Lecture 3

Gauge/gravity dualities, the pp wave
correspondence and spin chains
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AdS/CFT: review

eFrom N D3-branes in two P.O.V.: extremal p-brane (gravita-
tional) solutions vs. endpoints of open strings (Polchinski); in a
decoupling limit, we obtain:

-N = 4 SYM with gauge group SU(N), in 't Hooft limit:
gYM — O, N — oo, but \ = gYMN = 4mgsN fixed and large,
equals string theory in AdSg x S° background at energy U,

2 2
ds? = o/ \/zLZW( dt? + di3) + \/4rgsN (dU -|—d§22>]

els a duality: one side is perturbative (e.g., weak gravity), the
other nonperturbative (e.g., A large in QFT).

e3 possible versions of AdS/CFT:

-Weakest: only at gs — 0 and g¢gs/N large — string theory ~
supergravity. o/ and gs corrections might disagree.

-Stronger: valid at any finite gs/N, but only at gs — 0, N — o0,
I.e. o//R2 = 1/y/4mgsN corrections agree, but not gs corrections.

-Strongest: believed to be correct: valid at any ¢2,, and N (or
gs and /). Obs.: A = 4rwgsN — 0, N small: Quantum Gravity!
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Gauge/gravity duality

eGeneralize: other max. susy CFT cases: AdS7 x S*, AdS, x S’
— "gravity dual”. Obtained also from decoupling limits (but
of N M2-branes and N Mb-branes in M-theory, respectively).

eConformal invariance < AdS space. But we can obtain less
susy by taking AdS x X, e.g. by dividing by a finite group Sk/l‘.

e\/\Ve can also break conformal invariance — replace AdS space.

e [ heories with mass gap: AdS space like finite quantum me-
chanical box: must cut out a thin cvylinder from the middle of
the AdS cylinder.

e\We have an UV-IR correspondence:
E~U=r7r/d = IRin CFT =r — 0 (UV) in AdS. Cut out
around r = 7rin-

eMotion in U = r/a’ — Renormalization group flow in QFT.
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Minimal ingredients to simulate QCD:

eA large N quantum gauge theory (N — oo for small gs correc-
tions)

eBoundary at infinity identified with flat space of QCD, but bet-
ter: field theory at energy scale U corresponds to flat space at
position r in the gravity dual.

e[ hus d+ 1 dimensional gravity dual corresponds to d-dim. field
theory plus its energy scale U.

eSince motion in U is RG flow, mass gap corresponds to minimum
r of gravity dual.

eGauge group appears in gravity dual only through N.
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Map field theory/gravity dual

eGlobal symmetries in Mink, field th. <« gauge symmetries in
d + 1-dim. gravity dual. — global symmetries of compact space
Xm. J,‘j couple to AZ.

e, Noether current: T,y <> (couples to) guv. So d-dim. transl.
inv. < diffeomorphism invariance in d + 1 dimensions.

eOpen/closed coupling: gs = g&,,/(47).

eGauge invariant operators <+ (sourced by) gravity dual fields in
d+ 1 dimensions: eSupergravity fields in d4+ 1 dim. (reduced on
Xm) < SYM operators (made of adjoints) (" glueballs™).

eFor quarks (fundamentals of gauge group and of some global
symmetry G), introduce SYM fields for the group G in the grav-
ity dual, coupling to G-charged, pion-like operators (made of
quarks), so "SYM« pion fields" .
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e [ hus: supergravity modes < glueballs, SYM fields < mesons.

eMass spectrum of tower of glueballs = mass spectrum for wave
eq. of sugra mode in gravity dual. Similar for mesons.

eBaryons: more than two fields, e.g. BI/E = ¢ qllq/i¢l%. In
field theory: solitonic. — e.g. topological solitons in Skyrme

model. In gravity dual: solitons: branes wrapped on cycles.

e\Wave functions of states in field theory, et correspond to
gravity dual wave functions ®(z, U, X,,) = e 2w (U, X,).

