Lecture 2

AdS/CFT and its nontrivial tests

- Compute charges and tensions of Dp-branes and compare with supergravity p-brane solutions (Polchinski, 1995) \Rightarrow Dp-brane $=$ extremal p-brane solution of supergravity.
- Open strings have " Chan-Paton factors" at endpoints \rightarrow indices \Rightarrow open string. $\lambda_{i j}^{a}|i\rangle \otimes|j\rangle \Rightarrow$ massless open string state is $A_{\mu}^{a}=$ $\alpha_{-1}^{\mu} \lambda_{i j}^{a}|i\rangle \otimes|j\rangle=$ vector in $U(N)$ gauge group for N D-branes.
- Action for a single D-brane is

$$
S_{p}=T_{p} \int d^{p+1} \xi e^{-\phi} \sqrt{-\operatorname{det}\left(h_{i j}+\alpha^{\prime}\left(F_{i j}+B_{i j}\right)\right)}+\text { fermi }+\mathbf{W Z}
$$

\bullet-Static gauge: $X^{i}=\xi^{i}, i=0, \ldots, p$ and $g_{\mu \nu}=\eta_{\mu \nu} \Rightarrow$

$$
\begin{aligned}
& h_{i j}=\partial_{i} X^{\mu} \partial_{j} X^{\nu} g_{\mu \nu}=\eta_{i j}+\partial_{i} X^{m} \partial_{j} X_{m} \\
& B_{i j}=\partial_{u} X^{\mu} \partial_{j} X^{\nu} B_{\mu \nu}
\end{aligned}
$$

$\bullet W Z$ term: $\int_{M_{p}} e^{\wedge F / 2 \pi} \wedge \sum_{n} A_{n}$, e.g. a term on D5 in type IIB is

$$
\frac{1}{2 \pi} \int_{M_{6}} d^{6} x \epsilon^{\mu_{1} \ldots \mu_{6}} A_{\mu_{1}} F_{\mu_{2} \ldots \mu_{6}}^{+}
$$

- Then, for $p=3$ and a single brane

$$
S_{2}=\text { const. }+\int d^{3} x\left(-\frac{F_{i j}^{2}}{4}-\frac{1}{2} \partial_{i} X^{m} \partial^{i} X_{m}+\text { fermi }\right)
$$

-In fact, the action: " $\mathcal{N}=4$ supersymmetric Yang-Mills" for N D3-branes.
-Fields: $\left\{A_{i}^{a}, X^{a[I J]}, \Psi_{\alpha}^{a I}\right\}, a \in S U(N), I \in S U(4), \quad[I J] \rightarrow$ antisymmetric of $S U(4)$: 6 representation. $(m=1, \ldots, 6$: transverse to D3).

- Action

$$
\begin{aligned}
& S_{\mathcal{N}=4 S Y M}=-2 \int d^{4} x \operatorname{tr}\left[-\frac{1}{4} F_{\mu \nu}^{2}-\frac{1}{2} \bar{\Psi}_{I} \not D \Psi^{I}-\frac{1}{2} D_{\mu} X_{I J} D^{\mu} X^{I J}\right. \\
& \left.+i g \bar{\Psi}^{I}\left[X_{I J}, \Psi^{J}\right]-g^{2}\left[X_{I J}, X_{K L}\right]\left[X^{I J}, X^{K L}\right]\right]
\end{aligned}
$$

-Observation: Bosonic Nambu-Goto version \rightarrow also volume spanned by worldvolume:

$$
\begin{aligned}
S_{p} & =T_{p} \int d^{p+1} \xi \sqrt{-\operatorname{det}\left(h_{a b}\right)} \\
h_{a b} & =\partial_{a} \xi^{\mu} \partial_{b} \xi^{\nu} g_{\mu \nu}
\end{aligned}
$$

-In fact, strings massless fields form spacetime supergravity multiplet.

