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 Quantum Teleportation (Bennett, Wiesner ‘92) & Dense Coding (Bennett et al. ‘94)

 Dense Coding: Shared entangled pair + qubit → 2 classical bits!

 Teleportation: Shared entangled pair + 1 classical bit → Teleportation 1 classical bit !
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 Classical 2-level system: 

 Low temperature: N-particle ground state in a configuration, e.g.,                   or
for a “ferromagnet”

 Exponential 2N configurations

 Quantum 2-level system:

 2-dimensional Hilbert space for a single particle

 The Hilbert space of N qubits is a vector space of 2N dimensions

 If a state does not factorize    then it is entangled 

 Correlations of quantum matter at T = 0 can be very complex!
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 Boolean function of N variables: 

 Every such function admits a decomposition
over elementary building blocks:

 Quantum process is a Unitary 

 Every Unitary admits a decomposition over some 
elementary gate set, with each gate acting simultaneously on 
(at most) 2 qubits 

Complexity of a Unitary: The minimal number of gates in its quantum circuit decomposition.

Depth of a Unitary: The minimal number of layers in its quantum circuit decomposition.

Complexity of a state: Complexity of unitary generating target from a product state.
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Quantifying Complexity: Quantum CircuitsQuantifying Complexity: Quantum Circuits

 Universal gate set: 1-qubit rotations + single entangling gate (CNOT)

 Complexity count: We will count using any 2-qubit gate (continuous 
gate set).

 Conjecture on complexity growth (Brown, Susskind ‘18):

Consider uniformly random 2-qubit gates. Complexity grows 
linearly until the number of gates is exponential in the system 
size.

 First rigorous proof by Haferkamp et al. ‘22

Complexity is a statement about the structure of entanglement! 
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In what sense is shared
entanglement useful?

 Local Operations (LO): Unitaries + Measurements over 
only A or only B

 Classical Communication (CC): Exchange of bits (e.g., 
measurement outcomes or choice of operations)

 Entanglement cannot be created from product 
states using these operations alone.

 However, it can be consumed!

 Framework for teleportation, dense coding, ...
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 Often, interaction in nature are local, i.e., short-ranged.

 In quantum circuit model: Restrict to nearest-neighbor 2-
qubit gates.

 The “Convenient Illusion of Hilbert Space” (Poulin et al. ‘11):

The manifold of all quantum many-body states that can be generated 
by arbitrary time-dependent local Hamiltonians in a time that 
scales polynomially in the system size, occupies an 
exponentially small volume in Hilbert space

 Define phases of states, by taking equivalence classes differing by “easy 
operation”

 What is an easy operation? Constant depth local quantum circuit!

How can we then understand different types of entanglement?
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Classifying Topological Phases of Quantum MatterClassifying Topological Phases of Quantum Matter

 Aim: Classify all Topological phases, i.e., classes of “area law entangled” states

 Area law = entanglement upper bounded by some constant for all system sizes

Definition: Two translation invariant quantum states are in the same topological 
phase if there exists a finite depth local quantum circuit connecting them, i.e.,

Classification in 1D (Chen, Gu, Wen & Schuch, Perez-Garcia, Cirac ‘11):
Phases are labeled by an integer

T = 0 Phase Transition



  

Topological Phases with MeasurementsTopological Phases with Measurements

 Quantum info perspective of phases: If two states are in the same phase, it should be 
feasible to convert one into the other



  

Topological Phases with MeasurementsTopological Phases with Measurements

 Quantum info perspective of phases: If two states are in the same phase, it should be 
feasible to convert one into the other

 However, we know local operations and classical communications are feasible resources!



  

Topological Phases with MeasurementsTopological Phases with Measurements

 Quantum info perspective of phases: If two states are in the same phase, it should be 
feasible to convert one into the other

 However, we know local operations and classical communications are feasible resources!

 Idea: Introduce definition including those, and classify!



  

Topological Phases with MeasurementsTopological Phases with Measurements

 Quantum info perspective of phases: If two states are in the same phase, it should be 
feasible to convert one into the other

 However, we know local operations and classical communications are feasible resources!

 Idea: Introduce definition including those, and classify!

Classification of topological phases in 1D including measurements and classical communication
(Piroli, GS, Cirac ‘21):

There is only a single phase



  

Topological Phases with MeasurementsTopological Phases with Measurements

 Quantum info perspective of phases: If two states are in the same phase, it should be 
feasible to convert one into the other

 However, we know local operations and classical communications are feasible resources!

 Idea: Introduce definition including those, and classify!

Classification of topological phases in 1D including measurements and classical communication
(Piroli, GS, Cirac ‘21):

 Measurements make possible to overcome light cone of finite depth local circuits

 In 2D, some phases trivialize, others do not! (Tantivasadakarn et al. ‘21 & Bravyi et al ‘22)

There is only a single phase
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Entanglement and Equilibration in quantum systemsEntanglement and Equilibration in quantum systems

 Classical Statistic Mechanics: Ensembles arise by attributing probability in the phase space 
that not forbidden by macroscopic constraints.

 Experiments in Ultracold Quantum Gases: Initialize to a known pure state, evolution is 
unitary (to an excellent approximation) 

 However, in practice, expectation values of observables are in agreement with 
thermal states, which are mixed states. How is this possible?

 An entangled state, if probed only locally (in a subsystem), behaves as a mixed state!

Initial Product State → Unitary Evolution (interactions) → Entanglement

Unitary evolution retains all initial information, but it becomes locally inaccessible!
“Information scrambling”
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 The Out-of-Time-Order Correlator (OTOC) (Kitaev ‘15) probes scrambling:

 For Unitary (and Hermitian) observables,

The OTOC probes noncommutativity!

 Locally interacting spin systems have a “speed of light” (Lieb-Robinson ‘72)

 Scrambling: For “typical” and local operators V and W, V(t) will spread within the light 
cone and thus may fail to commute with W(0).
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Scrambling in Bipartitions = Operator EntanglementScrambling in Bipartitions = Operator Entanglement
 Consider a many-body system, governed by some Hamiltonian. 

Pick a region A and let B be its complement.

 In quantum information, we know how to assign “entanglement” 
not only to states, but also to Unitary operations acting on a 
bipartite systems: Operator Entanglement.

  Starting from the OTOC, average over the local observables:

Theorem (GS, Anand, Zanardi ‘21): The average OTOC is exactly equal to the 
operator entanglement of the evolution U. Deviations from the average 
value are exponentially suppressed.
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 Quantum Information often analyzes physical processes from the 
lens of computation and complexity theory

 Complexity for pure states is a statement about the entanglement 
context of a state, i.e., quantum correlations

 Topological phases correspond to states with roughly equal 
complexity. Can be equally well understood as T = 0 phase 
transitions

 Classification of topological phases changes if LOCC is included

 Thermalization in closed systems is related to the ability of 
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