
Lecture 3

Gauge/gravity dualities, the pp wave

correspondence and spin chains
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AdS/CFT: review

•From N D3-branes in two P.O.V.: extremal p-brane (gravita-
tional) solutions vs. endpoints of open strings (Polchinski); in a
decoupling limit, we obtain:
•N = 4 SYM with gauge group SU(N), in ’t Hooft limit:
g2YM → 0, N → ∞, but λ = g2YMN = 4πgsN fixed and large,
equals string theory in AdS5 × S5 background at energy U ,

ds2 = α′
[

U2
√
4πgsN

(−dt2 + d$x23) +
√

4πgsN

(

dU2

U2
+ dΩ2

5

)]

•Is a duality: one side is perturbative (e.g., weak gravity), the
other nonperturbative (e.g., λ large in QFT).
•3 possible versions of AdS/CFT:
-Weakest: only at gs → 0 and gsN large → string theory '
supergravity. α′ and gs corrections might disagree.

-Stronger: valid at any finite gsN , but only at gs → 0, N → ∞,
i.e. α′/R2 = 1/

√
4πgsN corrections agree, but not gs corrections.

-Strongest: believed to be correct: valid at any g2YM and N (or
gs and α′). Obs.: λ = 4πgsN → 0, N small: Quantum Gravity!
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Gauge/gravity duality

•Generalize: other max. susy CFT cases: AdS7×S4, AdS4×S7

→ ”gravity dual”. Obtained also from decoupling limits (but
of N M2-branes and N M5-branes in M-theory, respectively).

•Conformal invariance ↔ AdS space. But we can obtain less
susy by taking AdS ×X, e.g. by dividing by a finite group Sk/Γ.

•We can also break conformal invariance → replace AdS space.

•Theories with mass gap: AdS space like finite quantum me-
chanical box: must cut out a thin cylinder from the middle of
the AdS cylinder.

•We have an UV-IR correspondence:
E ∼ U = r/α′ ⇒ IR in CFT = r → 0 (UV) in AdS. Cut out
around r = rmin.

•Motion in U = r/α′ → Renormalization group flow in QFT.
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Minimal ingredients to simulate QCD:

•A large N quantum gauge theory (N → ∞ for small gs correc-

tions)

•Boundary at infinity identified with flat space of QCD, but bet-

ter: field theory at energy scale U corresponds to flat space at

position r in the gravity dual.

•Thus d+1 dimensional gravity dual corresponds to d-dim. field

theory plus its energy scale U .

•Since motion in U is RG flow, mass gap corresponds to minimum

r of gravity dual.

•Gauge group appears in gravity dual only through N .
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Map field theory/gravity dual

•Global symmetries in Minkd field th. ↔ gauge symmetries in

d+1-dim. gravity dual. → global symmetries of compact space

Xm. Ja
µ couple to Aa

µ.

•Pµ Noether current: Tµν ↔ (couples to) gµν. So d-dim. transl.

inv. ↔ diffeomorphism invariance in d+1 dimensions.

•Open/closed coupling: gs = g2YM/(4π).

•Gauge invariant operators ↔ (sourced by) gravity dual fields in

d+1 dimensions: •Supergravity fields in d+1 dim. (reduced on

Xm) ↔ SYM operators (made of adjoints) (”glueballs”).

•For quarks (fundamentals of gauge group and of some global

symmetry G), introduce SYM fields for the group G in the grav-

ity dual, coupling to G-charged, pion-like operators (made of

quarks), so ”SYM↔ pion fields”.
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•Thus: supergravity modes ↔ glueballs, SYM fields ↔ mesons.

•Mass spectrum of tower of glueballs = mass spectrum for wave

eq. of sugra mode in gravity dual. Similar for mesons.

•Baryons: more than two fields, e.g. BIJK = εijkq
IiqJjqKk. In

field theory: solitonic. → e.g. topological solitons in Skyrme

model. In gravity dual: solitons: branes wrapped on cycles.