- Supergravity has extremal p-branes solution \Rightarrow p-branes are string theory nonperturbative objects: D-branes.
-Schwarzschild solution in 4d:

$$
d s^{2}=-\left(1-\frac{2 m G}{r}\right) d t^{2}+\frac{d r^{2}}{1-\frac{2 m G}{r}}+R^{2} d \Omega_{2}^{2}
$$

\bullet Reissner-Nordstrom (with charge): modify the Newtonian potential defining solution,

$$
\begin{gathered}
U_{N}(r)=-\frac{M G_{N}}{r}+\frac{Q^{2} G_{N}}{4 \pi \epsilon_{0}^{2} 4 r^{2}} \\
\text { where } d s^{2}=-\left(1+2 U_{N}(r)\right) d t^{2}+d r^{2} /\left(1+2 U_{N}(r)\right)+r^{2} d \Omega_{2}^{2}
\end{gathered}
$$

- In supergravity we can add charge Q_{p} associated with an $A_{\mu_{1} \ldots \mu_{p+1}}$, with source term in the action $Q_{p} \int d^{p+1} \xi A_{01 . . p+1}=\int d^{D} x j^{\mu_{1} \ldots \mu_{p+1}} A_{\mu_{1} \ldots \mu_{p}}$ giving

$$
A_{01 \ldots p}=-\frac{C_{p} Q_{p}}{r^{D-p-3}} .
$$

-The source term can be rewritten as (on the worldvolume)

$$
S_{s}=-\frac{1}{(p+1)!} T_{P} \int d^{p+1} \xi \epsilon^{i_{1} \ldots i_{p+1}} \partial_{i_{1}} X^{M_{1}} \ldots \partial_{i_{p+1}} X^{M_{p+1}} A_{M_{1} \ldots M_{p+1}}
$$

-Extremal solutions $M=\left|Q_{p}\right|$ of sugra with action $S_{D}+S_{s}$,

$$
S_{D}=\frac{1}{2 k^{2}} \int d^{D} x \sqrt{-g}\left(R-\frac{1}{2}(\partial \phi)^{2}-\frac{1}{2(d+1)!} e^{-a(d) \phi} F_{d+1}^{2}\right)
$$

(here ϕ is a scalar $=$ "dilaton"), are of type

$$
\begin{aligned}
d s_{\text {Einstein }}^{2} & =e^{-\frac{\phi}{2}} d s_{\text {string }}^{2} ; \quad H_{p}=1+\frac{\alpha_{p} Q_{p}}{\left|\vec{x}_{\perp}\right|^{7-p}} \\
d s_{\text {string }}^{2} & =H_{p}^{-1 / 2}\left(-d t^{2}+d \vec{x}_{p}^{2}\right)+H_{p}^{1 / 2} d \vec{x}_{9-p}^{2} \\
e^{-4 \phi} & =H_{p}^{\frac{p-3}{4}} \\
A_{01 \ldots p} & =-\frac{1}{2}\left(H_{p}^{-1}-1\right)
\end{aligned}
$$

span a $(p+1)$-dimensional "worldvolume".

- Off-shell susy means that the algebra of susy is satisfied offshell (without the use of the eqs. of motion).
- The most general N-extended superalgebra in 4d, with central charges, is

$$
\left\{Q_{\alpha}^{i}, Q_{\beta}^{j}\right\}=2\left(C \gamma^{\mu}\right)_{\alpha \beta} P_{\mu} \delta^{i j}+C_{\alpha \beta} U^{i j}+\left(C \gamma_{5}\right)_{\alpha \beta} V^{i j}
$$

and must be satisfied on all fields. In 2d, for the WZ model,

$$
\left\{Q_{\alpha}^{i}, Q_{\beta}^{j}\right\}=2\left(C \gamma^{\mu}\right)_{\alpha \beta} P_{\mu} \delta^{i j} \Rightarrow\left[\delta_{\epsilon_{1}}, \delta_{\epsilon_{2}}\right]=2 \bar{\epsilon}_{2} \gamma^{\mu} \epsilon_{1} \partial_{\mu}
$$

- Representing the algebra with central charges and massive states using the Wigner method, we find

$$
\begin{aligned}
a_{\alpha}=\frac{1}{\sqrt{2}}\left[Q_{\alpha}^{1}+\epsilon_{\alpha \dot{\beta}} \bar{Q}_{2 \dot{\beta}}\right] \quad a_{\alpha}^{\dagger}=\frac{1}{\sqrt{2}}\left[\bar{Q}_{1 \dot{\alpha}}+\epsilon_{\alpha \beta} Q_{\beta}^{2}\right] \\
b_{\alpha}=\frac{1}{\sqrt{2}}\left[Q_{\alpha}^{1}-\epsilon_{\alpha \dot{\beta}} \bar{Q}_{2 \dot{\beta}}\right] \quad a_{\alpha}^{\dagger}=\frac{1}{\sqrt{2}}\left[\bar{Q}_{1 \dot{\alpha}}-\epsilon_{\alpha \beta} Q_{\beta}^{2}\right]
\end{aligned}
$$

