Quantum systems as

manipulators of information:

Entanglement, state complexity, and information scrambling

Georgios Styliaris

Max Planck Institute of Quantum Optics, Germany

Online talk@ NCSR Demokritos, Institute of Nuclear and Particle Physics

Quantum Information Science

Quantum
Theory

Quantum Information Science

Quantum
Theory

Information
Theory

Quantum Information Science

Quantum
Theory

Information
Theory

Computer Science

Quantum Information Science

Information
Theory

- Peter Shor's Quantum Factoring Algorithm ('94)

Quantum Information Science

Quantum
Theory

Information
Theory

Computer Science

- Peter Shor's Quantum Factoring Algorithm ('94)
- Complexity of algorithm: How does computational time grow as input of the problem grows?

Quantum Information Science

Quantum
Theory

Information
Theory

Computer Science

- Peter Shor's Quantum Factoring Algorithm ('94)
- Complexity of algorithm: How does computational time grow as input of the problem grows?
- Complexity of factoring relies on hardware operating on classical or quantum physics!

Quantum Information Science

Computer Science

- Peter Shor's Quantum Factoring Algorithm ('94)
- Complexity of algorithm: How does computational time grow as input of the problem grows?
- Complexity of factoring relies on hardware operating on classical or quantum physics!

Quantum Information Science

Information
Theory

- Quantum Teleportation (Bennett, Wiesner '92) \& Dense Coding (Bennett et al. '94)

Quantum Information Science

Quantum
Theory

Information
Theory

- Quantum Teleportation (Bennett, Wiesner ‘92) \& Dense Coding (Bennett et al. ‘94)

Quantum Information Science

Quantum
Theory

Information
Theory

- Quantum Teleportation (Bennett, Wiesner '92) \& Dense Coding (Bennett et al. '94)
- Dense Coding: Shared entangled pair + qubit $\rightarrow 2$ classical bits!

Quantum Information Science

Quantum
Theory

Information
Theory

- Quantum Teleportation (Bennett, Wiesner '92) \& Dense Coding (Bennett et al. '94)
- Dense Coding: Shared entangled pair + qubit $\rightarrow 2$ classical bits!
- Teleportation: Shared entangled pair +1 classical bit \rightarrow Teleportation 1 classical bit !

Entanglement: Correlations of Quantum Matter at $T=0$

- Classical 2-level system: $\{|0\rangle,|1\rangle\}$

Entanglement: Correlations of Quantum Matter at $T=0$

- Classical 2-level system: $\{|0\rangle,|1\rangle\}$
- Low temperature: N-particle ground state in a configuration, e.g., $|00 \ldots 0\rangle$ or $|11 \ldots 1\rangle$ for a "ferromagnet"

Entanglement: Correlations of Quantum Matter at $T=0$

- Classical 2-level system: $\{|0\rangle,|1\rangle\}$
" Low temperature: N -particle ground state in a configuration, e.g., $|00 \ldots 0\rangle$ or $|11 \ldots 1\rangle$ for a "ferromagnet"
- Exponential 2^{N} configurations

Entanglement: Correlations of Quantum Matter at $T=0$

- Classical 2-level system: $\{|0\rangle,|1\rangle\}$
- Low temperature: N -particle ground state in a configuration, e.g., $|00 \ldots 0\rangle$ or $|11 \ldots 1\rangle$ for a "ferromagnet"
- Exponential 2^{N} configurations
- Quantum 2-level system: $|\psi\rangle=a|0\rangle+b|1\rangle$

Entanglement: Correlations of Quantum Matter at $\mathrm{T}=\mathbf{0}$

- Classical 2-level system: $\{|0\rangle,|1\rangle\}$
- Low temperature: N -particle ground state in a configuration, e.g., $|00 \ldots 0\rangle$ or $|11 \ldots 1\rangle$ for a "ferromagnet"
- Exponential 2^{N} configurations
- Quantum 2-level system: $|\psi\rangle=a|0\rangle+b|1\rangle$
- 2-dimensional Hilbert space for a single particle

