
Lecture 2

AdS/CFT and its nontrivial tests
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•Compute charges and tensions of Dp-branes and compare with
supergravity p-brane solutions (Polchinski, 1995) ⇒ Dp-brane =
extremal p-brane solution of supergravity.

•Open strings have ”Chan-Paton factors” at endpoints → indices
⇒ open string. λaij|i〉 ⊗ |j〉 ⇒ massless open string state is Aa

µ =
αµ−1λ

a
ij|i〉 ⊗ |j〉 = vector in U(N) gauge group for N D-branes.

•Action for a single D-brane is

Sp = Tp

∫

dp+1ξe−φ
√

−det(hij + α′(Fij +Bij)) + fermi +WZ

•Static gauge: Xi = ξi, i = 0, ..., p and gµν = ηµν ⇒

hij = ∂iX
µ∂jX

νgµν = ηij + ∂iX
m∂jXm

Bij = ∂uX
µ∂jX

νBµν

•WZ term:
∫

Mp
e∧F/2π ∧∑n An, e.g. a term on D5 in type IIB is

1

2π

∫

M6

d6xεµ1...µ6Aµ1F
+
µ2...µ6
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•Then, for p = 3 and a single brane

S2 = const.+
∫

d3x
(

−
F2
ij

4
−

1

2
∂iX

m∂iXm + fermi
)

•In fact, the action: ”N = 4 supersymmetric Yang-Mills” for N
D3-branes.

•Fields: {Aa
i ,X

a[IJ],ΨaI
α }, a ∈ SU(N), I ∈ SU(4), [IJ] → anti-

symmetric of SU(4): 6 representation. (m = 1, ...,6: transverse

to D3).

•Action

SN=4SYM = −2
∫

d4x tr[−
1

4
F2
µν −

1

2
Ψ̄ID/Ψ

I −
1

2
DµXIJD

µXIJ

+igΨ̄I[XIJ,Ψ
J]− g2[XIJ,XKL][X

IJ,XKL]]
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•Observation: Bosonic Nambu-Goto version → also volume

spanned by worldvolume:

Sp = Tp

∫

dp+1ξ
√

−det(hab)

hab = ∂aξ
µ∂bξ

νgµν

•In fact, strings massless fields form spacetime supergravity

multiplet.

•Supergravity has extremal p-branes solution ⇒ p-branes are

string theory nonperturbative objects: D-branes.

•Schwarzschild solution in 4d:

ds2 = −
(

1−
2mG

r

)

dt2 +
dr2

1− 2mG
r

+R2dΩ2
2

•Reissner-Nordstrom (with charge): modify the Newtonian po-
tential defining solution,

UN(r) = −
MGN

r
+

Q2GN

4πε204r
2
,

where ds2 = −(1 + 2UN(r))dt2 + dr2/(1 + 2UN(r)) + r2dΩ2
2.

30



.

•In supergravity we can add charge Qp associated with an Aµ1...µp+1,

with source term in the action Qp
∫

dp+1ξA01..p+1 =
∫

dDxjµ1...µp+1Aµ1...µp+1

giving A01...p = −
CpQp

rD−p−3
.

•The source term can be rewritten as (on the worldvolume)

Ss = −
1

(p+ 1)!
TP

∫

dp+1ξεi1...ip+1∂i1X
M1...∂ip+1X

Mp+1AM1...Mp+1
,

•Extremal solutions M = |Qp| of sugra with action SD + Ss,

SD =
1

2k2

∫

dDx
√
−g
(

R−
1

2
(∂φ)2 −

1

2(d+1)!
e−a(d)φF2

d+1

)

(here φ is a scalar = ”dilaton”), are of type

ds2Einstein = e−
φ
2ds2string; Hp = 1+

αpQp

|*x⊥|7−p

ds2string = H
−1/2
p (−dt2 + d*x2p) +H

1/2
p d*x29−p

e−4φ = H
p−3
4

p

A01...p = −
1

2
(H−1

p − 1)

span a (p+1)-dimensional ”worldvolume”.
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•Off-shell susy means that the algebra of susy is satisfied off-

shell (without the use of the eqs. of motion).