so we obtain the algebra

$$
\left\{a_{\alpha}, a_{\beta}^{\dagger}\right\}=2(M-Z) \delta_{\alpha \beta} ; \quad\left\{b_{\alpha}, b_{\beta}^{\dagger}\right\}=2(M+Z) \delta_{\alpha \beta} \Rightarrow M \geq|Z|
$$

and the rest zero, giving the BPS bound. Similar for supergravity.
$\bullet \mathcal{N}=4$ SYM is obtained as $\mathcal{N}=1$ SYM in 10d reduced to $4 d$,

$$
\begin{aligned}
S_{10 d, \mathcal{N}=1 S Y M}= & (-2) \int d^{10} x \operatorname{Tr}\left[-\frac{1}{4} F^{M N} F_{M N}-\frac{1}{2} \bar{\lambda} \Gamma^{M} D_{M} \lambda\right] \Rightarrow \\
S_{4 d, \mathcal{N}=4 \text { SYM }}= & (-2) \int d^{4} x \operatorname{Tr}\left[-\frac{1}{4} F_{\mu \nu}^{2}-\frac{1}{2} \bar{\psi}_{i} \not D \psi^{i}-\frac{1}{2} D_{\mu} \phi_{i j} D^{\mu} \phi^{i j}\right. \\
& \left.-g \bar{\psi}^{i}\left[\phi_{i j}, \psi^{j}\right]-\frac{g^{2}}{4}\left[\phi_{i j}, \phi_{k l}\right]\left[\phi^{i j}, \phi^{k l}\right]\right]
\end{aligned}
$$

-Then $\mathcal{N}=4$ SYM is obtained on the worldvolume of D3branes, in $\alpha^{\prime} \rightarrow 0$ (low energy) limit.
$\bullet \mathcal{N}=4$ susy invariance of SYM:

$$
\begin{aligned}
& \delta A_{\mu}^{a}=\bar{\epsilon}_{I} \gamma_{\mu} \Psi^{a I} \\
& \delta X_{a}^{[I J]}=\frac{i}{2} \bar{\epsilon}^{[I} \Psi^{J] a} \\
& \delta \Psi^{a I}=-\frac{\gamma^{\mu \nu}}{2} F_{\mu \nu}^{a} \epsilon^{I}+2 i \gamma^{\mu} D_{\mu} X^{a,[I J]} \epsilon_{J}-2 g f^{a}{ }_{b c}\left(X^{b} X^{c}\right)^{[I J]} \epsilon_{J}
\end{aligned}
$$

$\bullet \mathcal{N}=4$ Super Yang-Mills $=$ representation of conformal group, $\left\{A_{\mu}^{a}, \Psi_{\alpha}^{a I}, X_{[I J]}^{a}\right\}$.
\bullet beta function $=0 \Rightarrow$ scale and conformal invariant. But $\Delta=$ $\Delta_{0}+\mathcal{O}(g)$ in general. No infinities, but \exists finite renormalizations.

AdS/CFT in original formulation (Maldacena, 1997)

- String theory in $A d S_{5} \times S^{5}=\mathcal{N}=4$ SYM with $S U(N)$ gauge group (low energy theory on N D3-branes), living at the boundary of $A d S_{5} \times S^{5}$, involving a certain limit.
- Heuristical derivation:
-D-branes $=$ extremal p-branes \Rightarrow curve space. Solution:

$$
\begin{aligned}
& d s^{2}=H^{-1 / 2}(r) d \vec{x}_{\|}^{2}+H^{1 / 2}(r)\left(d r^{2}+r^{2} d \Omega_{5}^{2}\right) \\
& F_{5}=(1+*) d t \wedge d x_{1} \wedge d x_{2} \wedge d x_{3} \wedge\left(d H^{-1}\right) \\
& H(r)=1+\frac{R^{4}}{r^{4}} ; \quad R=4 \pi g_{s} N \alpha^{\prime 2} ; \quad Q=g_{s} N
\end{aligned}
$$

-Add a $\delta M \rightarrow$ near extremal: $M=Q+\delta M \Rightarrow$ horizon \Rightarrow emits Hawking radiation: 2 open strings on D3 collide and form a closed string that peels off and goes into the bulk.