Entanglement: Correlations of Quantum Matter at $T=0$

- Classical 2-level system: $\{|0\rangle,|1\rangle\}$
- Low temperature: N -particle ground state in a configuration, e.g., $|00 \ldots 0\rangle$ or $|11 \ldots 1\rangle$ for a "ferromagnet"
- Exponential 2^{N} configurations
- Quantum 2-level system: $|\psi\rangle=a|0\rangle+b|1\rangle$
- 2-dimensional Hilbert space for a single particle
- The Hilbert space of N qubits is a vector space of $\mathbf{2}^{\mathrm{N}}$ dimensions

Entanglement: Correlations of Quantum Matter at $T=0$

- Classical 2-level system: $\{|0\rangle,|1\rangle\}$
- Low temperature: N -particle ground state in a configuration, e.g., $|00 \ldots 0\rangle$ or $|11 \ldots 1\rangle$ for a "ferromagnet"
- Exponential 2^{N} configurations
- Quantum 2-level system: $|\psi\rangle=a|0\rangle+b|1\rangle$
- 2-dimensional Hilbert space for a single particle
- The Hilbert space of N qubits is a vector space of $\mathbf{2}^{\mathrm{N}}$ dimensions
- If a state does not factorize $|\psi\rangle \neq\left|\psi_{1}\right\rangle \otimes\left|\psi_{2}\right\rangle \ldots\left|\psi_{N}\right\rangle$ then it is entangled

Entanglement: Correlations of Quantum Matter at $T=0$

- Classical 2-level system: $\{|0\rangle,|1\rangle\}$
- Low temperature: N -particle ground state in a configuration, e.g., $|00 \ldots 0\rangle$ or $|11 \ldots 1\rangle$ for a "ferromagnet"
- Exponential 2^{N} configurations
- Quantum 2-level system: $|\psi\rangle=a|0\rangle+b|1\rangle$
- 2-dimensional Hilbert space for a single particle
- The Hilbert space of N qubits is a vector space of $\mathbf{2}^{\mathrm{N}}$ dimensions
- If a state does not factorize $|\psi\rangle \neq\left|\psi_{1}\right\rangle \otimes\left|\psi_{2}\right\rangle \ldots\left|\psi_{N}\right\rangle$ then it is entangled
- Correlations of quantum matter at $\mathbf{T}=0$ can be very complex!

Quantifying Complexity: Quantum Circuits

- Boolean function of N variables: $f:\{0,1\}^{\times N} \rightarrow\{0,1\}$

Quantifying Complexity: Quantum Circuits

- Boolean function of N variables: $f:\{0,1\}^{\times N} \rightarrow\{0,1\}$
- Every such function admits a decomposition over elementary building blocks:

Quantifying Complexity: Quantum Circuits

- Boolean function of N variables: $f:\{0,1\}^{\times N} \rightarrow\{0,1\}$
- Every such function admits a decomposition over elementary building blocks:

- Quantum process is a Unitary $U:\left(\mathbb{C}^{2}\right)^{\otimes N} \rightarrow\left(\mathbb{C}^{2}\right)^{\otimes N}$

Quantifying Complexity: Quantum Circuits

- Boolean function of N variables: $f:\{0,1\}^{\times N} \rightarrow\{0,1\}$
- Every such function admits a decomposition over elementary building blocks:
- Quantum process is a Unitary $U:\left(\mathbb{C}^{2}\right)^{\otimes N} \rightarrow\left(\mathbb{C}^{2}\right)^{\otimes N}$
- Every Unitary admits a decomposition over some elementary gate set, with each gate acting simultaneously on (at most) 2 qubits

Quantifying Complexity: Quantum Circuits

- Boolean function of N variables: $f:\{0,1\}^{\times N} \rightarrow\{0,1\}$
- Every such function admits a decomposition over elementary building blocks:

- Quantum process is a Unitary $U:\left(\mathbb{C}^{2}\right)^{\otimes N} \rightarrow\left(\mathbb{C}^{2}\right)^{\otimes N}$
- Every Unitary admits a decomposition over some elementary gate set, with each gate acting simultaneously on (at most) 2 qubits

Complexity of a Unitary: The minimal number of gates in its quantum circuit decomposition.

Quantifying Complexity: Quantum Circuits

- Boolean function of N variables: $f:\{0,1\}^{\times N} \rightarrow\{0,1\}$
- Every such function admits a decomposition over elementary building blocks:

- Quantum process is a Unitary $U:\left(\mathbb{C}^{2}\right)^{\otimes N} \rightarrow\left(\mathbb{C}^{2}\right)^{\otimes N}$
- Every Unitary admits a decomposition over some elementary gate set, with each gate acting simultaneously on (at most) 2 qubits

Complexity of a Unitary: The minimal number of gates in its quantum circuit decomposition.
Depth of a Unitary: The minimal number of layers in its quantum circuit decomposition.