•The most general N-extended superalgebra in 4d, with central

charges, is

{Qi
α, Q

j
β} = 2(Cγµ)αβPµδ

ij + CαβU
ij + (Cγ5)αβV

ij ,

and must be satisfied on all fields. In 2d, for the WZ model,

{Qi
α, Q

j
β} = 2(Cγµ)αβPµδ

ij ⇒ [δε1, δε2] = 2ε̄2γ
µε1∂µ.

•Representing the algebra with central charges and massive
states using the Wigner method, we find

aα =
1√
2
[Q1

α + εαβ̇Q̄2β̇] a†α =
1√
2
[Q̄1α̇ + εαβQ

2
β]

bα =
1√
2
[Q1

α − εαβ̇Q̄2β̇] a†α =
1√
2
[Q̄1α̇ − εαβQ

2
β] ,

so we obtain the algebra

{aα, a†β} = 2(M − Z)δαβ; {bα, b†β} = 2(M + Z)δαβ ⇒ M ≥ |Z|.

and the rest zero, giving the BPS bound. Similar for super-

gravity.
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•N = 4 SYM is obtained as N = 1 SYM in 10d reduced to 4d,

S10d,N=1SY M = (−2)

∫

d10xTr

[

−
1

4
FMNFMN −

1

2
λ̄ΓMDMλ

]

⇒

S4d,N=4 SYM = (−2)

∫

d4x Tr

[

−
1

4
F 2
µν −

1

2
ψ̄iD/ ψ

i −
1

2
DµφijD

µφij

−gψ̄i[φij,ψ
j]−

g2

4
[φij,φkl][φ

ij,φkl]

]

•Then N = 4 SYM is obtained on the worldvolume of D3-

branes, in α′ → 0 (low energy) limit.

•N = 4 susy invariance of SYM:

δAa
µ = ε̄IγµΨ

aI

δX[IJ]
a =

i

2
ε̄[IΨJ]a

δΨaI = −
γµν

2
Fa
µνε

I +2iγµDµX
a,[IJ]εJ − 2gfabc(X

bXc)[IJ]εJ

•N = 4 Super Yang-Mills = representation of conformal group,

{Aa
µ,Ψ

aI
α , Xa

[IJ]}.
•beta function = 0 ⇒ scale and conformal invariant. But ∆ =

∆0+O(g) in general. No infinities, but ∃ finite renormalizations.
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AdS/CFT in original formulation (Maldacena, 1997)

•String theory in AdS5 × S5 = N = 4 SYM with SU(N) gauge

group (low energy theory on N D3-branes), living at the bound-

ary of AdS5 × S5, involving a certain limit.

•Heuristical derivation:

•D-branes = extremal p-branes ⇒ curve space. Solution:

ds2 = H−1/2(r)d*x2|| +H1/2(r)(dr2 + r2dΩ2
5)

F5 = (1 + ∗)dt ∧ dx1 ∧ dx2 ∧ dx3 ∧ (dH−1)

H(r) = 1+
R4

r4
; R = 4πgsNα

′2; Q = gsN

•Add a δM → near extremal: M = Q+ δM ⇒ horizon ⇒ emits

Hawking radiation: 2 open strings on D3 collide and form a

closed string that peels off and goes into the bulk.
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Two open strings living on a D-brane collide and form a closed string, that

can then peel off and go away from the brane.

35



.

•P.O.V. nr. 1 D3-branes = endpoints of strings. String theory
gives:

-open strings on D3. Low energy (α′ → 0) ⇒ N = 4 SYM

-closed strings in bulk (all spacetime): supergravity + massive
modes of string. Low energy: supergravity only.

-interactions, giving e.g. Hawking radiation as above.

S = Sbulk + Sbrane + Sinteractions

•Low energy limit, α′ → 0, ⇒ Sbulk → Ssupergravity, Sbrane →
SN=4SYM , Sint ∝ κNewton ∼ gsα′2 → 0. Moreover, since Newton
κN → 0, ⇒ free gravity. Thus:

•free gravity in bulk

•4d N = 4 SYM on D3’s.

•Obs: ∂(AdS5×S5) = R3,1 or S3×R (4 dimensional!): S5 shrinks
to zero size at boundary.
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•P.O.V. nr. 2 D3-branes replaced by p-branes (supergravity

solutions).