56



General properties for gravity duals for QCD-like, or SQCD-
like theories:

eAt high energy: conformal (all mass scales irrelevant). Thus,
for U — oo, AdSs x X5, or maybe with subleading corrections to
metric.

oAt low energy, mass gap, so gravity dual must terminate at
some Umin, such that "warp factor” U? in front of dz? remains
finite.

eFor fundamental quarks, open string modes on some brane must
be introduced. Couple to meson-like operators. Alternative: free
probe branes, probing physics at various energy scales.

oIf QCD-like theory has global symm. (like flavor, or R, symm.),
gravity dual, so X,,, must have this.
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o All previous examples: "top-down”: system of branes in a de-
coupling limit gives a well-defined (heuristically derived) holo-
graphic map QF1T — gravity dual. We hope this will happen for
actual QCD.

eBut: gravity is always holographic (a lot of evidence for this,
including black holes in general relativity). Furthermore, with
AdS asymptotics, we have: a) a finite time to get to the bound-
ary, where QFT sits. b) AdS;4+1 symmetry = conformal Minkg
symmetry = SO(d, 2).

e T hen, also: "bottom-up”. Construct gravity theory in AdS (not
from brane system) and see if phenomenology fits something
we want.

e AdS/CMT: phenomenological approach. " Top-down”: define
some known duality, see if physics of QFT matches anything.
OR: " bottom-up”: construct AdS theory that, given holographic
map, would imply wanted properties for the (unknown!) field
theory, and then calculate other properties.
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Example 1: Gravity dual of Lifshitz points

eCMT: usually nonrelativistic. Construct nonrelativistic gravity
dual. E.G.: " Lifshitz scaling”:
t— MNt, T — A\

z=dynamical critical exponent. Model example:
L= /an: at [(919) — K(V29)?] .
e [ hen, phenomenological gravity bgr. for Lifshitz scaling,

dt?  dz?  du?
2 P2
dsgi1 = R <_u22 Tz T )

u

2
u

(obs.: geodesically incomplete for z # 1 at ©w = oo) has scaling
invariance

t—= Nt, T— M\, u— \u,
with generator (Killing vector)
D = —i(2t0 + 2'0; + udy).

eCalculate symmetry algebra, together with M,

i, Py, H (rota-
tions, space/time translations): Lifshitz algebra!
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Ex.2:Gravity dual to Galilean and Schrodinger symmetries

el arger algebras: -conformal Galilean algebra: M;;, P;, H, D, but

also conserved rest mass, or particle number N and Galilean
_bOOStS t — t, X; —7 T — ’Uit .

eFor z = 2, extra generator C, special conformal generator:
Schrbodinger algebra (symmetry of the Schrodinger equation of

a free particle). oeAdS/CFT realization (geometrical): d + 2-
dimensional gravity dual (&, extra):

dt?2  d@?  du?® 2dtd
d32=R2<— T L 5).

w22 U2 TR 02

eNot time-reversal invariant (¢ <+ —t), nonsingular: conformal
to pp wave: ., R’ ( dt2u2) 4 2t de + di? —I—du)

2
u
elnvariant under scaling

V=Nt &=XF o=, ¢ =N\,
for generator
D = —i(zto: + a;iai + uoy + (2 — 2)585) :
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EXx.3:The holographic superconductor Gubser, 2008; Hartnoll,
Herzog, Horowitz, 2008

elngredients: a) AdSa background: CFT near transition point.
High T, superconductors (non-Fermi liquids) are 2+1d. b) charge
transport: conserved U(1) J,, dual to A,. c) Temperature, so
black hole in AdS4. d) symmetry breaking, so (O) # 0, for a

complex field charged under U(1). s wave superconductors =
charged scalar .

el_agrangian for gravity theory (d = 3)

1 d(d —1) 1 |
£= 5 (R 552 = 4R~ 1@ - AU — m2? - V(p)

e\Want ¢ #= 0 near BH horizon, for T' < T¢, and ¢ = 0, T > T¢.
AdS-RN (qubser) 2M Q% r?

