
Lecture 4

Holographic cosmology
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Top-down nonconformal gauge/gravity duality

•Example (Itzhaki, Maldacena, Sonnenschein, Yankielowicz, 1998): N

D2-branes giving 2+1 dim. SU(N) N = 4 SYM theory

ds2string = H
−1/2
2 (−dt2 + dx2 + dy2) +H

1/2
2 (dr2 + r2dΩ2

6)

H2(r) = 1+ d2
g2YMMα′2

r5
= 1+ d2

g2YMN

α′2U5

eφ = H
1/4
2

•decoupling limit: r → 0,α′ → 0, U = r/α′ fixed, and g2YM =

gs/
√
α′. Then, drop the 1 in H2, so 3+1 dim. +Ω6

ds2string
α′

=
U2

R2
(−dt2 + dx2 + dy2) +R2dU

2

U2
+R2dΩ2

6

R2 = α′
√

d2
g2YMN

U

•duality is holographic as well (d+1 gravity → d field theory)
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Phenomenological (bottom-up) gauge/gravity duality:
cosmology

•Usually: assume ∃ holography in AdS space, write perturbative
phenomenological gravity th. in AdS space (gravity + other
fields) ⇒ by holographic map, dual nonperturbative field theory
has desired properties.

•BUT: we can also imagine opposite map: define perturbative
field theory phenomenologically. Then, by holographic map,
nonperturbative (quantum) gravity is defined implicitly.

•Cosmology: 3 spatial directions (x, y, z, with fluctuations hij(x, y, z; t))
+ time t.

•But: double Wick rotation needed: (t, x, y)→ (x, y, z); r → t.

•Then, inverse RG flow in momentum U ↔ r evolution → time
t evolution.
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•Inflation (exponential expansion a(t) ∝ eHt, or power law a(t) ∝
tn, n > 1) is considered almost a “Standard Model” of cosmology,
since it agrees with data (CMBR fluctuations) and solves a set
of classic “puzzles” of Hot Big Bang cosmology

•But there is an extension of inflation into the strong gravity
domain, where it can be dealt with holographically (in AdS/CFT
or gauge/gravity duality): holographic cosmology

•Model by P. Mc Fadden and K. Skenderis (2009) offers a phenomeno-
logical set-up in this extended paradigm: use 2+1d theories
with “generalized conformal structure” and fix parameters from
CMBR data.

•Different parametrical fitting than Λ−CDM with inflation, but
fit to CMBR is as good (χ2 of 0.5 difference, 824.0 vs. 823.4)

•Could be improved by lattice calculation at intermediate cou-
pling (Skenderis et al., in progress)

•Besides, the classic puzzles of Hot Big Bang cosmology solved
by inflation are also solved in holographic cosmology
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Holographic cosmology (McFadden, Skenderis, 2009)

•Wick rotated cosmology (”cosmology/domain wall correspon-
dence”), for t→ z

ds2 = +dz2 + a2(z)[δij + hij(z, %x)]dx
idxj ,

Φ(z, %x) = φ(z) + δφ(z, %x)a ,

with q̄ = −iq, κ̄2 = −κ2. hij and δφ → fluctuations.

•This has a (phenomenological!) gravity dual; Wick rotation
implies q̄ = −iq, N̄ = −iN .

•CMBR observations: power spectra of perturbations γij and ζ
(gauge inv. combinations of hij and δφ)

∆2
S(q) ≡

q3

2π3
〈ζ(q)ζ(−q)〉

∆2
T (q) ≡

q3

2π3
〈γij(q)γij(−q)〉.
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•If a(z) ∝ eHz ← a(t) ∝ eHt: inflation, approx. de Sitter: treated

by Maldacena, 2002, via a type of Wick rotation from Anti-de Sitter

(AdS).

•The AdS Witten prescription ZCFT[φ0] = ZAdS[φ0] = e−Ssugra[φ[φ0]]

becomes the dS Maldacena prescription (map)

ZCFT[hij,φ] = Ψ[hij,φ]

for the CFT partition function ZCFT (with 3d sources hij,φ) vs.

the wavefunction of the Universe Ψ (path integral up to surface

with 3-metric hij and φ, at time t).

•But, prescription can be extended to nonconformal theories (Sk-

enderis et al. works) → a(z) ∝ zn ← a(t) ∝ tn. Moreover, as for

usual AdS/CFT, assume it is valid at any coupling, including

strong (nonperturbative quantum) gravity.