•Geometry has two asymptotic regions: r → 0: AdS5 × S5 and

r → ∞: Minkowski10. Infinitely long throat:

•Energy at point r is

Er ∼
d

dτ
=

1
√
−g00

d

dt
∼

1
√
−g00

E∞ ⇒ E∞ = H−1/4Er ∼ rEr

•Then at r → 0, for fixed Er (energy of the throat) E∞ → 0 ⇒
low energy excitations.

•At r → ∞, long distance δr → ∞ ⇔ E → 0, effective gravity

coupling GED−2 → 0 ⇒ free gravity → in the bulk.
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•Compare POV 1 with POV 2. Same free gravity in the bulk ⇒
Identify the others ⇒

•4d N = 4 SYM with SU(N) on D3 = gravity at r → 0 in

D-brane background, for α′ → 0.

•Background for r → 0, with r/R ≡ R/x0.

ds2 = R2−dt2 + d*x23 + dx20
x20

+R2dΩ2
5 : AdS5 × S5

•Then, metric is (Er
√
α′ fixed and E∞ fixed; E∞/(Er

√
α′) =

r/α′ ≡ U fixed)

ds2 = α′
[

U2
√
4πgsN

(−dt2 + d*x23) +
√

4πgsN

(

dU2

U2
+ dΩ2

5

)]

•R2
AdS =

√
4πgsN =fixed and large (small α′ corrections)
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a) b)

c) d) e)

Penrose diagrams. a) Penrose diagram of 2 dimensional Minkowski space.

b) Penrose diagram of 3 dimensional Minkowski space. c) Penrose diagram

of the Poincaré patch of Anti-de Sitter space. d) Penrose diagram of global

AdS2 (2 dimensional Anti-de Sitter), with the Poincaré patch emphasized;

x0 = 0 is part of the boundary, but x0 = ∞ is a fake boundary (horizon). e)

Penrose diagram of global AdSd for d ≥ 2. It is half the Penrose diagram of

AdS2 rotated around the θ = 0 axis.
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Anti-de Sitter space

•d-dimensional Anti de Sitter space:

ds2 = −dx20 +
d−1
∑

i=1

dx2i − dx2d+1; −x20 +
d−1
∑

i=1

x2i − x2d+1 = −R2

is explicitly invariant under SO(d−1, 2) by construction and R < 0.

•Metrics: Poincare coordinates (t, xi ∈ R, x0 ∈ R+)

ds2 =
R2

x20



−dt2 +
d−2
∑

i=1

dx2i + dx20





•Up to conformal factor, same as flat space ⇒ Penrose diagram

is the same. For d > 2 however, we use radial coordinate ρ > 0

instead of spatial coordinate x ∈ R ⇒ obtain half of diamond =

triangle.

•We can make explicit also the exponential ”warp factor”

ds2 = e2y



−dt2 +
d−2
∑

i=1

dx2i



+ dy2 (x0 = e−y)
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•Even though r, xi, x0 are ∞ in extent, space is not complete:

Infinity at y = ∞ is reached in finite time by a null ray:

ds2 = 0 ⇒ dt2 = e−2ydy2 ⇒ t =
∫ ∞

e−ydy < ∞

•⇒ ∃ other coordinates covering whole space: global coordi-

nates:

AdS : ds2d = R2(− cosh2 ρ dτ2 + dρ2 + sinh2 ρ d*Ω2
d−2)

sphere : ds2d = R2(cos2 ρ dw2 + dρ2 + sin2 ρ d*Ω2
d−2)

•Finally, coordinate transf. tan θ = sinh ρ⇒

ds2d =
R2

cos2 θ
(−dτ2 + dθ2 + sin2 θ d*Ω2

d−2)

•Here 0 ≤ θ ≤ π/2, τ ∈ R ⇒ infinite cylinder. Poincare patch:

figure of revolution obtained by rotating triangle around a side,

situated along the axis of the cylinder

•Boundary of cylinder still reached by light ray in finite time (and

reflected back).