Quantifying Complexity: Quantum Circuits

- Boolean function of N variables: $f:\{0,1\}^{\times N} \rightarrow\{0,1\}$
- Every such function admits a decomposition over elementary building blocks:

- Quantum process is a Unitary $U:\left(\mathbb{C}^{2}\right)^{\otimes N} \rightarrow\left(\mathbb{C}^{2}\right)^{\otimes N}$
- Every Unitary admits a decomposition over some elementary gate set, with each gate acting simultaneously on (at most) 2 qubits

Complexity of a Unitary: The minimal number of gates in its quantum circuit decomposition.
Depth of a Unitary: The minimal number of layers in its quantum circuit decomposition.
Complexity of a state: Complexity of unitary generating target from a product state.

Quantifying Complexity: Quantum Circuits

- Universal gate set: 1 -qubit rotations + single entangling gate (CNOT)

Quantifying Complexity: Quantum Circuits

- Universal gate set: 1 -qubit rotations + single entangling gate (CNOT)
- Complexity count: We will count using any 2-qubit gate (continuous gate set).

Quantifying Complexity: Quantum Circuits

- Universal gate set: 1 -qubit rotations + single entangling gate (CNOT)
- Complexity count: We will count using any 2-qubit gate (continuous gate set).
- Conjecture on complexity growth (Brown, Susskind '18):

Consider uniformly random 2-qubit gates. Complexity grows linearly until the number of gates is exponential in the system size.

- First rigorous proof by Haferkamp et al.' '22

Quantifying Complexity: Quantum Circuits

- Universal gate set: 1 -qubit rotations + single entangling gate (CNOT)
- Complexity count: We will count using any 2-qubit gate (continuous gate set).
- Conjecture on complexity growth (Brown, Susskind '18):

Consider uniformly random 2-qubit gates. Complexity grows linearly until the number of gates is exponential in the system size.

- First rigorous proof by Haferkamp et al.' '22

Complexity is a statement about the structure of entanglement!

Entanglement as a Resource

In what sense is shared entanglement useful?

$$
\left|\psi_{A B}\right\rangle=\frac{1}{\sqrt{2}}\left(|0\rangle_{A} \otimes|0\rangle_{B}+|1\rangle_{A} \otimes|1\rangle_{B}\right)
$$

Entanglement as a Resource

In what sense is shared entanglement useful?

$$
\left|\psi_{A B}\right\rangle=\frac{1}{\sqrt{2}}\left(|0\rangle_{A} \otimes|0\rangle_{B}+|1\rangle_{A} \otimes|1\rangle_{B}\right)
$$

Entanglement as a Resource

In what sense is shared entanglement useful?

$$
\left|\psi_{A B}\right\rangle=\frac{1}{\sqrt{2}}\left(|0\rangle_{A} \otimes|0\rangle_{B}+|1\rangle_{A} \otimes|1\rangle_{B}\right)
$$

- Local Operations (LO): Unitaries + Measurements over only A or only B

Entanglement as a Resource

In what sense is shared entanglement useful?

$$
\left|\psi_{A B}\right\rangle=\frac{1}{\sqrt{2}}\left(|0\rangle_{A} \otimes|0\rangle_{B}+|1\rangle_{A} \otimes|1\rangle_{B}\right)
$$

- Local Operations (LO): Unitaries + Measurements over only A or only B
- Classical Communication (CC): Exchange of bits (e.g., measurement outcomes or choice of operations)

Entanglement as a Resource

In what sense is shared entanglement useful?

$$
\left|\psi_{A B}\right\rangle=\frac{1}{\sqrt{2}}\left(|0\rangle_{A} \otimes|0\rangle_{B}+|1\rangle_{A} \otimes|1\rangle_{B}\right)
$$

- Local Operations (LO): Unitaries + Measurements over only A or only B
- Classical Communication (CC): Exchange of bits (e.g., measurement outcomes or choice of operations)
- Entanglement cannot be created from product states using these operations alone.