Two open strings living on a D-brane collide and form a closed string, that can then peel off and go away from the brane.
-P.O.V. nr. 1 D3-branes $=$ endpoints of strings. String theory gives:
-open strings on D3. Low energy $\left(\alpha^{\prime} \rightarrow 0\right) \Rightarrow \mathcal{N}=4$ SYM
-closed strings in bulk (all spacetime): supergravity + massive modes of string. Low energy: supergravity only.
-interactions, giving e.g. Hawking radiation as above.

$$
S=S_{b u l k}+S_{\text {brane }}+S_{\text {interactions }}
$$

\bullet Low energy limit, $\alpha^{\prime} \rightarrow 0, \Rightarrow S_{\text {bulk }} \rightarrow S_{\text {supergravity, }}, S_{\text {brane }} \rightarrow$ $S_{\mathcal{N}=4 S Y M}, S_{\text {int }} \propto \kappa_{\text {Newton }} \sim g_{s} \alpha^{\prime 2} \rightarrow 0$. Moreover, since Newton $\kappa_{N} \rightarrow 0, \Rightarrow$ free gravity. Thus:
-free gravity in bulk
-4d $\mathcal{N}=4$ SYM on D3's.

- Obs: $\partial\left(A d S_{5} \times S^{5}\right)=R^{3,1}$ or $S^{3} \times R$ (4 dimensional!): S^{5} shrinks to zero size at boundary.
-P.O.V. nr. 2 D3-branes replaced by p-branes (supergravity solutions).
-Geometry has two asymptotic regions: $r \rightarrow 0: A d S_{5} \times S^{5}$ and $r \rightarrow \infty$: Minkowski ${ }_{10}$. Infinitely long throat:
- Energy at point r is

$$
E_{r} \sim \frac{d}{d \tau}=\frac{1}{\sqrt{-g_{00}}} \frac{d}{d t} \sim \frac{1}{\sqrt{-g_{00}}} E_{\infty} \Rightarrow E_{\infty}=H^{-1 / 4} E_{r} \sim r E_{r}
$$

-Then at $r \rightarrow 0$, for fixed E_{r} (energy of the throat) $E_{\infty} \rightarrow 0 \Rightarrow$ low energy excitations.
\bullet At $r \rightarrow \infty$, long distance $\delta r \rightarrow \infty \Leftrightarrow E \rightarrow 0$, effective gravity coupling $G E^{D-2} \rightarrow 0 \Rightarrow$ free gravity \rightarrow in the bulk.

- Compare POV 1 with POV 2. Same free gravity in the bulk \Rightarrow Identify the others \Rightarrow
$\bullet 4 d \mathcal{N}=4$ SYM with $S U(N)$ on D3 $=$ gravity at $r \rightarrow 0$ in D-brane background, for $\alpha^{\prime} \rightarrow 0$.
- Background for $r \rightarrow 0$, with $r / R \equiv R / x_{0}$.

$$
d s^{2}=R^{2-d t^{2}+d \vec{x}_{3}^{2}+d x_{0}^{2}} x_{0}^{2}+R^{2} d \Omega_{5}^{2}: A d S_{5} \times S^{5}
$$

-Then, metric is $\left(E_{r} \sqrt{\alpha^{\prime}}\right.$ fixed and E_{∞} fixed; $E_{\infty} /\left(E_{r} \sqrt{\alpha^{\prime}}\right)=$ $r / \alpha^{\prime} \equiv U$ fixed)

$$
d s^{2}=\alpha^{\prime}\left[\frac{U^{2}}{\sqrt{4 \pi g_{s} N}}\left(-d t^{2}+d \vec{x}_{3}^{2}\right)+\sqrt{4 \pi g_{s} N}\left(\frac{d U^{2}}{U^{2}}+d \Omega_{5}^{2}\right)\right]
$$

- $R_{A d S}^{2}=\sqrt{4 \pi g_{s} N}=$ fixed and large (small α^{\prime} corrections)

Penrose diagrams. a) Penrose diagram of 2 dimensional Minkowski space. b) Penrose diagram of 3 dimensional Minkowski space. c) Penrose diagram of the Poincaré patch of Anti-de Sitter space. d) Penrose diagram of global $A d S_{2}$ (2 dimensional Anti-de Sitter), with the Poincaré patch emphasized; $x_{0}=0$ is part of the boundary, but $x_{0}=\infty$ is a fake boundary (horizon). e) Penrose diagram of global $A d S_{d}$ for $d \geq 2$. It is half the Penrose diagram of $A d S_{2}$ rotated around the $\theta=0$ axis.

