Lecture 2

AdS/CFT and its nontrivial tests
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eCompute charges and tensions of Dp-branes and compare with
supergravity p-brane solutions (Polchinski, 1995) = Dp-brane =
extremal p-brane solution of supergravity.

QOpen strings have " Chan-Paton factors” at endpoints — indices
= open string. Al|i) @ |j) = massless open string state is Aj} =
a’legj i) ® |j7) = vector in U(N) gauge group for N D-branes.

eAction for a single D-brane is

S, =T, / T lee=9\ [~ det(hy; + o/ (Fi; + Bij)) + fermi 4+ WZ

eStatic gauge: X' =¢449=0,....,p and gy = Nu =
hZ] (%'X’uanyg’uV — ’Ih‘j —I— 61Xmanm
oWZ term: [y, eN/2T AT AL, e.g. a term on D5 in type IIB is

1

= d6xeul---u6AM1F+
27'(' M6

12116
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e hen, for p = 3 and a single brane

3 FZ? 1 m At :
ngconst.—l—/d x —T—EﬁiX 0" Xm + fermi

eln fact, the action: "N = 4 supersymmetric Yang-Mills" for N
D3-branes.

oFields: {A% xelUJl waly o ¢ SU(N), I € SU(4), [IJ] — anti-
symmetric of SU(4): 6 representation. (m = 1,...,6: transverse
to D3).

eAction

1 1 1
Sn—agyy = —2 / a*a tr[—~5Ff, — S0 W’ — DX DX

+igWl [ X7, W] — 62 [ X1, X[ X1, X B
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eODbservation: Bosonic Nambu-Goto version — also volume
spanned by worldvolume:

S, = Tp/dp+1§\/—det(hab)

hap = 8af“abfyg,uv
eoln fact, strings massless fields form spacetime supergravity
multiplet.

eSupergravity has extremal p-branes solution = p-branes are
string theory nonperturbative objects: D-branes.

eSchwarzschild solution in 4d:

2mG dr?
ds? = _(1 - )dt2 +—me T R2d03
T

eReissner-Nordstrom (with charge): modify the Newtonian po-
tential defining solution,

MGN QQGN
r - I )
() r Aresdr?

where ds? = —(1 + 2Un(r))dt? 4+ dr? /(1 + 2Upn(7)) + r2d$23.
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eln supergravity we can add charge )y associated with an AHl---Mp—}—l’
with source term in the action Qp, [ dPT1¢Agy 1 = [dPajHliFet1a,, .

AVARR . “pwp
g g AOl...p - /’nD—p—3 ©

o T he source term can be rewritten as (on the worldvolume)

1 .
Sy = — Tp | d"Treen o, XM .0, XM Ang,nays
(p+ 1)! P/ “ : M
eExtremal solutions M = |Qp| of sugra with action Sp + S,
1 1 1
S =—/dD V= (R__a 2 _ e~ (o )
D= g | VI B 00) = o e Fi
(here ¢ is a scalar = "dilaton”), are of type
2 _ -9 _ apQp
dSEinstein - dSstrmg' Hp =1+ |ZEJ_|7_p
—~1/2 . 1/2 5
ds2ying = Hp 72(=di?® + di2) 4+ Hy'da3_,
19;3
PR — Hp*
1,
Aot.p = _E(Hp t—1)

span a (p + 1)-dimensional "worldvolume” .
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e Off-shell susy means that the algebra of susy is satisfied off-
shell (without the use of the eqs. of motion).
o [ he most general N-extended superalgebra in 4d, with central

charges, is
{Qb: Q%) = 2(CY") 0 Pud” + CopUY + (Cy5)apV™

and must be satisfied on all fields. In 2d, for the WZ model,
{Qb: Q%) = 2(CY")apPub” = [6e1, 6ey] = 2E27H €10y

eRepresenting the algebra with central charges and massive
states using the Wigner method, we find

1

_ 1 _
Ao = \/1§[Qé + €,5Q05] al, = ?[Qld + €apQ3]
bo = E[chy — EaBQQB] CLE; — ﬁ[@ld - 6045@%’] )

SO we obtain the algebra

{aa,al} = 2(M — Z)805;  {ba,blj} = 2(M + Z)b,5 = M > |Z|.

and the rest zero, giving the BPS bound. Similar for super-
gravity.
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o\ =4 SYM is obtained as N =1 SYM in 10d reduced to 4d,
SlOd’/\/’zlg}/M = (—2)/d10xTr [—%FMNFMN—ES\I—MDM)\] =
1
SadN=4SYM = (—2)/d4$ Tr [—ZFz ——¢z$¢ — —Dy¢i; DV ¢

