along direction x, while taking the overall scale of metric to infinity:

$$
\begin{aligned}
& t^{\prime}=\cosh \beta \quad t+\sinh \beta \quad x ; \quad x^{\prime}=\sinh \beta \quad t+\cosh \beta \quad x \Rightarrow \\
& v^{\prime} \equiv x^{\prime}-t^{\prime}=e^{-\beta}(x-t) ; \quad u^{\prime} \equiv x^{\prime}+t^{\prime}=e^{\beta}(x+t),
\end{aligned}
$$

then scale all coordinates by $1 / R$ and identify $e^{\beta}=R \rightarrow \infty$.
-Penrose limit of $A d S_{5} \times S^{5}$: boost along an equator of S^{5} defined by $\theta=0$ and stay at center of $A d S_{5}$ at $\rho=0$ (is a null geodesic).

Null geodesic in $\operatorname{Ad} S_{5} \times S_{5}$ for the Penrose limit giving the maximally supersymmetric wave. It is in the center of $A d S_{5}$, at $\rho=0$, and on an equator of S_{5}, at $\theta=0$.

$$
\begin{aligned}
d s^{2} & =R^{2}\left(-\cosh ^{2} \rho d \tau^{2}+d \rho^{2}+\sinh ^{2} \rho d \Omega_{3}^{2}\right)+R^{2}\left(\cos ^{2} \theta d \psi^{2}+d \theta^{2}+\sin ^{2} \theta d \Omega_{3}^{\prime 2}\right) \\
& \simeq R^{2}\left[-\left(1+\rho^{2}\right) d \tau^{2}+d \rho^{2}+\rho^{2} d \Omega_{3}^{2}\right]+R^{2}\left[\left(1-\theta^{2}\right) d \psi^{2}+d \theta^{2}+\theta^{2} d \Omega_{3}^{2}\right] .
\end{aligned}
$$

- Then define null coords. $\tilde{x}^{ \pm}=(\tau \pm \psi) / \sqrt{2}$, and rescale to obtain the pp wave,

$$
\begin{gathered}
\tilde{x}^{+}=x^{+} ; \quad \tilde{x}^{-}=\frac{x^{-}}{R^{2}} ; \quad \rho=\frac{r}{R} ; \quad \theta=\frac{y}{R} \Rightarrow \\
d s^{2}=-2 d x^{+} d x^{-}-\mu^{2}\left(\vec{r}^{2}+\vec{y}^{2}\right)\left(d x^{+}\right)^{2}+d \vec{y}^{2}+d \vec{r}^{2} .
\end{gathered}
$$

Penrose limit of AdS/CFT: large R-charge Berenstein, Maldacena, Nastase, 2002
$\bullet E=i \partial_{\tau}$ in global $A d S_{5}$, and $J=-i \partial_{\psi}$ (for rotation $X^{5} \leftrightarrow X^{6}$).

- But $E \leftrightarrow \triangle$ and $J \leftrightarrow U(1) \subset S U(4)=S O(6)$ R-charge rotating fields corresponding to $X^{5} \leftrightarrow X^{6}$.
-Penrose $\operatorname{limit}_{p^{-}}=-p_{+}=i \partial_{x^{+}}=i \partial_{\tilde{x}^{+}}=\frac{i}{\sqrt{2}}\left(\partial_{\tau}+\partial_{\psi}\right)=\frac{1}{\sqrt{2}}(\Delta-J)$

$$
p^{+}=-p_{-}=i \partial_{x^{-}}=i \frac{\partial_{\tilde{x}}}{R^{2}}=\frac{i}{\sqrt{2} R^{2}}\left(\partial_{\tau}-\partial_{\psi}\right)=\frac{\Delta+J}{\sqrt{2} R^{2}} .
$$