Entanglement as a Resource

In what sense is shared entanglement useful?

$$
\left|\psi_{A B}\right\rangle=\frac{1}{\sqrt{2}}\left(|0\rangle_{A} \otimes|0\rangle_{B}+|1\rangle_{A} \otimes|1\rangle_{B}\right)
$$

- Local Operations (LO): Unitaries + Measurements over only A or only B
- Classical Communication (CC): Exchange of bits (e.g., measurement outcomes or choice of operations)
- Entanglement cannot be created from product states using these operations alone.
- However, it can be consumed!
L.O.

Entanglement as a Resource

In what sense is shared entanglement useful?

$$
\left|\psi_{A B}\right\rangle=\frac{1}{\sqrt{2}}\left(|0\rangle_{A} \otimes|0\rangle_{B}+|1\rangle_{A} \otimes|1\rangle_{B}\right)
$$

- Local Operations (LO): Unitaries + Measurements over only A or only B
- Classical Communication (CC): Exchange of bits (e.g., measurement outcomes or choice of operations)
- Entanglement cannot be created from product states using these operations alone.
- However, it can be consumed!
- Framework for teleportation, dense coding, ...

Topollogical Phases:
Interplay of entanglement, complexity and locality

Locality and Topological Phases

- Often, interaction in nature are local, i.e., short-ranged.

Locality and Topological Phases

- Often, interaction in nature are local, i.e., short-ranged.
- In quantum circuit model: Restrict to nearest-neighbor 2qubit gates.

Locality and Topological Phases

- Often, interaction in nature are local, i.e., short-ranged.
- In quantum circuit model: Restrict to nearest-neighbor 2qubit gates.
- The "Convenient Illusion of Hilbert Space" (Poulin et al. '11):

The manifold of all quantum many-body states that can be generated by arbitrary time-dependent local Hamiltonians in a time that scales polynomially in the system size, occupies an exponentially small volume in Hilbert space

Locality and Topological Phases

- Often, interaction in nature are local, i.e., short-ranged.
- In quantum circuit model: Restrict to nearest-neighbor 2qubit gates.
- The "Convenient Illusion of Hilbert Space" (Poulin et al. '11):

The manifold of all quantum many-body states that can be generated by arbitrary time-dependent local Hamiltonians in a time that scales polynomially in the system size, occupies an exponentially small volume in Hilbert space

How can we then understand different types of entanglement?

Locality and Topological Phases

- Often, interaction in nature are local, i.e., short-ranged.
- In quantum circuit model: Restrict to nearest-neighbor 2qubit gates.
- The "Convenient Illusion of Hilbert Space" (Poulin et al. '11):

The manifold of all quantum many-body states that can be generated by arbitrary time-dependent local Hamiltonians in a time that scales polynomially in the system size, occupies an
exponentially small volume in Hilbert space
How can we then understand different types of entanglement?

- Define phases of states, by taking equivalence classes differing by "easy operation"

Locality and Topological Phases

- Often, interaction in nature are local, i.e., short-ranged.
- In quantum circuit model: Restrict to nearest-neighbor 2qubit gates.
- The "Convenient Illusion of Hilbert Space" (Poulin et al. '11):

The manifold of all quantum many-body states that can be generated by arbitrary time-dependent local Hamiltonians in a time that scales polynomially in the system size, occupies an exponentially small volume in Hilbert space

How can we then understand different types of entanglement?

- Define phases of states, by taking equivalence classes differing by "easy operation"
- What is an easy operation? Constant depth local quantum circuit!

Classifying Topological Phases of Quantum Matter

Definition: Two translation invariant quantum states are in the same topological phase if there exists a finite depth local quantum circuit connecting them, i.e.,

$$
\left|\psi_{1}\right\rangle_{N} \sim\left|\psi_{2}\right\rangle_{N} \quad \Longleftrightarrow \quad U_{N}:\left|\psi_{2}\right\rangle_{N}=U_{N}\left|\psi_{1}\right\rangle_{N} \quad \forall N
$$

Classifying Topological Phases of Quantum Matter

Definition: Two translation invariant quantum states are in the same topological phase if there exists a finite depth local quantum circuit connecting them, i.e.,

$$
\left|\psi_{1}\right\rangle_{N} \sim\left|\psi_{2}\right\rangle_{N} \quad \Longleftrightarrow \quad U_{N}:\left|\psi_{2}\right\rangle_{N}=U_{N}\left|\psi_{1}\right\rangle_{N} \quad \forall N
$$