•AdS is somewhat like a finite box, with a boundary.
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•AdS/CFT in α′ → 0, gs → 0 limit: large N limit of ’t Hooft, with
effective coupling λ = g2YMN , and loop counting 1/N , so

A ∼ (g2N)LN1−2h ,

a) b) c)

a) Planar 2-loop diagram with 2 3-point vertices b) Planar 2-loop diagram

with 2 4-point vertices c) Nonplanar 3-loop diagram.

•just that now g2YMN = λ is fixed and large! ⇒ nonperturbative
QFT.
•Witten map: Gauge invariant operator O of N = 4 SYM, with
conformal dimension ∆ and representation In of SO(6) = SU(4)
↔ field in AdS5, of mass m and representation In of SO(6) =
symmetry of S5. •Then φIn(n) ↔ OIn

(n), with

∆ =
d

2
+

√

d2

4
+m2R2
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Witten construction

•Near boundary x0 = 0 in Poincaré coords., !φ = 0 ⇒ φ →
xd−∆
0 φ0 and φ→ x∆0 φ0 (∆= dim. of dual op.).

•Then φ0= source for dual operator O.
•Observables for O ↔ φ: generating functional for O:

Zboundary = ZO,CFT [φ0] =
∫

D[SYM fields]e−SN=4 SYM+
∫

d4xO(x)φ0(x)

•Fundamental idea: Zboundary = Zbulk = Zstring[φ0], where φ0=
boundary sources. But for α′ → 0, gs → 0, R4/α′2 6 1 → string 7
classical supergravity, and Zstring[φ0] = e−Ssugra[φ[φ0]].

⇒ ZO,CFT [φ0] = e−Ssugra[φ[φ0]]

•But in CFT, correlators are obtained by derivation:

< O(x1)...O(xn) > =
δn

δφ0(x1)...δφ0(xn)
ZO[φ0]|φ0=0

=
δn

δφ0(x1)...δφ0(xn)
e−Ssugra[φ[φ0]]|φ0=0
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•But: perturbative (g2YMN → 0) correlators match nonpertur-
bative ones (classical supergravity) only if there is some susy
argument, otherwise different (∃fi(λ)).
•Exception: anomalies. Gauge anomaly ↔ CS coupling:

〈Jia(x1)J
jb(x2)J

kc(x3)〉CFT, dabc part = −
δ3S3−pnt vertex

CS,sugra [Aa
µ[a

d
l ]]

δaai (x1)δabj(x2)δack(x3)

∣

∣

∣

∣

∣

a=0

,

using
SCS(A) =

N2

18π2
Tr

∫

B5=∂M6

εµνρστ(Aµ(∂νAρ)∂σAτ + A4 terms +A5 terms) ,

(large λ) and find equality with the CFT result (small λ)

∂

∂zk
〈Ja

i (x)J
b
j (y)J

c
k(z)〉CFT,dabc

= −
(N2 − 1)idabc

48π2
εijkl

∂

∂xk

∂

∂yl
δ(x− y)δ(y − z) ,

coming from the one-loop triangle anomaly (which is one-loop
exact!),

Triangle diagram contributing to the 〈Ja
i (x)J

b
j (y)J

c
k(z)〉 correlator. Chiral

fermions run in the loop.
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•Wilson loops: in QCD: very heavy quarks q + q̄, so fixed →
define contour. Observable qq̄ potential, Vqq̄(L). Define

W (C) = Tr
[

P exp
{

i
∮

C
Aµ(ξ)dξ

µ
}]

→ is gauge invariant. If we take a very long rectangle in the

time direction T (and short in the spatial one L),

a) b)
a)Heavy quark and antiquark staying at a fixed distance L. b)Wilson loop

contour C for the calculation of the quark-antiquark potential.

•Then from the VEV of the Wilson loop, as T → ∞, extract qq̄

potential, 〈W (C)〉0 ∝ e−Vqq̄(R)T .
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•Confining theory: constant force → linear potential (at strong
coupling λ!),

Vqq̄(R) ∼ σR ,

σ= QCD string tension. QCD string = flux tube of constant
cross section.

Between a quark and an antiquark in QCD, flux lines are confined: they live

in a flux tube.