- Rescale p^{-}by $\mu \sqrt{2}$ and p^{+}by $1 / \mu \sqrt{2}$, so finally:

$$
\frac{p^{-}}{\mu}=\Delta-J ; \quad 2 \mu p^{\mu}=\frac{\Delta+J}{R^{2}}
$$

\bullet For string theory on pp wave, p^{+}, p^{-}finite, so as $R \rightarrow \infty$, keep $\Delta-J$ and $(\Delta+J) / R^{2}$ fixed, so $\Delta \simeq J \sim R^{2} \rightarrow \infty$. Thus Penrose limit is large R -charge limit in AdS/CFT!
\bullet In $\mathcal{N}=4 \mathrm{SYM}, \frac{R^{2}}{\alpha^{\prime}}=\sqrt{4 \pi g_{s} N}=\sqrt{g_{Y M}^{2} N}$, so for g_{s} fixed, we have $J \sim R^{2} \sim \sqrt{N}^{\alpha}$, so

$$
\frac{J}{\sqrt{N}}=\text { fixed and } \quad \frac{g_{Y M^{2}}^{2} N}{J^{2}}=\text { fixed }
$$

String quantization and Hamiltonian on pp wave

-Polyakov action on pp wave $\left(x^{i}=(\vec{r}, \vec{y})\right)$

$$
S=-\frac{1}{2 \pi \alpha^{\prime}} \int_{0}^{l} d \sigma \int d \tau \frac{1}{2} \sqrt{-\gamma} \gamma^{a b}\left[-2 \partial_{a} x^{+} \partial_{b} x^{-}-\mu^{2} x_{i}^{2} \partial_{a} x^{+} \partial_{b} x^{+}+\partial_{a} x^{i} \partial_{b} x^{i}\right] .
$$

-In conf. gauge, $\sqrt{-\gamma} \gamma^{a b}=\eta^{a b}$, light-cone gauge $x^{+}(\sigma, \tau)=\tau$ (rescale τ by $\alpha^{\prime} p^{+}$), and then $l=2 \pi \alpha^{\prime} p^{+}$,

$$
S=-\frac{1}{2 \pi \alpha^{\prime}} \int d \tau \int_{0}^{2 \pi \alpha^{\prime} p^{+}} d \sigma\left[\frac{1}{2}\left(-\left(\dot{x}^{i}\right)^{2}+\left(x^{\prime i}\right)^{2}\right)+\frac{\mu^{2}}{2} x_{i}^{2}\right] .
$$

-The equations of motion and solutions are

$$
\left(-\partial_{\tau}^{2}+\partial_{\sigma}^{2}\right) x^{i}-\mu^{2} x^{i}=0 . \Rightarrow x^{i} \propto e^{-i \omega_{n} \tau+i k_{n} \sigma}, \omega_{n}^{2}=k_{n}^{2}+\mu^{2}
$$

-In flat space $\mu=0, \omega_{n}=k_{n}=n$, but now we rescaled by $\alpha^{\prime} p^{+}$, so

$$
E_{n} \equiv \omega_{n}=\sqrt{\mu^{2}+\frac{n^{2}}{\left(\alpha^{\prime} p^{+}\right)^{2}}}
$$

- Light-cone Hamilltonian $H_{\text {I.c. }}=p^{-}$has no $0-m o d e s p^{i}\left(x^{i}\right.$ massive), so

$$
H=\sum_{n \in \mathbb{Z}} N_{n} \omega_{n}, \quad N_{n}=\sum_{i} a_{n}^{i} a_{n}^{i}+\sum_{\alpha} b_{n}^{\alpha \dagger} b_{n}^{\alpha} .
$$

-In $\mathcal{N}=4$ SYM, $E / \mu=\Delta-J$ and $\mu p^{+} \simeq J / R^{2}$, so

$$
(\Delta-J)_{n}=\frac{E_{n}}{\mu}=\sqrt{1+\frac{g_{Y M}^{2} N n^{2}}{J^{2}}}
$$