- Aim: Classify all Topological phases, i.e., classes of "area law entangled" states
- Area law = entanglement upper bounded by some constant for all system sizes

Classifying Topological Phases of Quantum Matter

Definition: Two translation invariant quantum states are in the same topological phase if there exists a finite depth local quantum circuit connecting them, i.e.,

$$
\left|\psi_{1}\right\rangle_{N} \sim\left|\psi_{2}\right\rangle_{N} \quad \Longleftrightarrow \quad U_{N}:\left|\psi_{2}\right\rangle_{N}=U_{N}\left|\psi_{1}\right\rangle_{N} \quad \forall N
$$

- Aim: Classify all Topological phases, i.e., classes of "area law entangled" states
- Area law = entanglement upper bounded by some constant for all system sizes

> Classification in 1D (Chen, Gu, Wen \& Schuch, Perez-Garcia, Cirac '11): Phases are labeled by an integer

Classifying Topological Phases of Quantum Matter

Definition: Two translation invariant quantum states are in the same topological phase if there exists a finite depth local quantum circuit connecting them, i.e.,

$$
\left|\psi_{1}\right\rangle_{N} \sim\left|\psi_{2}\right\rangle_{N} \quad \Longleftrightarrow \quad U_{N}:\left|\psi_{2}\right\rangle_{N}=U_{N}\left|\psi_{1}\right\rangle_{N} \quad \forall N
$$

- Aim: Classify all Topological phases, i.e., classes of "area law entangled" states
- Area law = entanglement upper bounded by some constant for all system sizes

Classification in 1D (Chen, Gu, Wen \& Schuch, Perez-Garcia, Cirac '11):
Phases are labeled by an integer

$$
\mid \text { Trivial }\rangle_{N}=|00 \ldots 0\rangle \underbrace{}_{T=0 \text { Phase Transition }}|\mathrm{GHZ}\rangle_{N}=\frac{1}{\sqrt{2}}(|0 \ldots 0\rangle+|1 \ldots 1\rangle)
$$

Topological Phases with Measurements

- Quantum info perspective of phases: If two states are in the same phase, it should be feasible to convert one into the other

Topological Phases with Measurements

- Quantum info perspective of phases: If two states are in the same phase, it should be feasible to convert one into the other
- However, we know local operations and classical communications are feasible resources!

Topological Phases with Measurements

- Quantum info perspective of phases: If two states are in the same phase, it should be feasible to convert one into the other
- However, we know local operations and classical communications are feasible resources!
- Idea: Introduce definition including those, and classify!

Topological Phases with Measurements

- Quantum info perspective of phases: If two states are in the same phase, it should be feasible to convert one into the other
- However, we know local operations and classical communications are feasible resources!
- Idea: Introduce definition including those, and classify!

Classification of topological phases in 1D including measurements and classical communication (Piroli, GS, Cirac '21):
There is only a single phase

Topological Phases with Measurements

- Quantum info perspective of phases: If two states are in the same phase, it should be feasible to convert one into the other
- However, we know local operations and classical communications are feasible resources!
- Idea: Introduce definition including those, and classify!

Classification of topological phases in 1D including measurements and classical communication (Piroli, GS, Cirac '21):
There is only a single phase

- Measurements make possible to overcome light cone of finite depth local circuits
- In 2D, some phases trivialize, others do not! (Tantivasadakarn et al. '21 \& Bravyi et al '22)

Entanglement and Scrambling of Quantum Dynamics

Entanglement and Equilibration in quantum systems

- Classical Statistic Mechanics: Ensembles arise by attributing probability in the phase space that not forbidden by macroscopic constraints.

Entanglement and Equilibration in quantum systems

- Classical Statistic Mechanics: Ensembles arise by attributing probability in the phase space that not forbidden by macroscopic constraints.
- Experiments in Ultracold Quantum Gases: Initialize to a known pure state, evolution is unitary (to an excellent approximation)

Entanglement and Equilibration in quantum systems

- Classical Statistic Mechanics: Ensembles arise by attributing probability in the phase space that not forbidden by macroscopic constraints.
- Experiments in Ultracold Quantum Gases: Initialize to a known pure state, evolution is unitary (to an excellent approximation)
- However, in practice, expectation values of observables are in agreement with thermal states, which are mixed states. How is this possible?