•Wave functions of states in field theory, eik·x, correspond to

gravity dual wave functions Φ(x, U,Xm) = eik·xΨ(U,Xm).
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General properties for gravity duals for QCD-like, or SQCD-

like theories:

•At high energy: conformal (all mass scales irrelevant). Thus,

for U → ∞, AdS5 ×X5, or maybe with subleading corrections to

metric.

•At low energy, mass gap, so gravity dual must terminate at

some Umin, such that ”warp factor” U2 in front of d$x2 remains

finite.

•For fundamental quarks, open string modes on some brane must

be introduced. Couple to meson-like operators. Alternative: free

probe branes, probing physics at various energy scales.

•If QCD-like theory has global symm. (like flavor, or R, symm.),

gravity dual, so Xm, must have this.
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•All previous examples: ”top-down”: system of branes in a de-

coupling limit gives a well-defined (heuristically derived) holo-
graphic map QFT → gravity dual. We hope this will happen for

actual QCD.

•But: gravity is always holographic (a lot of evidence for this,
including black holes in general relativity). Furthermore, with

AdS asymptotics, we have: a) a finite time to get to the bound-

ary, where QFT sits. b) AdSd+1 symmetry = conformal Minkd
symmetry = SO(d,2).

•Then, also: ”bottom-up”. Construct gravity theory in AdS (not

from brane system) and see if phenomenology fits something
we want.

•AdS/CMT: phenomenological approach. ”Top-down”: define
some known duality, see if physics of QFT matches anything.

OR: ”bottom-up”: construct AdS theory that, given holographic

map, would imply wanted properties for the (unknown!) field
theory, and then calculate other properties.
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Example 1: Gravity dual of Lifshitz points

•CMT: usually nonrelativistic. Construct nonrelativistic gravity
dual. E.G.: ”Lifshitz scaling”:

t → λzt, $x → λ$x.

z=dynamical critical exponent. Model example:

L =
∫

d2x dt
[

(∂tφ)
2 − k($∇2φ)2

]

.

•Then, phenomenological gravity bgr. for Lifshitz scaling,

ds2d+1 = R2

(

−
dt2

u2z
+

d$x2

u2
+

du2

u2

)

(obs.: geodesically incomplete for z ,= 1 at u = ∞) has scaling
invariance

t → λzt, $x → λ$x, u → λu ,

with generator (Killing vector)

D = −i(zt∂t + xi∂i + u∂u).

•Calculate symmetry algebra, together with Mij, Pi,H (rota-
tions, space/time translations): Lifshitz algebra!
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Ex.2:Gravity dual to Galilean and Schrödinger symmetries

•Larger algebras: -conformal Galilean algebra: Mij, Pi,H,D, but
also conserved rest mass, or particle number N and Galilean
boosts t → t, xi → xi − vit .

•For z = 2, extra generator C, special conformal generator:
Schrödinger algebra (symmetry of the Schrödinger equation of
a free particle). •AdS/CFT realization (geometrical): d + 2-
dimensional gravity dual (ξ, u extra):

ds2 = R2

(

−
dt2

u2z
+

d$x2

u2
+

du2

u2
+

2dt dξ

u2

)

.

•Not time-reversal invariant (t ↔ −t), nonsingular: conformal
to pp wave:

ds2 =
R2

u2

(

−dt2u2(1−z) + 2dt dξ+ d$x2 + du2
)

.