String states from $\mathcal{N}=4$ SYM; BMN operators
\bullet Vacuum: $E=0$, so $\Delta-J=0$. Oscillators at $g_{Y M}=0$: $\Delta-J=1$. Construct operators out of fields with $\Delta-J=1$, on top of operator with $\Delta-J=0$.
\bullet Field with $\Delta=J=1: Z=\Phi^{5}+i \Phi^{5}$: unique! (charged under $J)$. (\bar{Z} has $\Delta=-J=1$, so $\Delta-J=2$).
\bullet Fields with $J=0$ and $\Delta=1$ (so $\Delta-J=1$): $\Phi^{m}, m=1, \ldots, 4$ and $D_{\mu} Z=\partial_{\mu} Z+\left[A_{\mu}, Z\right]$ (bosonic) and $\chi_{J=+1 / 2}^{a}$ (fermionic, 8 comps.; other 8: $\chi_{J=-1 / 2}^{a}$).

- Vacuum, with $\mu p^{+}=J / R^{2}$:

$$
\left|0, p^{+}\right\rangle=\frac{1}{\sqrt{J} N^{J / 2}} \operatorname{Tr}\left[Z^{J}\right]
$$

\bullet Oscillators with $n=0$ (BPS operators, with $\Delta-J$ indep. of $\left.g_{Y M}\right)$, obtained by inserting $a_{0, r}^{\dagger}=\Phi^{r}=\left(D_{\mu} Z, \Phi^{m}\right)$ or $b_{0, b}^{\dagger}=$ $\chi_{J=-1 / 2}^{a}$ in it

- Excited levels $(n \geq 1)$: add also momentum wavefunction $e^{\frac{2 \pi i n x}{L}}$ around the closed string, so, e.g. $a_{n, 4}^{\dagger}$ insertion is

$$
a_{n, 4}^{\dagger}\left|0, p^{+}\right\rangle=\frac{1}{\sqrt{J}} \sum_{l=1}^{J} \frac{1}{\sqrt{J} N^{J / 2+1 / 2}} \operatorname{Tr}\left[Z^{l} \Phi^{4} Z^{J-l}\right] e^{\frac{2 \pi i n l}{J}} .
$$

-These are "BMN operators" . Study "dilute gas approx." : few "impurities" among Z's.
-But we can reproduce this results from $\mathcal{N}=4$ SYM: \exists small parameter $g_{\mathrm{YM}}^{2} N / J^{2}$ for this subset of (BMN) operators, even though $\lambda=g_{Y}^{2}{ }_{M}^{N}$ (nonperturbative QFT).

- Obtain strings on the pp wave: first step towards a quantum gravity description in AdS! Interactions can be introduced, but: hard.
- Goal: connect this with: perturbative SYM vs. nonperturbative strings (quantum gravity).
- Must understand HOW perturbative SYM is mapped to nonperturbative strings (the definition of nonpert. strings)

Discretized string action from $\mathcal{N}=4$ SYM

-KK states on $\mathbb{R}_{t} \times S^{3} \leftrightarrow \mathbb{R}^{4}$, reduced on S^{3}, so constant Z : cr.op. $\left(b^{\dagger}\right)^{i}{ }_{j}$. Similarly, for Φ, cr.op. $\left(a^{\dagger}\right)^{i}{ }_{j}$, so states \leftrightarrow operators:

$$
\left|a_{l}^{\dagger}\right\rangle \equiv \operatorname{Tr}\left[\left(b^{\dagger}\right)^{l} a^{\dagger}\left(b^{\dagger}\right)^{J-l}\right]|0\rangle .
$$

-Interacting Hamiltonian

$$
H_{\mathrm{int}}=-g_{Y M}^{2} \operatorname{Tr} \sum_{I>J}\left\{\left[\Phi^{I}, \Phi^{J}\right]\left[\Phi_{I}, \Phi_{J}\right]\right\}
$$

has then term that can act on operators \mathcal{O},

$$
H_{\mathrm{int}}=-g_{Y M}^{2} \operatorname{Tr}\left\{\left[Z, \Phi^{m}\right]\left[\bar{Z}, \Phi^{m}\right]\right\} \rightarrow 2 g_{Y M}^{2} N\left[b^{\dagger}, \phi\right][b, \phi] ; \quad \phi=\frac{a+a^{\dagger}}{\sqrt{2}}
$$

whose action is through Feynman diagrams, as

Feynman diagram for the 2-point function of $\mathcal{O}(x)$ at one-loop.
-'t Hooft limit \Rightarrow only planar diagrams.