Anti-de Sitter space

-d-dimensional Anti de Sitter space:

$$
d s^{2}=-d x_{0}^{2}+\sum_{i=1}^{d-1} d x_{i}^{2}-d x_{d+1}^{2} ; \quad-x_{0}^{2}+\sum_{i=1}^{d-1} x_{i}^{2}-x_{d+1}^{2}=-R^{2}
$$

is explicitly invariant under $S O(d-1,2)$ by construction and $\mathcal{R}<0$.

- Metrics: Poincare coordinates ($t, x_{i} \in R, x_{0} \in R_{+}$)

$$
d s^{2}=\frac{R^{2}}{x_{0}^{2}}\left(-d t^{2}+\sum_{i=1}^{d-2} d x_{i}^{2}+d x_{0}^{2}\right)
$$

\bullet Up to conformal factor, same as flat space \Rightarrow Penrose diagram is the same. For $d>2$ however, we use radial coordinate $\rho>0$ instead of spatial coordinate $x \in R \Rightarrow$ obtain half of diamond $=$ triangle.
-We can make explicit also the exponential "warp factor"

$$
d s^{2}=e^{2 y}\left(-d t^{2}+\sum_{i=1}^{d-2} d x_{i}^{2}\right)+d y^{2} \quad\left(x_{0}=e^{-y}\right)
$$

- Even though r, x_{i}, x_{0} are ∞ in extent, space is not complete: Infinity at $y=\infty$ is reached in finite time by a null ray:

$$
d s^{2}=0 \Rightarrow d t^{2}=e^{-2 y} d y^{2} \Rightarrow t=\int^{\infty} e^{-y} d y<\infty
$$

$\bullet \Rightarrow \exists$ other coordinates covering whole space: global coordinates:

$$
\begin{aligned}
\text { AdS: } & d s_{d}^{2}=R^{2}\left(-\cosh ^{2} \rho d \tau^{2}+d \rho^{2}+\sinh ^{2} \rho d \vec{\Omega}_{d-2}^{2}\right) \\
\text { sphere : } & d s_{d}^{2}=R^{2}\left(\cos ^{2} \rho d w^{2}+d \rho^{2}+\sin ^{2} \rho d \vec{\Omega}_{d-2}^{2}\right)
\end{aligned}
$$

-Finally, coordinate transf. $\tan \theta=\sinh \rho \Rightarrow$

$$
d s_{d}^{2}=\frac{R^{2}}{\cos ^{2} \theta}\left(-d \tau^{2}+d \theta^{2}+\sin ^{2} \theta d \vec{\Omega}_{d-2}^{2}\right)
$$

- Here $0 \leq \theta \leq \pi / 2, \tau \in R \Rightarrow$ infinite cylinder. Poincare patch: figure of revolution obtained by rotating triangle around a side, situated along the axis of the cylinder
- Boundary of cylinder still reached by light ray in finite time (and reflected back).
- AdS is somewhat like a finite box, with a boundary.
-AdS/CFT in $\alpha^{\prime} \rightarrow 0, g_{s} \rightarrow 0$ limit: Iarge N limit of 't Hooft, with effective coupling $\lambda=g_{Y}^{2}{ }_{M} N$, and loop counting $1 / N$, so

$$
\mathcal{A} \sim\left(g^{2} N\right)^{L} N^{1-2 h}
$$

a)

b)

C)
a) Planar 2-loop diagram with 2 3-point vertices b) Planar 2-loop diagram with 2 4-point vertices c) Nonplanar 3-loop diagram.
\bullet-just that now $g_{Y M}^{2} N=\lambda$ is fixed and large! \Rightarrow nonperturbative QFT.