•Invariant under scaling

t′ = λzt, $x′ = λ$x, u′ = λu, ξ′ = λ2−zξ ,

for generator

D = −i(zt∂t + xi∂i + u∂u + (2− z)ξ∂ξ) .
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Ex.3:The holographic superconductor Gubser, 2008; Hartnoll,

Herzog, Horowitz, 2008

•Ingredients: a) AdS4 background: CFT near transition point.
High Tc superconductors (non-Fermi liquids) are 2+1d. b) charge
transport: conserved U(1) Jµ, dual to Aµ. c) Temperature, so
black hole in AdS4. d) symmetry breaking, so 〈O〉 ,= 0, for a
complex field charged under U(1). s wave superconductors ⇒
charged scalar ψ.
•Lagrangian for gravity theory (d = 3)

L =
1

2κ2

(

R+
d(d− 1)

R2

)

−
1

4g2
F 2
µν − |(∂µ − iqAµ)ψ|2 −m2ψ2 − V (ψ) ,

•Want ψ ,= 0 near BH horizon, for T < Tc, and ψ = 0, T > Tc.
AdS-RN (Gubser)

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dΩ2

2,k , f(r) = k −
2M

r
+

Q2

4r2
+

r2

R2

A0(r) ≡ Φ(r) =
Q

r
−

Q

rH
, ψ = 0 ,

•The scalar ψ is a probe in background. Boundary conditions

ψ =
ψ(1)

r
+
ψ(2)

r2
+ ... , Φ = µ−

ρ

r
+ ... ,

but both ψ1,ψ2 normalizable. Then, condensates

〈Oi〉 =
2∆i − d

R
ψ(2∆i−d) =

√
2ψ(i) ∝ (1− T/Tc)

1/2, i = 1,2.
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The Penrose limit and pp waves

•PP waves: In flat space:
ds2 = 2dx+dx− +H(x+, xi)(dx+)2 +

∑

i

dx2i ,
Linearized solution is exact! Only nontrivial Ricci is R++ =

−1
2∂

2
i H(x+, xi). Here: waves not localized in x+.

•In supergravity: 11d sugra, pp wave solutions with

F4 = dx+ ∧ φ : F(4)+µ1µ2µ3
= φ(3)µ1µ2µ3

dφ = 0 , d ∗ φ= 0 , −∂2i H = |φ|2.

•For H =
∑

ij Aijx
ixj, −2TrA = |φ|2, we have solutions with 1/2

susy, but there is a unique solution with FULL susy,

H =
∑

i,j

Aijx
ixj = −

∑

i=1,2,3

µ2

9
x2
i −

9
∑

i=4

µ2

36
x2
i

φ= µdx1 ∧ dx2 ∧ dx3.

•In 10d IIB sugra, pp wave solutions with

F5 = dx+ ∧ (ω+ ∗ω) : F+µ1...µ4
= ωµ1...µ4; F+µ5...µ8

= ωµ5...µ8

H =
∑

ij

Aijx
ixj; φ = φ0 , dω = 0 , d ∗ ω = 0 , ∂2i H = −|ω|2.

•Again, solutions have 1/2 susy, but ∃! solution with full susy,

H = −
µ2

64

∑

i

x2
i ; ω =

µ

2
dx1 ∧ dx2 ∧ dx3 ∧ dx4.
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•Penrose limit: Penrose theorem: near a null geodesic in any
metric, the spacetime becomes a pp wave. Null geodesic defined
by V = Y i = 0, U = τ , we can always put the metric in form
(Penrose):

ds2 = dV

(

dU + αdV +
∑

i

βidY
i

)

+
∑

ij

CijdY
idY j ,

where U, V are lightcone coords., and take the limit

U = u; V =
v

R2
; Y i =

yi

R
; R → ∞ ,

to obtain a pp wave (in ”Rosen coordinates”; after a coordinate

change, previous form: ”Brinkmann coordinates”)

•Interpretation of Penrose limit: boost along direction x, while
taking the overall scale of metric to infinity:

t′ = coshβ t+ sinh β x; x′ = sinh β t+ coshβ x ⇒
v′ ≡ x′ − t′ = e−β(x− t); u′ ≡ x′ + t′ = eβ(x+ t) ,

then scale all coordinates by 1/R and identify eβ = R → ∞.
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•Penrose limit of AdS5×S5: boost along an equator of S5 defined
by θ = 0 and stay at center of AdS5 at ρ = 0 (is a null geodesic).