a)

b)

d)

c)

e)

Planar Feynman diagrams for the 2-point function of \mathcal{O}. a) The planar tree level diagram. b) Planar one-loop Feynman diagram with hopping from $l+1$ to l. c) Planar one-loop diagram with hopping from l to $l+1$. d) One-loop planar diagram with gluon exchange e) One-loop planar diagram with scalar self-energy.
-After a calculation, find the Hamiltonian (when acting on states \leftrightarrow operators in $\mathcal{N}=4$ SYM)

$$
H=\sum_{j=1}^{J} \frac{a_{j}^{\dagger} a_{j}+a_{j} a_{j}^{\dagger}}{2}+\frac{\lambda}{(2 \pi)^{2}} \sum_{j=1}^{J}\left(\phi_{j}-\phi_{j+1}\right)^{2} .
$$

-Continuum version of Hamiltonian $=$ light-cone string on pp wave,

$$
H=\int_{0}^{L} d \sigma \frac{1}{2}\left[\dot{\phi}^{2}+\phi^{\prime 2}+\phi^{2}\right], \quad L=\frac{2 \pi J}{\mu \sqrt{\lambda}}=2 \pi \alpha^{\prime} p^{+}
$$

so string as a discrete "spin chain" in $\mathcal{N}=4$ SYM

A periodic spin chain of the type that appears in the pp wave string theory. All spins are up, except one excitation has one spin down.

- After diagonalizing the Hamiltonian, one obtains the eigenfrequencies

$$
\omega_{n}=\sqrt{1+4\left|\alpha_{n}\right|}=\sqrt{1+\frac{g_{Y M}^{2} N}{\pi^{2}} \sin ^{2} \frac{\pi n}{J}}
$$

with the corresponding Fock states (a_{n} is discrete Fourier tr. of a_{j})

$$
c_{n, 1 / 2}^{\dagger}|0\rangle=\frac{a_{n}^{\dagger} \pm a_{J-n}^{\dagger}}{\sqrt{2}}|0\rangle=\frac{1}{\sqrt{J}} \sum_{j=1}^{J} \frac{e^{\frac{2 \pi i j n}{J}} \pm e^{-\frac{2 \pi i j n}{J}}}{\sqrt{2}} a_{j}^{\dagger}|0\rangle,
$$

-Fock states mapped to the BMN operators

$$
\frac{1}{\sqrt{J}} \sum_{l=1}^{J} \frac{1}{N^{\frac{J}{2}+1}} \operatorname{Tr}\left[\Phi^{1} Z^{l} \Phi^{1} Z^{J-l}\right]\left[\cos \left(\frac{2 \pi i n l}{J}\right) \text { or } i \sin \left(\frac{2 \pi i n l}{J}\right)\right] .
$$

- Note that for $n \ll J$, both ω_{n} and the states match the string on pp wave. For $n \sim J$, we also have a match, but not to the pp wave (Penrose limit of $A d S_{5} \times S^{5}$), but a different limit.
- Note that ω_{n} is valid to all orders in λ (even though the Hamiltonian was one-loop, i.e. λ^{1}), though only for few impurities ($M \ll J$). Why? It seems to resum all interactions.