Entanglement and Equilibration in quantum systems

- Classical Statistic Mechanics: Ensembles arise by attributing probability in the phase space that not forbidden by macroscopic constraints.
- Experiments in Ultracold Quantum Gases: Initialize to a known pure state, evolution is unitary (to an excellent approximation)
- However, in practice, expectation values of observables are in agreement with thermal states, which are mixed states. How is this possible?
- An entangled state, if probed only locally (in a subsystem), behaves as a mixed state!

Entanglement and Equilibration in quantum systems

- Classical Statistic Mechanics: Ensembles arise by attributing probability in the phase space that not forbidden by macroscopic constraints.
- Experiments in Ultracold Quantum Gases: Initialize to a known pure state, evolution is unitary (to an excellent approximation)
- However, in practice, expectation values of observables are in agreement with thermal states, which are mixed states. How is this possible?
- An entangled state, if probed only locally (in a subsystem), behaves as a mixed state!

Initial Product State \rightarrow Unitary Evolution (interactions) \rightarrow Entanglement
Unitary evolution retains all initial information, but it becomes locally inaccessible! "Information scrambling"

Information Scrambling and the OTOC

- The Out-of-Time-Order Correlator (OTOC) (Kitaev '15) probes scrambling:

$$
F_{V, W}(t)=\frac{1}{\operatorname{dim} \mathcal{H}} \operatorname{Tr}\left[V^{\dagger}(t) W^{\dagger}(0) V(t) W(0)\right]
$$

Information Scrambling and the OTOC

- The Out-of-Time-Order Correlator (OTOC) (Kitaev '15) probes scrambling:

$$
F_{V, W}(t)=\frac{1}{\operatorname{dim} \mathcal{H}} \operatorname{Tr}\left[V^{\dagger}(t) W^{\dagger}(0) V(t) W(0)\right]
$$

- For Unitary (and Hermitian) observables,
$1-\operatorname{Re} F_{V, W}(t)=\frac{1}{2 \operatorname{dim} \mathcal{H}}\|[V(t), W(0)]\|_{2}^{2}$
The OTOC probes noncommutativity!

Information Scrambling and the OTOC

- The Out-of-Time-Order Correlator (OTOC) (Kitaev '15) probes scrambling: $F_{V, W}(t)=\frac{1}{\operatorname{dim} \mathcal{H}} \operatorname{Tr}\left[V^{\dagger}(t) W^{\dagger}(0) V(t) W(0)\right]$
- For Unitary (and Hermitian) observables,
$1-\operatorname{Re} F_{V, W}(t)=\frac{1}{2 \operatorname{dim} \mathcal{H}}\|[V(t), W(0)]\|_{2}^{2}$
The OTOC probes noncommutativity!

- Locally interacting spin systems have a "speed of light" (Lieb-Robinson '72)

Information Scrambling and the OTOC

- The Out-of-Time-Order Correlator (OTOC) (Kitaev '15) probes scrambling:

$$
F_{V, W}(t)=\frac{1}{\operatorname{dim} \mathcal{H}} \operatorname{Tr}\left[V^{\dagger}(t) W^{\dagger}(0) V(t) W(0)\right]
$$

- For Unitary (and Hermitian) observables,

$$
1-\operatorname{Re} F_{V, W}(t)=\frac{1}{2 \operatorname{dim} \mathcal{H}}\|[V(t), W(0)]\|_{2}^{2}
$$

The OTOC probes noncommutativity!

- Locally interacting spin systems have a "speed of light" (Lieb-Robinson '72)
- Scrambling: For "typical" and local operators V and $W, V(t)$ will spread within the light cone and thus may fail to commute with $W(0)$.

Scrambling, Chaos and Thermalization

- Why study information scrambling?

Scrambling, Chaos and Thermalization

- Why study information scrambling?
- Scrambling is known to probe quantum chaos.

Scrambling, Chaos and Thermalization

- Why study information scrambling?
- Scrambling is known to probe quantum chaos.
- In fact, chaos implies scrambling but not the converse (Dowling et al. '23).

Scrambling, Chaos and Thermalization

- Why study information scrambling?
- Scrambling is known to probe quantum chaos.
- In fact, chaos implies scrambling but not the converse (Dowling et al. '23).
- Both chaos and scrambling are believed to be linked to thermalization, but there is no universal connection between them.