•Then, new model: CMBR perturbations generated during a

strong gravity (non-geometrical) cosmological phase
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•A holographic (strong gravity→ perturbative field theory) calcu-
lation, either direct, or based on Maldacena’s map Z[Φ] = Ψ[Φ],
extended to this case, gives

∆2
S(q) = −

q3

16π2ImB(−iq)

∆2
T(q) = −

2q3

π2ImA(−iq)
(we used κ̄2 = −κ2, q̄ = −iq), where

〈Tij(q̄)Tkl(−q̄)〉 = A(q̄)Πijkl +B(q̄)πijπkl

Πijkl = πi(kπl)j −
1

2
πijπkl , πij = δij −

q̄iq̄j
q̄2

•Euclidean field theory is super-renormalizable SU(N) gauge
theory, with Ai = Aa

i Ta, φ
M = φaMTa, ψL = ψaLTa and “general-

ized conformal structure” → dimensions contained in q only, and

through g2eff = g2N
q .
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•Action is phenomenological (most general super-renormalizable,
with ”generalized conformal structure”)

SQFT =

∫

d3xTr

[

1

2
FijF

ij + δM1M2
DiΦ

M1DiΦM2 + 2δL1L2
ψ̄L1γiDiψ

L2

+
√
2gYMµML1L2

ΦM ψ̄L1ψL2 +
1

6
g2YMλM1...M4

ΦM1...ΦM4

]

=
1

g2YM

∫

d3xTr

[

1

2
FijF

ij + δM1M2
DiΦ

M1DiΦM2 + 2δL1L2
ψ̄L1γiDiψ

L2

+
√
2µML1L2

ΦM ψ̄L1ψL2 +
1

6
λM1...M4

ΦM1...ΦM4

]

•Then, calculate in field theory

A(q,N) = q3N2fT(g
2
eff) , B(q,N) =

1

4
q3N2f(g2eff)

f(g2eff) = f0
[

1− f1g
2
eff ln g2eff + f2g

2
eff +O(g4eff)

]

fT(g
2
eff) = fT0

[

1− fT1g
2
eff ln g2eff + fT2g

2
eff +O(g4eff)

]

which implies the phenomenological parametrization (g, q∗,β, gT , βT
depend on g2YM, N,Ns,Nf and λ’s, µ’s)

∆2
S(q) =

∆2
0

1 + gq∗
q
ln
∣

∣

∣

q
βgq∗

∣

∣

∣
+O

(

gq∗
q

)2 , ∆2
T(q) =

∆2
0T

1+ gTq∗
q

ln
∣

∣

∣

q
βT gT q∗

∣

∣

∣
+O

(

gTq∗
q

)2
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•Why is spectrum almost flat (like for inflation)? Generalized
conformal structure! Only g2eff = g2N/q quantum corrections
allowed, so if g2eff is small (perturbative QFT, so nonperturbative
gravity), only corrections appear as above.

•Comparison to Λ− CDM + inflation:

∆2
S(q)(infl) = ∆2

0

(

q

q∗

)ns−1+αs
2 ln q

q∗

with ns − 1. 1. Then ∆2
S(q)(infl) ∝ qns−1 ∼ 1− (ns − 1) ln q

and ∆2
s(q)(holo.cosmo.) ∝ 1/[1 +A ln q] 0 1− A ln q as well.

•Yet fit to data sufficiently complex that it can distinguish them.
•Nevertheless, fit to data is as good as Λ−CDM with inflation, χ2

of 824.0 vs. 823.5, and fixes parameters (N, g2eff, and simplified
couplings).

•Find that g2eff is not perturbative for l < 30 ⇒ exclude it from
the fit. To put it back: need lattice calculation (in progress).
(Afshordi, Coriani, Delle Rose, Gould, Skenderis, 2017)
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•Another quantity needed here: global symmetry current corre-

lators, giving

〈jAi (q)jBk (−q)〉 = N2qδABπikfJ(g
2
eff)

where again

fJ(g
2
eff) = fJ0

[

1− fJ1g
2
eff ln g2eff + fJ2g

2
eff +O(g4eff)

]

•For that, we need a global symmetry (restrict the phenomeno-

logical model)

•Will be related to monopole perturbations
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Hot Big Bang puzzles and their solutions in
inflation

1. Smoothness and horizon: Universe is smooth, and ∃ cor-
relations > horizon: observed correlation size 2rH/ horizon dis-
tance dH at ls (last scattering), today gives

N =
2rH(t0)

dH(t0)
0 2(1+ zls)

1/2 0 72

Inflation: expansion with a(t) ∝ tn, n > 1 or eHt ⇒ scales

expand exponentially and dH(tls) ∝ eNe,

2. Flatness problem:

Ω(t)− 1 =
k

a(t)2H(t)2
∝
(

t

a(t)

)2

∝ t2(1−p)

needs p > 1 or a(t) ∝ eHt (inflation) to decrease to RD era,
then increase until now:

Ω0 − 1 = (Ω(tbi)− 1)e−2Ne

(

a(tI)HI

a0H0

)2
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3. Relic and monopole problem

-Monopoles: direct searches: ∃ < 10−30 monopoles/nucleon ⇒
< 10−30 monopoles per volume dilution (at phase transition, the
Kibble mechanism gives ∼ 1 mon./nucleon) ⇒ need dilution by
Ne > ln 1010 0 23 e-folds (for phase transition, before the end of
inflation).