Spin chain: $S U(2)$ sector and $H_{X X X}$ from $\mathcal{N}=4$ SYM

- We can construct a spin chain that is the extension of the dilute gas approx. one, in an $S U(2)$ sector with 2 scalars, corresponding to "spin up" and "spin down",

$$
Z=\Phi^{1}+i \Phi^{2} ; \quad \text { and } \quad W=\Phi^{3}+i \Phi^{4}
$$

acting on operators (and their generalizations with "magnon" momenta)

$$
\mathcal{O}_{\alpha}^{J_{1}, J_{2}}=\operatorname{Tr}\left[Z^{J_{1}} W^{J_{2}}\right]+\ldots(\text { permutations })
$$

- The interaction Hamiltonian in this subsector is

$$
H_{\mathrm{int}}=-g_{Y M}^{2}[Z, W] \operatorname{Tr}[\bar{Z}, \bar{W}]
$$

so the one-loop Hamiltonian is

$$
H_{\text {planar }}^{(1)}=\Gamma_{\text {planar }}^{(1)}=\frac{g_{Y M}^{2} N}{16 \pi^{2}} \sum_{l+1}^{L} 2\left(1-P_{l, l+1}\right)
$$

-A more precise concept of Hamiltonian, extendable to higher loops, is of a dilatation operator \mathcal{D}, obtained by attaching Feynman diagrams to operators,

$$
\mathcal{D} \circ \mathcal{O}_{\alpha}^{J_{1}, J_{2}}(x)=\sum_{\beta} \mathcal{D}_{\alpha \beta} \mathcal{O}_{\beta}^{J_{1}, J_{2}}(x)
$$

-Then the dilatation operator acts on operators as spin chains as

$$
\mathcal{D}_{\text {planar }}^{(1)}=\frac{g_{Y M}^{2} N}{8 \pi^{2}} \sum_{l+1}^{L}\left(11_{l, l+1}-P_{l, l+1}\right)
$$

which is the Heisenberg $X X X_{1 / 2}$ Hamiltonian, with $J=g_{Y M}^{2} N /\left(16 \pi^{2}\right)$. Indeed, that is

$$
H=-J \sum_{j=1}^{L} \vec{\sigma}_{j} \cdot \vec{\sigma}_{j+1}=-2 J \sum_{j=1}^{L}\left(P_{j, j+1}-1\right)
$$

where we have used that on the $|\uparrow\rangle,|\downarrow\rangle$ basis on the chain, the permutation operator is $P_{i j}=\frac{1}{2}+\frac{1}{2} \vec{\sigma}_{i} \cdot \vec{\sigma}_{j}$.

Coordinate Bethe ansatz

-Denote $\left|x_{1}, \ldots, x_{M}\right\rangle$ state with spins down at positions x_{1}, \ldots, x_{M} along the chain. Then the "one-magnon" eigenstate of $H_{X X X}$ and its energy are

$$
\left|\psi\left(p_{1}\right)\right\rangle=\sum_{x=1}^{L} e^{i p_{1} x}|x\rangle, \quad E\left(p_{1}\right)=8 J \sin ^{2}\left(p_{1} / 2\right) \mid \psi\left(p_{1}\right) .
$$

-The 2-magnon state is

$$
\begin{aligned}
\left|\psi\left(p_{1}, p_{2}\right)\right\rangle & =\sum_{1 \leq x_{1}<x_{2} \leq L} \psi\left(x_{1}, x_{2}\right)\left|x_{1}, x_{2}\right\rangle \\
\psi\left(x_{1}, x_{2}\right) & =e^{i\left(p_{1} x_{1}+p_{2} x_{2}\right)}+S\left(p_{2}, p_{1}\right) e^{i\left(p_{2} x_{1}+p_{1} x_{2}\right)}
\end{aligned}
$$

where $E=E\left(p_{1}\right)+E\left(p_{2}\right)$ and the 2-body S-matrix is

$$
S\left(p_{1}, p_{2}\right)=\frac{\phi\left(p_{1}\right)-\phi\left(p_{2}\right)+i}{\phi\left(p_{1}\right)-\phi\left(p_{2}\right)-i}, \quad \phi(p)=\frac{1}{2} \cot \frac{p}{2} \equiv u .
$$

- For M magnons, in terms of $\phi(p)=u=$ rapidities (for true magnon momenta, u called Bethe roots), the energy is

$$
E=\sum_{j=1}^{M} 8 J \sin ^{2} \frac{p_{j}}{2}=\sum_{j=1}^{M} 2 J \frac{1}{u_{j}^{2}+1 / 4}
$$