2
— g [pij, 7] — gz[(bz’j, bril[67, ¢kl]]

eThen NN = 4 SYM is obtained on the worldvolume of D3-
branes, in o/ — 0 (low energy) limit.
o\ = 4 susy invariance of SYM:

JAYL = ey, !
xUl = %E[IWJ]CL

j91%
5wal 72 Fa I+2’L'Y'MD XCL [IJ]GJ QQbeC(XbXC)[IJ]EJ

o\ = 4 Super Yang-Mills = representation of conformal group,
{Aa, wal Xa 1 }

ebeta functlon — 0 = scale and conformal invariant. But A =
Ag+ O(g) in general. No infinities, but 3 finite renormalizations.
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AdS/CFT in original formulation (Maldacena, 1997)

eString theory in AdSs x S®> = N = 4 SYM with SU(N) gauge
group (low energy theory on N D3-branes), living at the bound-
ary of AdSg x S, involving a certain limit.

eHeuristical derivation:

eD-branes = extremal p-branes = curve space. Solution:
ds® = H™'/2(r)daf + HY/?(r)(dr? 4 12dQ3)
Fs = (1 4 %)dt Adzq Adzo Adzs A (dH™Y)
H(r)=1+ 45 R= 4rgsNa'?;, Q= gsN

eAdd a M — near extremal: M = @ + 6M = horizon = emits
Hawking radiation: 2 open strings on D3 collide and form a
closed string that peels off and goes into the bulk.
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Two open strings living on a D-brane collide and form a closed string, that
can then peel off and go away from the brane.
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oP.O.V. nr. 1 D3-branes = endpoints of strings. String theory
gives:

-open strings on D3. Low energy (a/ —+0) = N =4 SYM

-closed strings in bulk (all spacetime): supergravity 4+ massive
modes of string. Low energy: supergravity only.

-interactions, giving e.g. Hawking radiation as above.

S = Sbulk ‘|‘ Sbrane ‘I' Sinteractions

eLow energy limit, o/ — 0, = Spur — Ssupergravity: Sbrane —
SA—a5y M» Sint X ENewton ~ gs@'? — 0. Moreover, since Newton
kny — 0, = free gravity. Thus:

efree gravity in bulk
e4d N =4 SYM on D3's.

eObs: 9(AdSsx S°) = R31 or S3x R (4 dimensionall): S° shrinks
to zero size at boundary.
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eP.O.V. nr. 2 D3-branes replaced by p-branes (supergravity
solutions).

eGeometry has two asymptotic regions: r — 0: AdSy X S° and
r — oo. Minkowskiqg. Infinitely long throat:

eEnergy at point r is

d 1 d 1
dr— V=goodt /=900
eThen at r — 0, for fixed E, (energy of the throat) Foc — 0 =
low energy excitations.

ErN EQQ:>EOO=H_1/4E7“NTE7“

oAt r — oo, long distance r - o & E — 0, effective gravity
coupling GEP—2 — 0 = free gravity — in the bulk.
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eCompare POV 1 with POV 2. Same free gravity in the bulk =
Identify the others =

o4d N = 4 SYM with SU(N) on D3 = gravity at » — 0 in
D-brane background, for o/ — 0.

eBackground for r — 0, with »r/R = R/xg.

—dt? + dE
>
0
eThen, metric is (E-Va' fixed and Eso fixed; Eoo/(ErVa!) =
r/a/ = U fixed)

U? 3} U2
ds2 — o \/m(_dt2 + d73) + \/4mwgsN (W + dQ%)]
S

e R4 o = \/4mgsN =fixed and large (small o/ corrections)

2 2
d
ds? = R? 3drg R2dQ22 : AdSs x S°

38



a) b)

C) d) e)

Penrose diagrams. a) Penrose diagram of 2 dimensional Minkowski space.
b) Penrose diagram of 3 dimensional Minkowski space. ¢) Penrose diagram
of the Poincaré patch of Anti-de Sitter space. d) Penrose diagram of global
AdS> (2 dimensional Anti-de Sitter), with the Poincaré patch emphasized;
xg = 0 is part of the boundary, but zo = o is a fake boundary (horizon). e)
Penrose diagram of global AdS,; for d > 2. It is half the Penrose diagram of

AdS> rotated around the § = 0 axis.
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Anti-de Sitter space

ed-dimensional Anti de Sitter space:

d—1
' d32=—d:v%—|— de%—dw§+1; £UO—|— Zx azd_l_l——RQ
=1

is explicitly invariant under SO(d—1,2) by construction and R < 0.
eMetrics: Poincare coordinates (t,x; € R,z0 € R)