-Relics: Not over close the Universe ⇒< 10−11 reduction in
volume since phase transition (when ∃ 0 1 relic/nucleon)

4. Entropy problem: SH(tBBN) ∼ 1063, but at phase transition,
∼ 1/horizon. Inflation: large growth of entropy during reheating,
and exponential expansion increases entropy in horizon.

5. Perturbations problem: CMBR pert. are classical, and
were super-horizon in the past. Inflation: scales ∝ eHt, but H 0
const. ⇒ scales get out of horizon.

6. Baryon asymmetry problem: (NB − NB̄)/NB ∼ 10−9. Its
creation needs interactions out of equilibrium. Inflation → true
(fast expansion) and 10−9: S1 ∼ 109.
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Solution of puzzles in holographic cosmology

1. Smoothness and horizon problem

•∃ nongeometric phase, but at the end - geometrical.
•Holographic map nonlocal, even though field theory is causal
and local → generates apparent nonlocality.
•Field theory finite in the IR (small cosmo times) (Skenderis et
al. proof of old conjecture in 3d), so correlators are nonzero
over large distances, there is no cosmo singularity, and light-
cones coming from different regions are correlated: solution!
•Suppose it’s not, define g2eff ∼ 1 as beginning ⇒ constraint on
RG flow.
•More precisely, RG flow (UV to IR) dual to inverse time evo-
lution: AdS geodesic, joining x and y at spatial distance L ⇒
L = cR2/r0, where r0 = minimum radial distance in AdS. But
r → e−t/R, so L = cRe−t/R, so k = H

c e
Ht, where k is mom. scale.

•Then, constraint on Ne becomes constraint on amount of RG
flow ⇒ an amount of 10−54 in k2 (or 63 e-folds) for TI ∼
1016GeV : in order to avoid the large fluctuations.
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2. Flatness problem

•Again RG flow ↔ inverse time evolution. We want to see then
that (grav.) perturbations decrease along the inverse RG flow
(from IR to UV).

•For g2eff = g2N
q . 1 (late times), we find

f(g2eff) = f0
(

1− f1g
2
eff ln g2eff + f2g

2
eff +O(g2eff)

)

where f1 < 0 (for best fit, and most of the theor. parameter
space) and f1 dominates over f2. But since

f(g2eff) ∝ q2δ ∼ 1 + 2δ ln q ∼ 1− 2δ ln g2eff + ...

we have 2δ 0 f1g
2
eff < 0 ⇒ Tij is marginally relevant, 〈TT 〉 ∼

q3f(g2eff) ∼ q3+2δ ⇒∆ = 3+δ. Then S = SQFT+
∫

d3xΛ3−∆δhijT ij.

•CFT terminology, but only generalized conf. structure, yet
same results: δ < 0⇒ dilution along inverse RG flow.

•Quantitatively, same cond.: at least 10−54 of RG flow in k2 (63
e-folds) for TI ∼ 1016GeV .

90



.

4. Entropy problem: inflation → reheating.

•Now → ∃ period corresponding to reheating. But, in field the-
ory: obvious: dual field theory has grav. modes + SM modes:
transfer of energy from one to the other. Entropy larger in the
UV (late times) than IR (initial times) → # of d.o.f. decreases
along RG flow ⇒ arrow of time!!. Large entropy → large N .
S1 ∼ 109 (UV) to S1 ∼ 1 (IR) is a constraint. So is the fact that
S ∼ 1088 . 10121 (S1BH). S1 ∼ 1 in the IR is natural.

5. Perturbations problem

•Also easier: classical 〈hijhkl〉 perturbations in CMBR are dual
to quantum 〈TijTkl〉 → usual QFT perturbations. But now, no
assumptions (like QFT in curved space and Bunch-Davies vac-
uum) → initial conditions: vacuum is unique perturbative QFT
vacuum.

6. Baryon asymmetry problem. Same solution. But now: re-
actions out of thermal equilibrium: no thermal equilibrium along
the RG flow. Nr. of d.o.f. changes rapidly
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Relic and monopole problem, and (toy) models

•! geometry. But monopole defined by topology: abstractly.

•Monopole in the bulk → vortex (top. and magn. charge) on

the boundary. AdS/CFT: True case: “’t Hooft monopole” →
“true vortex”, but approx. case: “Dirac monopole” → “Dirac

vortex”.