- Witten map: Gauge invariant operator \mathcal{O} of $\mathcal{N}=4$ SYM, with conformal dimension Δ and representation I_{n} of $S O(6)=S U(4)$ \leftrightarrow field in $A d S_{5}$, of mass m and representation I_{n} of $S O(6)=$ symmetry of S^{5}. \bullet Then $\phi_{(n)}^{I_{n}} \leftrightarrow \mathcal{O}_{(n)}^{I_{n}}$, with

$$
\Delta=\frac{d}{2}+\sqrt{\frac{d^{2}}{4}+m^{2} R^{2}}
$$

Witten construction

- Near boundary $x_{0}=0$ in Poincaré coords., $\square \phi=0 \Rightarrow \phi \rightarrow$ $x_{0}^{d-\Delta} \phi_{0}$ and $\phi \rightarrow x_{0}^{\Delta} \phi_{0}(\Delta=\operatorname{dim}$. of dual op.).
-Then $\phi_{0}=$ source for dual operator \mathcal{O}.
\bullet Observables for $\mathcal{O} \leftrightarrow \phi$: generating functional for \mathcal{O} :
$Z_{\text {boundary }}=Z_{\mathcal{O}, \text { CFT }}\left[\phi_{0}\right]=\int \mathcal{D}[$ SYM fields $] e^{-S_{\mathcal{N}=4 S Y M}+\int d^{4} x \mathcal{O}(x) \phi_{0}(x)}$
-Fundamental idea: $Z_{\text {boundary }}=Z_{\text {bulk }}=Z_{\text {string }}\left[\phi_{0}\right]$, where $\phi_{0}=$ boundary sources. But for $\alpha^{\prime} \rightarrow 0, g_{s} \rightarrow 0, R^{4} / \alpha^{\prime 2} \gg 1 \rightarrow$ string \simeq classical supergravity, and $Z_{\text {string }}\left[\phi_{0}\right]=e^{-S_{\text {sugra }}\left[\phi\left[\phi_{0}\right]\right]}$.

$$
\Rightarrow Z_{\mathcal{O}, C F T}\left[\phi_{0}\right]=e^{-S_{\text {sugra }}\left[\phi\left[\phi_{0}\right]\right]}
$$

- But in CFT, correlators are obtained by derivation:

$$
\begin{aligned}
<\mathcal{O}\left(x_{1}\right) \ldots \mathcal{O}\left(x_{n}\right)> & =\left.\frac{\delta^{n}}{\delta \phi_{0}\left(x_{1}\right) \ldots \delta \phi_{0}\left(x_{n}\right)} Z_{\mathcal{O}}\left[\phi_{0}\right]\right|_{\phi_{0}=0} \\
& =\left.\frac{\delta^{n}}{\delta \phi_{0}\left(x_{1}\right) \ldots \delta \phi_{0}\left(x_{n}\right)} e^{-S_{\text {sugra }}\left[\phi\left[\phi_{0}\right]\right]}\right|_{\phi_{0}=0}
\end{aligned}
$$

- But: perturbative $\left(g_{Y}^{2} M^{N} \rightarrow 0\right)$ correlators match nonperturbative ones (classical supergravity) only if there is some susy argument, otherwise different $\left(\exists f_{i}(\lambda)\right.$).
\bullet Exception: anomalies. Gauge anomaly \leftrightarrow CS coupling:

$$
\begin{aligned}
& \left\langle J^{i a}\left(x_{1}\right) J^{j b}\left(x_{2}\right) J^{k c}\left(x_{3}\right)\right\rangle_{\mathrm{CFT}, \text { dabc }} \text { part }=-\left.\frac{\delta^{3} S_{\mathrm{CS}}^{3-\text { pht vertex }}\left[A_{\mu}^{a}\left[a_{l}^{d}\right]\right]}{\delta a_{i}^{a}\left(x_{1}\right) \delta a_{j}^{b}\left(x_{2}\right) \delta a_{k}^{c}\left(x_{3}\right)}\right|_{a=0}, \\
& \operatorname{using}_{S_{\mathrm{CS}}}(A)=\frac{N^{2}}{18 \pi^{2}} \operatorname{Tr} \int_{B_{s}=\partial M_{\sigma}} \epsilon^{\mu \nu \rho \sigma \tau}\left(A_{\mu}\left(\partial_{\nu} A_{\rho}\right) \partial_{\sigma} A_{\tau}+A^{4} \text { terms }+A^{5} \text { terms }\right),
\end{aligned}
$$