Null geodesic in AdS5 × S5 for the Penrose limit giving the maximally super-
symmetric wave. It is in the center of AdS5, at ρ = 0, and on an equator of
S5, at θ = 0.

ds2 = R2
(

− cosh2 ρ dτ2 + dρ2 + sinh2 ρ dΩ2
3

)

+R2
(

cos2 θ dψ2 + dθ2 + sin2 θ dΩ′
3
2
)

' R2
[

−
(

1+ ρ2
)

dτ2 + dρ2 + ρ2dΩ2
3

]

+R2
[

(

1− θ2
)

dψ2 + dθ2 + θ2dΩ′
3
2
]

.

•Then define null coords. x̃± = (τ ± ψ)/
√
2, and rescale to

obtain the pp wave,

x̃+ = x+; x̃− =
x−

R2
; ρ=

r

R
; θ =

y

R
⇒

ds2 = −2dx+dx− − µ2($r2 + $y2)(dx+)2 + d$y2 + d$r2.
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Penrose limit of AdS/CFT: large R-charge Berenstein, Malda-

cena, Nastase, 2002

•E = i∂τ in global AdS5, and J = −i∂ψ (for rotation X5 ↔ X6).
•But E ↔ ∆ and J ↔ U(1) ⊂ SU(4) = SO(6) R-charge rotating
fields corresponding to X5 ↔ X6.
•Penrose limit

p− = −p+ = i∂x+ = i∂x̃+ =
i√
2
(∂τ + ∂ψ) =

1√
2
(∆− J)

p+ = −p− = i∂x− = i
∂x̃−

R2
=

i√
2R2

(∂τ − ∂ψ) =
∆+ J√

2R2
.

•Rescale p− by µ
√
2 and p+ by 1/µ

√
2, so finally:

p−

µ
= ∆− J; 2µpµ =

∆+ J

R2
.

•For string theory on pp wave, p+, p− finite, so as R → ∞, keep
∆−J and (∆+J)/R2 fixed, so ∆ ' J ∼ R2 → ∞. Thus Penrose
limit is large R-charge limit in AdS/CFT!
•In N = 4 SYM, R2

α′ =
√
4πgsN =

√

g2YMN , so for gs fixed, we
have J ∼ R2 ∼

√
N , so

J√
N

= fixed and
g2YMN

J2
= fixed.
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String quantization and Hamiltonian on pp wave

•Polyakov action on pp wave (xi = ($r, $y))

S = −
1

2πα′

∫ l

0

dσ

∫

dτ
1

2

√
−γγab

[

−2∂ax
+∂bx

− − µ2x2
i ∂ax

+∂bx
+ + ∂ax

i∂bx
i
]

.

•In conf. gauge,
√
−γγab = ηab, light-cone gauge x+(σ, τ) = τ

(rescale τ by α′p+), and then l = 2πα′p+,

S = −
1

2πα′

∫

dτ
∫ 2πα′p+

0
dσ

[

1

2
(−(ẋi)2 + (x′i)2)+

µ2

2
x2i

]

.

•The equations of motion and solutions are

(−∂2τ + ∂2σ)x
i − µ2xi = 0. ⇒ xi ∝ e−iωnτ+iknσ , ω2

n = k2n + µ2.

•In flat space µ = 0, ωn = kn = n, but now we rescaled by α′p+,

so

En ≡ ωn =

√

√

√

√µ2 +
n2

(α′p+)2
.
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•Light-cone Hamilltonian Hl.c. = p− has no 0-modes pi (xi mas-

sive), so

H =
∑

n∈Z
Nnωn , Nn =

∑

i

ain
†
ain +

∑

α
bαn

†bαn.

•In N = 4 SYM, E/µ = ∆− J and µp+ ' J/R2, so

(∆− J)n =
En

µ
=

√

1+
g2YMNn2

J2
.