+r2dG, f)=k-——+ 5+

()

AO(T) CD(T) — 9 - Q ) ¢ =0 ’
r Ty
e[ he scalar ¢ is a probe in background Boundary conditions

(2
p= 22 +¢2+m,¢—u——+

T T
but both 1,1Y> normalizable. Then, condensates

2A; —

(Oi) = ¢(2A —d) = =2y « (1 -T/T)Y?, i=1,2.
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The Penrose limit and pp waves

oPP waves: In flat space ,
ds? = 2deTda™ 4+ H(z,2%) (da )2 + 3 da?
Linearized solution is exact! Only nontrivial ‘Ricci is Ry, =

—502H(xF,z"). Here: waves not localized in 7.
eln supergravity: 11d sugra, pp wave solutions with

Fr=dst N : Fay+ i pops = P(3) pappoges
dp =0, dx¢p =0, —0?H = |¢|°.

oFor H = Y ;; Ajja'al, —2Tr A = |¢|?, we have solutions with 1/2
susy, but there is a unique solution W|th FULL susy,

H = Ajixtad = — 22
Z; ! Z 36

1=1,2,3
¢ = pdxt A dx? A do3.
eln 10d IIB sugra, pp wave solutions with
Fs = dx-l_ A (w + *CU) : F—l—,ul...,u4 = Wpyy... 4 F—l—,u5...,u8 — Wys...ug

H=>Y Ayz's);, ¢=¢o, dvu=0, dxw=0, 07H=—|w’.
eAgain, solutions have 1/2 susy, but 3! solution with full susy,

2
— —’M—Za:?; w = Ealwl A dx? A dx3 A dz?.
2
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ePenrose limit: Penrose theorem: near a null geodesic in any
metric, the spacetime becomes a pp wave. Null geodesic defined

by V =Y' = 0,U = 7, we can always put the metric in form

(Penrose): | o

' ds® = dV (dU +adV + > mw) + > Cidy'dy7

) ¥

where U,V are lightcone coords., and take the limit

U=u;, V=—; Yi:y—z;

R? R

to obtain a pp wave (in " Rosen coordinates” ; after a coordinate
change, previous form: " Brinkmann coordinates” )

R — oo,

elnterpretation of Penrose limit: boost along direction xz, while
taking the overall scale of metric to infinity:

t=coshpB t+sinhB z; 2’ =sinhB t+coshp ==
V= —t=ePlx—-t), W=2dF+t=(x+1),

then scale all coordinates by 1/R and identify e = R — 0.
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ePenrose limit of AdS5><S5: boost along an equator of S° defined
by 6 = 0 and stay at center of AdSs at p = 0 (is a null geodesic).

.............
ooooo

Null geodesic in AdSs x Ss for the Penrose limit giving the maximally super-
symmetric wave. It is in the center of AdSs, at p = 0, and on an equator of

55, at 6 = 0.

ds? = R2(—cosh?pdr? + dp? + sinh? p d3) + R (cos2 0 dip? + do? + sin20 ngQ)
~ R?[— (14 p?)dr® + dp® + p°dQ3| + R? [(1 — 0%) dy® + db* + QQngQ} .

eThen define null coords. = = (7 4+ 1)/v/2, and rescale to
obtain the pp wave,

ds? = —2dxTdx™ — p2(7 4+ §2)(dz™)? + dg? + di”.

64



Penrose limit of AdS/CFT: large R-charge Berenstein, Malda-

cena, Nastase, 2002
o =0, in global AdSs, and J = —i0,, (for rotation X° +» X°).
oBut <+ A and J «+ U(1) C SU(4) = SO(6) R-charge rotating

fields corresponding to X 5.5 X6

ePenrose limit i 1
(Or +0y) = —=(A = J)

T = py = 0y = i = ——
Oz ) A+ J
+ _ _9,) =
pT = —p_ =10, rLRQ \/§R2((‘9¢ Oy) NoT 2R
eRescale p~ by uv/2 and pt by 1/uv/2, so finally:

P A4 J

— = A—-J; 2upt = .

. 1p =2

eFor string theory on pp wave, pT,p~ finite, so as R — oo, keep
A—J and (A+J)/R? fixed, so A ~ J ~ R? — co. Thus Penrose
limit is large R- charge limit in AdS CFT'

oln N = 4 SYM, = 4nrgsN = 1V, so for gs fixed, we
have J ~ R?2 ~ \/_ so

N
L fixed and MY _ fived.