(large λ) and find equality with the CFT result (small λ)

$$
\frac{\partial}{\partial z^{k}}\left\langle J_{i}^{a}(x) J_{j}^{b}(y) J_{k}^{c}(z)\right\rangle_{\mathrm{CFT}, \mathrm{~d}_{\mathrm{abc}}}=-\frac{\left(N^{2}-1\right) i d_{a b c}}{48 \pi^{2}} \epsilon^{i j k l} \frac{\partial}{\partial x_{k}} \frac{\partial}{\partial y_{l}} \delta(x-y) \delta(y-z),
$$

coming from the one-loop triangle anomaly (which is one-loop exact!),

Triangle diagram contributing to the $\left\langle J_{i}^{a}(x) J_{j}^{b}(y) J_{k}^{c}(z)\right\rangle$ correlator. Chiral fermions run in the loop.
\bullet Wilson loops: in QCD: very heavy quarks $q+\bar{q}$, so fixed \rightarrow define contour. Observable $q \bar{q}$ potential, $V_{q \bar{q}}(L)$. Define

$$
W(C)=\operatorname{Tr}\left[P \exp \left\{i \oint_{C} A_{\mu}(\xi) d \xi^{\mu}\right\}\right]
$$

\rightarrow is gauge invariant. If we take a very long rectangle in the time direction T (and short in the spatial one L),

a) ${ }^{\text {a }}$ (ark staying at a fixed dis
a)Heavy quark and antiquark staying at a fixed distance L. b)Wilson loop contour C for the calculation of the quark-antiquark potential.
-Then from the VEV of the Wilson loop, as $T \rightarrow \infty$, extract $q \bar{q}$ potential,

$$
\langle W(C)\rangle_{0} \propto e^{-V_{q \bar{q}}(R) T}
$$

- Confining theory: constant force \rightarrow linear potential (at strong coupling $\lambda!$),

$$
V_{q \bar{q}}(R) \sim \sigma R,
$$

$\sigma=$ QCD string tension. QCD string $=$ flux tube of constant cross section.

Between a quark and an antiquark in QCD, flux lines are confined: they live in a flux tube.
-In string theory, this is obtained from the partition function for a classical string with boundary condition $=$ Wilson contour,

$$
\langle W[C]\rangle=Z_{\text {string }}[C]=e^{-S_{\text {string }}[C]}
$$

-Subtlety: susy generalized Wilson Ioop

$$
W[C]=\frac{1}{N} \operatorname{Tr} P \exp \left[\oint\left(i A_{\mu} \dot{x}^{\mu}+\theta^{I} X^{I}\left(x^{\mu}\right) \sqrt{\dot{x}^{2}}\right) d \tau\right] .
$$

$x^{\mu}(\tau)$: loop, θ^{I} : on unit S^{5}. We consider only $\theta^{I}=$ const.: rectangular Wilson loop is $1 / 2$ susy. (invariant under susy transf.).

- But $\langle W[C]\rangle$ is a good observable at any coupling λ. In fact, for a circular C, it can be calculated exactly (at small λ, we have usual Feynman diagrams, but in general, it can be calculated using a) matrix models; b) supersymmetric localization techniques: all in field theory). Result

$$
\begin{aligned}
\langle W[C]\rangle \stackrel{N \rightarrow \infty}{=} \frac{2}{\sqrt{\lambda}} I_{1}(\sqrt{\lambda}) & = \begin{cases}1+\frac{\lambda}{8}+\frac{\lambda^{2}}{192}+\ldots, & \lambda \ll 1 \\
\sqrt{\frac{2}{\pi}} \frac{\sqrt{\lambda}}{\lambda^{3 / 4}}\left(1-\frac{3}{8 \sqrt{\lambda}}+\ldots\right), & \lambda \gg 1\end{cases} \\
\langle W[C]\rangle & =\frac{1}{N} L_{N-1}^{1}\left(-g^{2} / 4\right) e^{g^{2} / 8}
\end{aligned}
$$