R2
ds® = 2( dt? —|—de +de>
o i=1

eUp to conformal factor, same as flat space = Penrose diagram
is the same. For d > 2 however, we use radial coordinate p > 0O
instead of spatial coordinate z € R = obtain half of diamond =
triangle.

e\Ve can make explicit also the exponential "warp factor”

d—2
ds® = e2Y (dt2 + > d:cg) +dy® (zg=eY)

1=1
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eEven though r,x;,zg are oo in extent, space is not complete:
Infinity at y = oo is reached in finite time by a null ray:

o
ds° =0 = dt°=e Wy’ = t= / e Ydy < oo

e—- 1 other coordinates covering whole space: global coordi-
nates:

AdS :  ds? = R?(— cosh? p dr? + dp? + sinh? p d23_,)
sphere:  ds3 = R?(cos® p dw? + dp? 4+ sin? p dQ23_,)

eFinally, coordinate transf. tanf = sinh p =

R2
cos2 6
eHere 0 < 0 < n/2, 7 € R = infinite cylinder. Poincare patch:
figure of revolution obtained by rotating triangle around a side,
situated along the axis of the cylinder

eBoundary of cylinder still reached by light ray in finite time (and
reflected back).

e AdS is somewhat like a finite box, with a boundary.

ds3 = (—dr? 4 d6? + sin? 0 d23_,)

41



eAdS/CFT in o/ — 0,gs — O limit: large N limit of 't Hooft, with
effective coupling \ = g%MN, and loop counting 1/N, so

‘ T _ P
o/~ Qb
a) b)

C)

a) Planar 2-loop diagram with 2 3-point vertices b) Planar 2-loop diagram
with 2 4-point vertices c) Nonplanar 3-loop diagram.

ejust that now g}Q/MN — A\ is fixed and large! = nonperturbative
QFT.

o\Witten map: Gauge invariant operator © of N =4 SYM, with
conformal dimension A and representation I, of SO(6) = SU(4)
+ field in AdSs, of mass m and representation I, of SO(6) =
symmetry of S°. eThen gbg;) AN O{Z), with

d2

d 2 12
A= — —
;-I- +m R
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Witten construction

eNear boundary zg = 0 in Poincaré coords., O0¢p = 0 = ¢ —
23 B¢ and ¢ — 25 ¢o (A= dim. of dual op.).

e [ hen ¢g= source for dual operator O.

eObservables for O « ¢: generating functional for O:

Zboundary — ZO,CFT[(bO] — /D[SYM fields]e_SN=4 sym+/ d*zO(x)¢o(x)

eFundamental idea: Zboundary = Zbulk = Zstm'ng[qbo], where gboz
boundary sources. But for o/ — 0, gs — O,R“/o/2 > 1 — string ~
classical supergravity, and Zgingl¢o] = e~ sugraldléoll,

= Zo,crrlPol = e~ Ssugral@léoll

eBut in CFT, correlators are obtained by derivation:

577/
< O(x1)..0(xzn) > = Mo(xl)éﬁ(sqbo(xn)zo[@bo]|¢o=o
— —SsugralplPoll],
500 (a1) 000 (an) [90=0
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eBut: perturbative (g%MN — 0) correlators match nonpertur-

bative ones (classical supergravity) only if there is some susy

argument, otherwise different (3f;(\)).
eEXxception: anomalies. Gauge anomaly < CS coupling:

5353 pnt vertex[Aa [a?]]
7

Jia Jjb ch _ CS,sugra :
(J*(21) S (22) J*(23)) CFT, dype part 5ag(x1)6a?(:v2)5ai($3) 0

US
A
CS( ) 18

(large M) and find equality with the CFT result (small )

€l 5 —y)o(y —

coming from the one-loop trlangle anomaly (whlch IS one-loop
exactl!),

Tr / P (AL (0,A,) 05 A + A% terms 4+ A° terms) |
=OM;

<Ja(x)Jb(y)Jk(Z)>CFT dape =

Triangle diagram contributing to the (Jf‘(m)Jf(y)JE(z)) correlator.  Chiral
fermions run in the loop.
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eWilson loops: in QCD: very heavy quarks g 4+ ¢q, so fixed —
define contour. Observable ¢qq potential, V,z(L). Define

W(C) = Tr [P exp {z ]fc Au(f)dfﬂ}]