•Constraint: dilution of monopole current j̃ai perturbations in

the bulk → in inverse RG flow, of 10−10 in linear size. ⇒ need

δ(j̃ai ) < 0. For relics, coupling to Tij, need dilution of Tij pert.

along the RG flow of 10−4 → same, and less stringent, as for

flatness problem.

•But: Aa
µ (gauge) in bulk → jai (global) in QFT. Moreover, mag-

netic j̃ai replaced by electric jai . Since QFT is phenomenological,

no definite jai → need toy model.
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•Toy model (though in fact, a posteriori: calculation valid for

all relevant models HN+U.Portugal, 2020): SU(N) gauge symm.,

SO(3) global, allowing for vortex solutions. Aµ and 6 complex

scalars φai , i = 1,2 and a = 1,2,3 for 3 of SO(3), all in SU(N).

Potential (scalar self-int.)

V = λTr |%φ1 × %φ2|2

Then the Euclidean action is

S =
∫

d3xTr





1

4
FµνF

µν +
∑

i=1,2

|Dµ%φi|2 + λ|%φ1 × %φ2|2




and the SO(3) global currents are

jaµ =
∑

i=1,2

iεabcφb,∗i Dµφ
c
j + h.c

where DAB
µ = ∂µδAB − ig(TC)

ABAC
µ .
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•Two loop calculation in dim. reg.: ∃ divergences, but removed
→ only p dependence in finite piece. Find (one-loop plus 2-loop):

〈jaµ(p)jbν(−p)〉= N2p

4
δab
[(

δµν −
pµpν
p2

)

− 4 · 16
g2N

p
J0

(

δµν −
pµpν
p2

)

+finite

]

where J0 0 − 1
32π2

1
ε+finite. But: generalized conf. structure →

〈jaµ(p)jbν(−p)〉 =
N2p

4
πµν[1+cg2eff ln g2eff+...] =

N2p

4
πµν[1−cg2eff ln p+...]

•But definining anomalous dimension as before,

〈jaµ(p)jbν(−p)〉 ∝ N2πµνp
1+2δ 0 N2pπµν[1 + 2δ ln p+ ...]

gives 2δ = −cg2eff. Finally, we obtain

δj =
2

π2
g2eff > 0

so jai is irrelevant: grows in the UV.
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•But: need vortex current. In Abelian-Higgs model,

jµvortex =
1

K
εµνρ∂νjρ

Then the correlators are related as

〈jµ(p)jν(−p)〉= f

(

δµν −
pµpν
p2

)

⇒ 〈jµvortex(p)j
ν
vortex(−p)〉=

(

δµν −
pµpν
p2

)

p2

K2
f

•But, more precisely (Witten; Herzog, Kovtun, Sachdev, Son) confor-

mal structure in 2+1d ⇒ (t replaced by Kab in the nonabelian

case)

〈ji(p)jj(−p) =
(

p2δij − pipj
) t

2π
√
k2

+ εijkpk
w

2π

•Then implies for the magnetic current

〈̃ji(p)j̃j(−p)〉 =
p2δij − pipj

2π
√

p2

t

t2 + w2
−
εijkpk
2π

w

t2 + w2

•For w = 0⇒ t→ 1/t in Abelian case and Kab→ (K−1)ab in the

nonabelian case.
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•In both cases, S duality → Maxwell duality in bulk. Acts the
same for us.

•Conf. structure or generalized conf. structure → same form of
correlators.

•Then, inversion ⇒ 1 + 2δ ln p →0 1 − 2δ ln p, so δ(j̃) = −δ(j).
Then δ(j̃) < 0 and j̃ is relevant, as we wanted.

•Must ∃ vortex. Here: Abelian Dirac vortex. ∃U(1) ⊂ SO(3)
with

jµ = i
∑

i=1,2

%φiDµ%φi + h.c.

under which φa1 → eiαφa1, φ
a
2 → eiαφa2.

•Then, ∃ vortex ansatz tht keeps V = 0,

φa1 = φ1(r)f
aeiα , φa2 = φ2(r)f

aeiα

•Sol. of eq. of m. with ansatz → vortex nr. → vortex current.
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•Thus, monopole solution also solved. All problems with Big

Bang also solved, and CMBR fit as well as inflation!

•Reheating model: sketch of one available (HN, 2020), but more

precise needed. Needs to reverse direction of flow of coupling:

gravity is becoming stronger, but must eventually become weaker

in order to transition to radiation domination.

•Lattice field theory calculation: test the matching to CMBR at

low l (l < 30), and see whether inflation or holographic cosmol-

ogy is better. Stay tuned!
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