VN J?2
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String quantization and Hamiltonian on pp wave

ePolyakov action on pp wave (2! = (7,%))
1

2ma

l
1 . .
S = — / dO‘/dTE\/—’Y’)/ab [—28am+3ba:_ — u2x2~28aa:+8b:ﬁ+ + 8&:181,:132] .
0

oIn conf. gauge, /=% = n light-cone gauge z7(0,7) = 7
(rescale 7 by o/pT), and then [ = 2xa/pT,

1 2ra/pT
S = — / dr /O do

2o

1. .i\2 NN
5(—(%’) + (™) )‘l—ECL’i :

e | he equations of motion and solutions are
(=82 + 82)z" — 2z’ = 0. = o' c e WnTThne 2 — g2 42,

eln flat space u =0, wp = kn, = n, but now we rescaled by a’p+,
SO

n2

o . 2
En“’"—J“ T a2

66



eLight-cone Hamilltonian H, . = p~ has no 0-modes p* (z* mas-
sive), so

nel 1 o

oin N =4 SYM, E/pu=A —J and pupt ~ J/R?, so

2 2
7}

String states from N =4 SYM; BMN operators

eVacuum: E = 0, so A —J = 0. Oscillators at gy, = O:
A —J =1. Construct operators out of fields with A —J =1, on
top of operator with A — J = 0.

eField with A = J =1: Z = ®> 4 id>: unique! (charged under
J). (ZhasA=—-J=1,s0A—-J=2).

eFields with J=0and A=1(so A—-J=1). " m=1,..,4
and D, Z = 0,Z + [Au, Z] (bosonic) and X§=+1/2 (fermionic, 8
comps.; other 8: X§=—1/2)'
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eVVacuum, with upt™ = J/R?:

0,pT) = Tr[z7].

1
VJINJ/2
eOscillators with n = 0 (BPS operators, with A — J indep.
of gyar), obtained by inserting ag’r = ®" = (DuZ,d™) or bg’b _
Xj=_1/p NIt
2minx

eExcited levels (n > 1): add also momentum wavefunction e T
around the closed string SO, e.g. aL4 insertion is

27mnl

1 leyd oy J
n4|o ph) = \/— Z NJ/2+1/2Tr (2 b2 e

o[ hese are "BMN operators . Study "dilute gas approx.”: few
"impurities’ among Z’s.
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eBut we can reproduce this results from N = 4 SYM: 3 small
parameter ¢&,,N/J? for this subset of (BMN) operators, even
though A = g2,,N (nonperturbative QFT).

eODbtain strings on the pp wave: first step towards a quantum
gravity description in AdS! Interactions can be introduced, but:
hard.

e(Goal: connect this with: perturbative SYM vs. nonperturbative
strings (quantum gravity).

eMust understand HOW perturbative SYM is mapped to non-
perturbative strings (the definition of nonpert. strings)

69



Discretized string action from N =4 SYM

oKK states on R; x S3 +» R*, reduced on S3, so constant Z: cr.op.
(bT)”"j. Similarly, for &, cr.op. (aT)ij, so states «» operators:
' Fy NIty T

lal) = Tr [(b RAUACH }|o>.

elnteracting Hamiltonian

Hint = =gy Tr Y {[®], &[0, @1}
I>J

has then term that can act on operators O,

_ T
Hint = —g2 0, Tt {12, &™|[Z, &™)} = 262 NI, o) b, 6]; &= 2T %

V2

whose action is through Feynman diagrams, as

[DOIRC

Feynman diagram for the 2-point function of O(x) at one-loop.

o0
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o't HoOft limit = only planar dlagrams

I

o0
a)