— IS gauge invariant. If we take a very long rectangle in the
time direction T' (and short in the spatial one L),

Y

N Y

L «—>

T
i Z
time <

q q q q

a b
a)Heavy quark and antiguark staying at a fixed distance L. b)Wilson loop
contour C for the calculation of the quark-antiquark potential.
e [ hen from the VEV of the Wilson loop, as T — oo, extract qq

potential, (W (C))o o~ Vag(R)T
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eConfining theory: constant force — linear potential (at strong
coupling Al),

Vq(j(R) ~ R,
0= QCD string tension. QCD string = flux tube of constant
cross section. e N
G0
R ——

flux lines

R

Between a quark and an antiquark in QCD, flux lines are confined: they live

in a flux tube.

eln string theory, this is obtained from the partition function for

a classical string with boundary condition = Wilson contour,
(WIC]) = ZstyinglCl = e~ stringlC] ;

eSubtlety: susy generalized Wilson loop

W[C] = %Tr P exp [ jqf (@AMM + ol x! (w“)\/?) dT] |

(1) : loop, #1: on unit S°. We consider only #{=const.: rect-
angular Wilson loop is 1/2 susy. (invariant under susy transf.).
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oeBut (W|[C]) is a good observable at any coupling A. In fact, for a
circular C, it can be calculated exactly (at small A\, we have usual
Feynman diagrams, but in general, it can be calculated using a)
matrix models; b) supersymmetric localization techniques: all in
field theory). Result

N oo 2 o 1+3 +192+ A
wien "= =h(V) = @_{( _8_ﬁ+...), A1
wic) = %le\f—l (_gz/4> .9°/8

eOn the string side, Zsiing[C], calculated by (W][C]), is a good
quantum gravity observable (partition function with a boundary
condition on the fixed boundary)

.% = 1/y/gsN = o//R? corrections correspond to o' corrections:
quantum fluctuations of string; 1/N corrections correspond to
(9sIN)/N = gs corrections: string worldsheet making loops (chang-
ing topology). In the end, this quantum gravity observable is
defined and calculated from N =4 SYM at any coupling!
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eFinite temperature: Witten metric for AdS at finite T (limit
of AdS black hole)

2 2
ds? = R—2 —f(z)dtz—l—dy'Q—l—;Z(z) + R2dQ2
zZ zZ
4
f(z) = 1-°4,
0

with temperature T'=1/(rzg).
eBekenstein-Hawking entropy of this black hole,
A
o @ ,

counts the number of effective d.o.f. in this semiclassical gravity

theory (holographic: d.o.f.’s on the horizon of the black hole,

not in volume), and should equal dual QFT's (N = 4 SYM at
3

finite T') entropy. But area of horizon, A = %fdyldyzdyg, IS oo,
0

Therefore the entropy density is

B S _ R3

[ dyrdyodys  4Gns23

S
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oBut k% = 167TGN 10 = (2m)"g2a/* and in AdSs x S°, R* =
o gYMN— a2 (47rgS)N
eThen reducing on an S° of radius R, with Qp = w3 gives

4

73 GN,lO 703
GN10 = WRS =GN =

2
7T
= R3=s,__=_-—N°T3
QsR5  2N2 PA=c0 = 5

e T his is entropy density at oo coupling. From ¢ = 0P/0T and
e=—P+4+Ts, we find

7.‘.2
Py, = EN2T4 ,

2
o = S N2T4
3
eBut at weak coupling (A = 0), one free bosonic d.o.f has
s = 212T /45, and one free fermionic d.o.f. has 7/8 of that. The
for N = 4 SYM (8 bosonic d.o.f and 8 fermionic d.o.f., all in
adjoint of SU(N)), we have
B 5 2273 272 5 o
SA:O_(8+88><N D=5 =3 V1,
so we obtain the ratios (for pressure, we use the same thermod.
relations)

Py—= =00 __

Py—o €EA=0

S \=

SA=0

3 3
4’ 4
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eln lattice QCD, one finds about 80% reduction from A = 0O
(UV) to A = o (IR), instead of the above 75% for N' =4 SYM,
consistent with reduction of effective d.o.f.'s along the RG flow.
eBut reversing the logic, we can say that

AH 4 1 AH’Y

Ssemi—classical = —— — Sstrongly—quantum — gssemi—classical — 3

so that in quantum gravity, we have an increase of the entropy
density (effective nr. of d.o.f.'s) from semiclassical to strongly
quantum.

e [ here are many, many other observables that have been com-
puted in AdS/CFT, though not many have an easy to understand
definition in the strong quantum gravity regime.
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