String states from N = 4 SYM; BMN operators

•Vacuum: E = 0, so ∆ − J = 0. Oscillators at gYM = 0:

∆− J = 1. Construct operators out of fields with ∆− J = 1, on

top of operator with ∆− J = 0.

•Field with ∆ = J = 1: Z = Φ5 + iΦ5: unique! (charged under

J). (Z̄ has ∆ = −J = 1, so ∆− J = 2).

•Fields with J = 0 and ∆ = 1 (so ∆− J = 1): Φm, m = 1, ...,4

and DµZ = ∂µZ + [Aµ,Z] (bosonic) and χaJ=+1/2 (fermionic, 8

comps.; other 8: χaJ=−1/2).
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•Vacuum, with µp+ = J/R2:

|0, p+〉 =
1√

JNJ/2
Tr [ZJ].

•Oscillators with n = 0 (BPS operators, with ∆ − J indep.

of gYM), obtained by inserting a†0,r = Φr = (DµZ,Φm) or b†0,b =

χaJ=−1/2 in it

•Excited levels (n ≥ 1): add also momentum wavefunction e
2πinx

L

around the closed string, so, e.g. a†n,4 insertion is

a†n,4|0, p
+〉 =

1√
J

J
∑

l=1

1√
JNJ/2+1/2

Tr [ZlΦ4ZJ−l]e
2πinl
J .

•These are ”BMN operators”. Study ”dilute gas approx.”: few

”impurities” among Z’s.
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•But we can reproduce this results from N = 4 SYM: ∃ small

parameter g2YMN/J2 for this subset of (BMN) operators, even

though λ = g2YMN (nonperturbative QFT).

•Obtain strings on the pp wave: first step towards a quantum

gravity description in AdS! Interactions can be introduced, but:

hard.

•Goal: connect this with: perturbative SYM vs. nonperturbative

strings (quantum gravity).

•Must understand HOW perturbative SYM is mapped to non-

perturbative strings (the definition of nonpert. strings)
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Discretized string action from N = 4 SYM

•KK states on Rt×S3 ↔ R4, reduced on S3, so constant Z: cr.op.

(b†)ij. Similarly, for Φ, cr.op. (a†)ij, so states ↔ operators:

|a†l 〉 ≡ Tr
[

(b†)la†(b†)J−l
]

|0〉.

•Interacting Hamiltonian

Hint = −g2YMTr
∑

I>J

{

[ΦI,ΦJ][ΦI,ΦJ]
}

,

has then term that can act on operators O,

Hint = −g2YMTr
{

[Z,Φm][Z̄,Φm]
}

→ 2g2YMN [b†,φ][b,φ]; φ =
a+ a†√

2
,

whose action is through Feynman diagrams, as

Feynman diagram for the 2-point function of O(x) at one-loop.
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•’t Hooft limit ⇒ only planar diagrams.

a)

b) c)

d) e)
Planar Feynman diagrams for the 2-point function of O. a) The planar tree

level diagram. b) Planar one-loop Feynman diagram with hopping from l+1

to l. c) Planar one-loop diagram with hopping from l to l + 1. d) One-loop

planar diagram with gluon exchange e) One-loop planar diagram with scalar

self-energy.
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•After a calculation, find the Hamiltonian (when acting on states

↔ operators in N = 4 SYM)

H =
J
∑

j=1

a†jaj + aja
†
j

2
+

λ

(2π)2

J
∑

j=1

(φj − φj+1)
2.

•Continuum version of Hamiltonian = light-cone string on pp

wave,
H =

∫ L

0
dσ

1

2
[φ̇2 + φ′2 + φ2] , L =

2πJ

µ
√
λ
= 2πα′p+ ,

so string as a discrete ”spin chain” in N = 4 SYM

A periodic spin chain of the type that appears in the pp wave string theory.

