Impacts on $H\rightarrow WW\rightarrow IIvv$ Analysis from H.O. QCD Corrections to $gg\rightarrow H$

- How good is MCatNLO (NLO+PS) MC in simulating higher-order effects in kinematic distributions?
- What are reasonable estimates of theoretical uncertainties of jet multiplicity distributions?

Jianming Qian University of Michigan

On behalf of many people in ATLAS

Issues

- Most of our gg→H signal samples are produced using MCatNLO, a MC generator based on NLO calculations interfaced to HERWIG for parton shower and fragmentation;
- The total inclusive cross section of gg→H has been calculated up to NNLO in fixed order and to NNLL in soft-gluon resummation. These higher-order corrections significantly increase the Higgs production cross sections. These cross sections will be used for our first Higgs results.
- Is our MC simulation up to task? How can we assess theoretical uncertainties on acceptances, in particular jet fractions? We use HNNLO* program to study these issues. HNNLO calculates
 - differential gg→H cross sections in LO, NLO and NNLO (in the large m_t limit for the NNLO case)

^{*}Grazzini et al: http://theory.fi.infn.it/grazzini/codes.html

Event Selection

- Higher-order corrections can alter the distributions of kinematic variables used in the event selection, therefore potentially impact on the selection efficiency;
- Study effects for two sets of basic event selection cuts at parton level:
 - Selections for ATLAS/CMS/Theory study Two leptons with pT>20 GeV and $|\eta|$ <2.5; MissingEt > 30 GeV (pT of the two neutrino system); Event veto if jets with pT>30 GeV and $|\eta|$ <3.0
 - ATLAS selection (CONF note analysis): Two leptons with pT>20, 15 GeV and $|\eta|$ <2.5; MissingEt > 30 GeV; Separate analyses for different jet bins: pT>20 GeV and $|\eta|$ <4.5

Though most of the plots/numbers are done for the former, the conclusions are similar in most cases

Higgs Kinematics

- NLO, NNLO and NLO+PS all predict similar Higgs rapidity distributions;
- pT distributions are different
 - NLO and NNLO differ at low pT and are the same at high pT;
 - MCatNLO prediction is higher in intermediate pT region,

Lepton Kinematics

- Lepton pT distribution: the W*-boson mass largely determines low pT distribution while h.o. corrections affect high pT region
 - distributions at small pT values are similar at LO, NLO and NNLO
 - MCatNLO predicts more leptons with soft pT, perhaps FS radiation?
- Lepton eta distributions are much less sensitive to h.o. corrections

 \Rightarrow No major issues for our cuts.

Jet Kinematics

- NLO and NNLO have very similar jet pT distributions above 40 GeV;
- MCatNLO has notably different jet pT spectrum
 - More soft radiation, consistent with the Higgs pT spectrum;
 - need to look at the rate, not just the shape...

Selection Efficiencies

- For Higgs mass above 160 GeV, the lepton and MET selection efficiencies are essentially the same at LO, NLO and NNLO;
- For low masses, the efficiencies increase slightly at higher orders likely due to additional boost in lepton/MET pT from Higgs pT;
- Smaller MCatNLO efficiency can be attributed to FS QED radiation

⇒ MCatNLO should be sufficient to simulate lepton/MET kinematics

Cross Sections

- A significant fraction of the cross section gain from NLO and NNLO corrections is from real radiations ⇒ increase event jet activity;
- Significantly change the jet multiplicity distribution or worse effectively reduce the signal in the case of jet veto
 - Most of the NNLO cross section increase disappears after jet veto

Parton/Jet Multiplicities

- Jet multiplicity distributions of MCatNLO (NLO+PS) follows reasonable well with those of fixed order NNLO calculation
 - a bit jettier at low pT and approaches NLO calculation at high pT
- Good agreement in jet veto efficiencies between MCatNLO MC and NNLO calculation over a wide Higgs mass range, i.e.

NLO+PS ≈ NNLO

for our basic selections, i.e. PS simulates NNLO effect reasonably well

Scale and PDF Uncertainties

Relative change in the 0-jet fraction:

- QCD scale: ~5% (pT>30 GeV) from μ_{F} and μ_{R} variations by x2 around their central value M_{H}
- PDF: ~3%

from 40 MSTW2008 90%CL error sets following $\Delta \varepsilon = \frac{1}{2} \sqrt{\sum_{i=1}^{20} \left(\varepsilon_i^+ - \varepsilon_i^-\right)^2}$

Scale variations

μ_F/M_H	μ_R/M_H	$\epsilon_0~(\%)$
0.5	0.5	66.2
0.5	1.0	68.2
0.5	2.0	70.9
1.0	0.5	66.8
1.0	1.0	69.5
1.0	2.0	72.1
2.0	0.5	67.2
2.0	1.0	69.4
2.0	2.0	72.6

Uncertainties Continued...

• α_s : ~2% variation from ±90% CL α_s MSTW2008 fits

 For the joint ATLAS/CMS selection, the combined scale, PDF and as uncertainties are:

0-jet fraction: ~6%

1-jet fraction: ~7%

2-jet fraction: ~35%

• For ATLAS selection (pT>20 GeV and $|\eta|$ <4.5), the combined uncertainties are

0-jet fraction: ~10%

1-jet fraction: ~6%

2-jet fraction: ~35%

Strong anti-correlations between 0- and 2-jet fractions

Summary

MCatNLO NLO+PS MC are not bad!

- adequate simulation of lepton/MET/jet kinematics of fixed order QCD NNLO calculations;
- suitable model of basic event selection efficiency provided that the selection is not too aggressive.

Modeling of jet fractions...

- For pT threshold around 20-30 GeV, MCatNLO NLO+PS models the NNLO effect well;
- Residual theoretical uncertainties remain, theoretical uncertainty gets larger at lower jet pT threshold.
- ATLAS took the jet fractions from MCatNLO MC, but assigned theoretical uncertainties of 10%, 6% and 35% to the 0-, 1- and 2-jet fractions.... for now.