•In string theory, this is obtained from the partition function for
a classical string with boundary condition = Wilson contour,

〈W [C]〉 = Zstring[C] = e−Sstring[C] ,

•Subtlety: susy generalized Wilson loop

W [C] =
1

N
Tr P exp

[
∮
(

iAµẋ
µ + θIXI(xµ)

√

ẋ2
)

dτ
]

.

xµ(τ) : loop, θI: on unit S5. We consider only θI=const.: rect-
angular Wilson loop is 1/2 susy. (invariant under susy transf.).
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•But 〈W [C]〉 is a good observable at any coupling λ. In fact, for a

circular C, it can be calculated exactly (at small λ, we have usual

Feynman diagrams, but in general, it can be calculated using a)

matrix models; b) supersymmetric localization techniques: all in

field theory). Result

〈W [C]〉 N→∞
=

2√
λ
I1(

√
λ) =











1+ λ
8 + λ2

192 + ... , λ 9 1
√

2
π
e
√
λ

λ3/4

(

1− 3
8
√
λ
+ ...

)

, λ 6 1

〈W [C]〉 =
1

N
L1
N−1

(

−g2/4
)

eg
2/8

•On the string side, Zstring[C], calculated by 〈W [C]〉, is a good

quantum gravity observable (partition function with a boundary

condition on the fixed boundary)

•1λ = 1/
√
gsN = α′/R2 corrections correspond to α′ corrections:

quantum fluctuations of string; 1/N corrections correspond to

(gsN)/N = gs corrections: string worldsheet making loops (chang-

ing topology). In the end, this quantum gravity observable is

defined and calculated from N = 4 SYM at any coupling!
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•Finite temperature: Witten metric for AdS at finite T (limit

of AdS black hole)

ds2 =
R2

z2

[

−f(z)dt2 + d*y2 +
dz2

f(z)

]

+R2dΩ2
5

f(z) = 1−
z4

z40
,

with temperature T = 1/(πz0).
•Bekenstein-Hawking entropy of this black hole,

S =
A

4GN
,

counts the number of effective d.o.f. in this semiclassical gravity
theory (holographic: d.o.f.’s on the horizon of the black hole,
not in volume), and should equal dual QFT’s (N = 4 SYM at

finite T) entropy. But area of horizon, A = R3

z30

∫

dy1dy2dy3 is ∞,

Therefore the entropy density is

s =
S

∫

dy1dy2dy3
=

R3

4GN,5z30
.
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•But 2κ2N = 16πGN,10 = (2π)7g2sα
′4 and in AdS5 × S5, R4 =

α′2g2YMN = α′2(4πgs)N .
•Then reducing on an S5 of radius R, with Ω5 = π3 gives

GN,10 =
π4

2N2
R8 ⇒ GN,5 =

GN,10

Ω5R5
=

π

2N2
R3 ⇒ sλ=∞ =

π2

2
N2T3.

•This is entropy density at ∞ coupling. From σ = ∂P/∂T and
ε = −P + Ts, we find

Pλ=∞ =
π2

8
N2T4 , ελ=∞ =

3π2

8
N2T4 ,

•But at weak coupling (λ = 0), one free bosonic d.o.f has
s = 2π2T/45, and one free fermionic d.o.f. has 7/8 of that. The
for N = 4 SYM (8 bosonic d.o.f and 8 fermionic d.o.f., all in
adjoint of SU(N)), we have

sλ=0 =
(

8+ 8
7

8

)

(N2 − 1)
2π2T3

45
7

2π2

3
N2T3 ,

so we obtain the ratios (for pressure, we use the same thermod.
relations)

sλ=∞
sλ=0

=
3

4
,

Pλ=∞
Pλ=0

=
ελ=∞
ελ=0

=
3

4
.
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•In lattice QCD, one finds about 80% reduction from λ = 0

(UV) to λ = ∞ (IR), instead of the above 75% for N = 4 SYM,

consistent with reduction of effective d.o.f.’s along the RG flow.

•But reversing the logic, we can say that

Ssemi−classical =
AH

4
→ Sstrongly−quantum =

4

3
Ssemi−classical = ”

AH

3
”

so that in quantum gravity, we have an increase of the entropy

density (effective nr. of d.o.f.’s) from semiclassical to strongly

quantum.

•There are many, many other observables that have been com-

puted in AdS/CFT, though not many have an easy to understand

definition in the strong quantum gravity regime.
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