All spins are up, except one excitation has one spin down.
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•After diagonalizing the Hamiltonian, one obtains the eigenfre-
quencies

ωn =
√

1 + 4|αn| =

√

1 +
g2YMN

π2
sin2

πn

J
,

with the corresponding Fock states (an is discrete Fourier tr. of
aj)

c†n,1/2|0〉 =
a†n ± a†J−n√

2
|0〉 =

1√
J

J
∑

j=1

e
2πijn

J ± e−
2πijn

J
√
2

a†j|0〉 ,

•Fock states mapped to the BMN operators

1√
J

J
∑

l=1

1

N
J
2+1

Tr [Φ1ZlΦ1ZJ−l]
[

cos
(

2πinl

J

)

or i sin
(

2πinl

J

)]

.

•Note that for n 7 J, both ωn and the states match the string
on pp wave. For n ∼ J, we also have a match, but not to the
pp wave (Penrose limit of AdS5 × S5), but a different limit.
•Note that ωn is valid to all orders in λ (even though the Hamil-
tonian was one-loop, i.e. λ1), though only for few impurities
(M 7 J). Why? It seems to resum all interactions.
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Spin chain: SU(2) sector and HXXX from N = 4 SYM

•We can construct a spin chain that is the extension of the dilute

gas approx. one, in an SU(2) sector with 2 scalars, corresponding

to ”spin up” and ”spin down”,

Z = Φ1 + iΦ2; and W = Φ3 + iΦ4 ,

acting on operators (and their generalizations with ”magnon”

momenta)

OJ1,J2
α = Tr [ZJ1WJ2] + ...(permutations).

•The interaction Hamiltonian in this subsector is

Hint = −g2YM [Z,W ]Tr [Z̄, W̄ ] ,

so the one-loop Hamiltonian is

H(1)
planar = Γ

(1)
planar =

g2YMN

16π2

L
∑

l+1

2
(

1− Pl,l+1

)

.
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•A more precise concept of Hamiltonian, extendable to higher

loops, is of a dilatation operator D, obtained by attaching Feyn-

man diagrams to operators,

D ◦OJ1,J2
α (x) =

∑

β

DαβO
J1,J2
β (x) ,

•Then the dilatation operator acts on operators as spin chains as

D(1)
planar =

g2YMN

8π2

L
∑

l+1

(

1ll,l+1 − Pl,l+1

)

,

which is the Heisenberg XXX1/2 Hamiltonian, with J = g2YMN/(16π2).

Indeed, that is

H = −J
L
∑

j=1

$σj · $σj+1 = −2J
L
∑

j=1

(Pj,j+1 − 1) ,

where we have used that on the | ↑〉, | ↓〉 basis on the chain, the

permutation operator is Pij =
1
2 + 1

2$σi · $σj.
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Coordinate Bethe ansatz
•Denote |x1, ..., xM〉 state with spins down at positions x1, ..., xM
along the chain. Then the ”one-magnon” eigenstate of HXXX
and its energy are

|ψ(p1)〉 =
L
∑

x=1

eip1x|x〉 , E(p1) = 8J sin2(p1/2)|ψ(p1).

•The 2-magnon state is

|ψ(p1, p2)〉 =
∑

1≤x1<x2≤L

ψ(x1, x2)|x1, x2〉

ψ(x1, x2) = ei(p1x1+p2x2) + S(p2, p1)e
i(p2x1+p1x2) ,

where E = E(p1) +E(p2) and the 2-body S-matrix is

S(p1, p2) =
φ(p1)− φ(p2) + i

φ(p1)− φ(p2)− i
, φ(p) =

1

2
cot

p

2
≡ u.

•For M magnons, in terms of φ(p) = u = rapidities (for true
magnon momenta, u called Bethe roots), the energy is

E =
M
∑

j=1

8J sin2
pj
2

=
M
∑

j=1

2J
1

u2j +1/4
.
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