Scrambling, Chaos and Thermalization

- Why study information scrambling?
- Scrambling is known to probe quantum chaos.
- In fact, chaos implies scrambling but not the converse (Dowling et al. '23).
- Both chaos and scrambling are believed to be linked to thermalization, but there is no universal connection between them.

Physica Scripta. Vol. 40, 335-336, 1989.

Quantum Chaology, Not Quantum Chaos

Michael Berry
H. H. Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 ITL, U.K.

Received September 15, 1988 accepted October 25, 1988

Scrambling in Bipartitions = Operator Entanglement

- Consider a many-body system, governed by some Hamiltonian. Pick a region A and let B be its complement.

Scrambling in Bipartitions = Operator Entanglement

- Consider a many-body system, governed by some Hamiltonian. Pick a region A and let B be its complement.
- In quantum information, we know how to assign "entanglement" not only to states, but also to Unitary operations acting on a bipartite systems: Operator Entanglement.

Scrambling in Bipartitions = Operator Entanglement

- Consider a many-body system, governed by some Hamiltonian. Pick a region A and let B be its complement.
- In quantum information, we know how to assign "entanglement" not only to states, but also to Unitary operations acting on a bipartite systems: Operator Entanglement.
- Starting from the OTOC, average over the local observables:

$$
G(t)=\int d V_{A} d W_{B}, F_{V_{A}, W_{B}}(t)
$$

Scrambling in Bipartitions = Operator Entanglement

- Consider a many-body system, governed by some Hamiltonian. Pick a region A and let B be its complement.
- In quantum information, we know how to assign "entanglement" not only to states, but also to Unitary operations acting on a bipartite systems: Operator Entanglement.
- Starting from the OTOC, average over the local observables:

$$
G(t)=\int d V_{A} d W_{B}, F_{V_{A}, W_{B}}(t)
$$

Theorem (GS, Anand, Zanardi '21): The average OTOC is exactly equal to the operator entanglement of the evolution U. Deviations from the average value are exponentially suppressed.

Summary

- Quantum Information often analyzes physical processes from the lens of computation and complexity theory

Summary

- Quantum Information often analyzes physical processes from the lens of computation and complexity theory
- Complexity for pure states is a statement about the entanglement context of a state, i.e., quantum correlations

Summary

- Quantum Information often analyzes physical processes from the lens of computation and complexity theory
- Complexity for pure states is a statement about the entanglement context of a state, i.e., quantum correlations
- Topological phases correspond to states with roughly equal complexity. Can be equally well understood as $\mathrm{T}=0$ phase transitions

Summary

- Quantum Information often analyzes physical processes from the lens of computation and complexity theory
- Complexity for pure states is a statement about the entanglement context of a state, i.e., quantum correlations
- Topological phases correspond to states with roughly equal complexity. Can be equally well understood as $\mathrm{T}=0$ phase transitions
- Classification of topological phases changes if LOCC is included

Summary

- Quantum Information often analyzes physical processes from the lens of computation and complexity theory
- Complexity for pure states is a statement about the entanglement context of a state, i.e., quantum correlations
- Topological phases correspond to states with roughly equal complexity. Can be equally well understood as $\mathrm{T}=0$ phase transitions
- Classification of topological phases changes if LOCC is included
- Thermalization in closed systems is related to the ability of dynamics to create entanglement

Summary

- Quantum Information often analyzes physical processes from the lens of computation and complexity theory
- Complexity for pure states is a statement about the entanglement context of a state, i.e., quantum correlations
- Topological phases correspond to states with roughly equal complexity. Can be equally well understood as $\mathrm{T}=0$ phase transitions
- Classification of topological phases changes if LOCC is included
- Thermalization in closed systems is related to the ability of dynamics to create entanglement
- Average OTOC = Operator entanglement

Summary

- Quantum Information often analyzes physical processes from the lens of computation and complexity theory
- Complexity for pure states is a statement about the entanglement context of a state, i.e., quantum correlations
- Topological phases correspond to states with roughly equal complexity. Can be equally well understood as $\mathrm{T}=0$ phase transitions
- Classification of topological phases changes if LOCC is included
- Thermalization in closed systems is related to the ability of dynamics to create entanglement
- Average OTOC = Operator entanglement

Thank you!