O Ox) 4 2z 2 Py

AL UL DKL

LA L

O 7 o) =z Z¢)~_~ZZ

b) C)
Ox) =z . O

. O 4 z O z

ILELLY INrTnBrT

o) 7 B EE Z

¢ e+1 o) =z z P z

d) e)
Planar Feynman diagrams for the 2-point function of ©. a) The planar tree

level diagram. b) Planar one-loop Feynman diagram with hopping from [+ 1
to [. ¢) Planar one-loop diagram with hopping from [ to [+ 1. d) One-loop
planar diagram with gluon exchange e) One-loop planar diagram with scalar

self-energy.
71



eAfter a calculation, find the Hamiltonian (when acting on states
< operators in NN =4 SYM)

J a,T-a- —I—a-a]L-
_ J I )7 2
H = ' 5 + (2 )2 Z ((b] (bj—l—l) :
J=1
eContinuum version of Hamiltonian = light-cone string on pp
wave, L 1 . 2mwJ
H=/ do=[d2 + &2+ 2], L =22 = 2ralpT
o 2[¢ ¢ ¢~ N p

so string as a discrete "spin chain” in NN =4 SYM

A periodic spin chain of the type that appears in the pp wave string theory.

All spins are up, except one excitation has one spin down.
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e After diagonalizing the Hamiltonian, one obtains the eigenfre-
quencies

2
) T
with the corresponding Fock states (ay, is discrete Fourier tr. of
a,j)

N

T +a Jf 27szn _ 2mign
T T
Cn71/2|o> \/5 Z \/5 CL]’O> )
eFock states mapped to the BI\/IN operators
1 L1 L1 2minl  (27inl
> Tr[CD Zlolz ][cos( ) or zsm( )]
\/_z 1N2 J J

eNote that for n <« J, both w, and the states match the string
on pp wave. For n ~ J, we also have a match, but not to the
pp wave (Penrose limit of AdSs x S°), but a different limit.
eNote that wy is valid to all orders in A (even though the Hamil-
tonian was one-loop, i.e. )\1), though only for few impurities
(M <« J). Why? It seems to resum all interactions.
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Spin chain: SU(2) sector and Hy yy from N =4 SYM

e\\VVe can construct a spin chain that is the extension of the dilute
gas approx. one, in an SU(2) sector with 2 scalars, corresponding
to "spin up” and "spin down'’,

Z =l +id? and W= ®3 4 0%,

acting on operators (and their generalizations with "magnon”
momenta)

él’JQ = Tr[Z/1W72] + ...(permutations).
e | he interaction Hamiltonian in this subsector is
Hint = —g2 12, W]ITr [Z, W],

so the one-loop Hamiltonian is

2 L
1 _ @ _ 9yuN
leanar — I_|olanar — 2 Z 2 (1 - Pl,l-|-1> :
167 1
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e A Mmore precise concept of Hamiltonian, extendable to higher
loops, is of a dilatation operator D, obtained by attaching Feyn-
man diagrams to operators,

J1,J Jq1,J
Do Ot 2(z) = Y DapOyt2(x)
B
e [ hen the dilatation operator acts on operators as spin chains as

2 L
(1) 9y mN
Dplanar = 75,2 > (41— Prigr)

which is the Heisenberg X X X ,, Hamiltonian, with J = g5, N/(1672).
Indeed, that is

where we have used that on the | T) | J) basis on the chain, the
permutation operator is P;; = 5 Lyl 50,0
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Coordinate Bethe ansatz

eDenote |xq,...,x)) Sstate with spins down at positions x1,...,xy

along the chain. Then the "one-magnon” eigenstate of Hx xx
and its energy are

L .
W(p1)) = Y eP¥z) . E(p1) = 8Jsin?(p1/2)[v(p1).
r=1

e [ he 2-magnon state is

|¢(p17p2)> — Z ¢(331,£U2)|£U1,:U2>
1<z1<xo<L
W(xy, x0) = eP121tp2m2) 4 g(p, p)elP2r1tpi2)

where £ = E(p1) + E(p>) and the 2-body S-matrix is

¢(p1) — ¢(p2) + i _ 1 P _,
(1) — dlpo) —i TP Tty =

eFor M magnons, in terms of ¢(p) = v = rapidities (for true
magnon momenta, u called Bethe roots), the energy is

S(p1,p2) =
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