\bullet On the string side, $Z_{\text {string }}[C]$, calculated by $\langle W[C]\rangle$, is a good quantum gravity observable (partition function with a boundary condition on the fixed boundary)
$\bullet \frac{1}{\lambda}=1 / \sqrt{g_{s} N}=\alpha^{\prime} / R^{2}$ corrections correspond to α^{\prime} corrections: quantum fluctuations of string; $1 / N$ corrections correspond to $\left(g_{s} N\right) / N=g_{s}$ corrections: string worldsheet making loops (changing topology). In the end, this quantum gravity observable is defined and calculated from $\mathcal{N}=4$ SYM at any coupling!
-Finite temperature: Witten metric for AdS at finite T (limit of AdS black hole)

$$
\begin{aligned}
d s^{2} & =\frac{R^{2}}{z^{2}}\left[-f(z) d t^{2}+d \vec{y}^{2}+\frac{d z^{2}}{f(z)}\right]+R^{2} d \Omega_{5}^{2} \\
f(z) & =1-\frac{z^{4}}{z_{0}^{4}}
\end{aligned}
$$

with temperature $T=1 /\left(\pi z_{0}\right)$.

- Bekenstein-Hawking entropy of this black hole,

$$
S=\frac{A}{4 G_{N}},
$$

counts the number of effective d.o.f. in this semiclassical gravity theory (holographic: d.o.f.'s on the horizon of the black hole, not in volume), and should equal dual QFT's ($\mathcal{N}=4$ SYM at finite T) entropy. But area of horizon, $A=\frac{R^{3}}{z_{0}^{3}} \int d y_{1} d y_{2} d y_{3}$ is ∞,
Therefore the entropy density is

$$
s=\frac{S}{\int d y_{1} d y_{2} d y_{3}}=\frac{R^{3}}{4 G_{N, 5} z_{0}^{3}} .
$$

- But $2 \kappa_{N}^{2}=16 \pi G_{N, 10}=(2 \pi)^{7} g_{S}^{2} \alpha^{\prime 4}$ and in $A d S_{5} \times S^{5}, R^{4}=$ $\alpha^{\prime 2} g_{Y M}^{2} N=\alpha^{\prime 2}\left(4 \pi g_{s}\right) N$.
-Then reducing on an S^{5} of radius R, with $\Omega_{5}=\pi^{3}$ gives
$G_{N, 10}=\frac{\pi^{4}}{2 N^{2}} R^{8} \Rightarrow G_{N, 5}=\frac{G_{N, 10}}{\Omega_{5} R^{5}}=\frac{\pi}{2 N^{2}} R^{3} \Rightarrow s_{\lambda=\infty}=\frac{\pi^{2}}{2} N^{2} T^{3}$.
-This is entropy density at ∞ coupling. From $\sigma=\partial P / \partial T$ and $\epsilon=-P+T s$, we find

$$
P_{\lambda=\infty}=\frac{\pi^{2}}{8} N^{2} T^{4}, \quad \epsilon_{\lambda=\infty}=\frac{3 \pi^{2}}{8} N^{2} T^{4}
$$

- But at weak coupling $(\lambda=0)$, one free bosonic d.o.f has $s=2 \pi^{2} T / 45$, and one free fermionic d.o.f. has $7 / 8$ of that. The for $\mathcal{N}=4$ SYM (8 bosonic d.o.f and 8 fermionic d.o.f., all in adjoint of $S U(N)$), we have

$$
s_{\lambda=0}=\left(8+8 \frac{7}{8}\right)\left(N^{2}-1\right) \frac{2 \pi^{2} T^{3}}{45} \simeq \frac{2 \pi^{2}}{3} N^{2} T^{3}
$$

so we obtain the ratios (for pressure, we use the same thermod. relations)

$$
\frac{s_{\lambda=\infty}}{s_{\lambda=0}}=\frac{3}{4}, \quad \frac{P_{\lambda=\infty}}{P_{\lambda=0}}=\frac{\epsilon_{\lambda=\infty}}{\epsilon_{\lambda=0}}=\frac{3}{4}
$$

-In lattice QCD, one finds about 80% reduction from $\lambda=0$ (UV) to $\lambda=\infty$ (IR), instead of the above 75% for $\mathcal{N}=4$ SYM, consistent with reduction of effective d.o.f.'s along the RG flow. - But reversing the logic, we can say that
$S_{\text {semi-classical }}=\frac{A_{H}}{4} \rightarrow S_{\text {strongly-quantum }}=\frac{4}{3} S_{\text {semi-classical }}=" \frac{A_{H}}{3}$,
so that in quantum gravity, we have an increase of the entropy density (effective nr. of d.o.f.'s) from semiclassical to strongly quantum.
-There are many, many other observables that have been computed in AdS/CFT, though not many have an easy to understand definition in the strong quantum gravity regime.

