Jet Vetoes	Results	

Higgs Production with a Jet Veto at NNLL+NNLO

Frank Tackmann

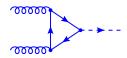
Massachusetts Institute of Technology

Discussion with LHC Higgs working group February 18, 2011

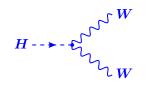
arXiv:1012.4480

with Iain Stewart, Carola Berger, Claudio Marcantonini, Wouter Waalewijn

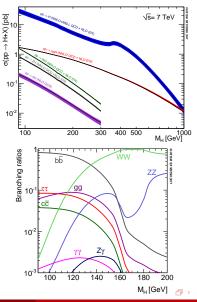
Frank Tackmann (MIT)


Higgs Production with a Jet Veto at NNLL+NNLO

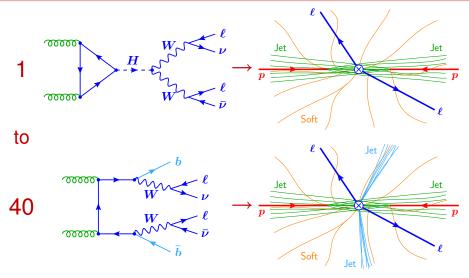
2011-02-18 0 / 17


Jet Vetoes	Results	
0000000	0000	0000

Focus on $gg ightarrow H ightarrow WW ightarrow \ell ar{ u} ar{\ell} u$


• Dominant production: $gg \rightarrow H$

• Dominant decay for $m_H\gtrsim 130~{
m GeV}$ H
ightarrow WW



- ⇒ Important early discovery channel at LHC
- ⇒ Dominant channel in Tevatron exclusion

Jet Vetoes	Results	
0000000	0000	00

H ightarrow WW vs. $t ar{t} ightarrow WW b ar{b}$

 \Rightarrow Veto events with central jets, measure $pp \rightarrow H(\rightarrow WW) + 0$ jets

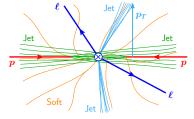
< 67 ►

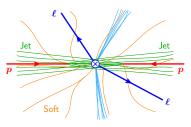
Jet Vetoes	Results	Discussion
○O●OOOOOO	0000	0000
Llour to Vlota Lota		

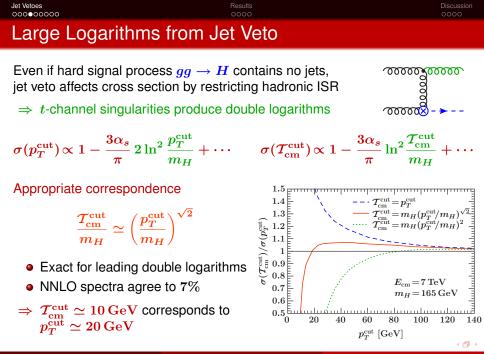
How to Veto Jets

Conventional: Jet algorithm ($\eta < \eta^{cut}$)

- Search for jets and require $p_T^{
 m jet} < p_T^{
 m cut}$ Tevatron: $p_T^{
 m cut} \simeq 20~{
 m GeV}$ LHC: $p_T^{
 m cut} \simeq 25~{
 m GeV}$
- Complicated phase-space restrictions


Alternative: Event shape


Measure beam thrust of each event

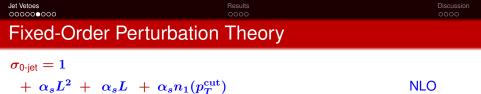

$$\mathcal{T}_{ ext{cm}} = \sum_k ert ec{p}_{kT} ert e^{-ert \eta_k ert} = \sum_k ig(E_k - ert p_k^z ert ig)$$

and require $\mathcal{T}_{\mathrm{cm}} < \mathcal{T}_{\mathrm{cm}}^{\mathrm{cut}}$

Nice for analytic higher-order calculations

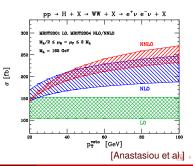
Results

Jet-Veto Logarithms can easily get large


$$L^2 = 2 \ln^2 \frac{p_T^{\text{cut}}}{m_H}$$
 or $L^2 = \ln^2 \frac{\mathcal{T}_{\text{cm}}^{\text{cut}}}{m_H}$
= 9,...,4 for $p_T^{\text{cut}} = 20, \dots, 40 \text{ GeV}, m_H = 165 \text{ GeV}$

Pert. structure is very different for inclusive and 0-jet cross sections

- Inclusive cross section: dominated by n_i terms (logarithms vanish L = 0)
- 0-jet cross section: dominated by logarithmic terms $\alpha_s^n L^m$
- ⇒ Scale uncertainties for each are practically unrelated


Frank Tackmann (MIT)

< 67 →

- FEHiP, HNNLO: Fully differential NNLO cross section known numerically [Anastasiou, Melnikov, Petriello; Grazzini]
- FO scale only appears in α_s(μ)
 → does not probe logarithms
- FO expansion breaks down at small p_T^{cut}

Apparent convergence at small p_T^{cut} comes from cancellation between large positive K factor (virtual corrections) and large negative logs at this order

Decummention of	Logorithmo	
000000000	0000	0000
Jet Vetoes	Results	

Resummation of Logarithms

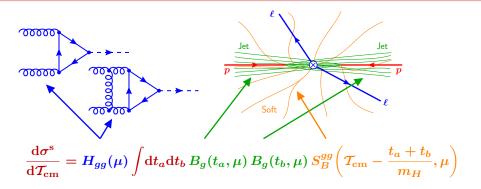
Initial-state parton shower resums LL

- Pythia/Herwig is LL (maybe a bit NLL from tuning)
- MC@NLO, POWHEG: combine fixed NLO with parton-shower LL

Decummetion of	Logorithmo	
000000000	0000	0000
Jet Vetoes	Results	

Resummation of Logarithms

Initial-state parton shower resums LL


- Pythia/Herwig is LL (maybe a bit NLL from tuning)
- MC@NLO, POWHEG: combine fixed NLO with parton-shower LL

Our calculation: NNLL+NNLO

- $\bullet~$ Using \mathcal{T}_{cm}^{cut} and SCET as tool for resummation $\rightarrow~$ two orders beyond PS
- $n_{1,2}(\mathcal{T}_{\mathrm{cm}}^{\mathrm{cut}})$ numerically from FEHiP \rightarrow reproduce full NNLO

< 67 →

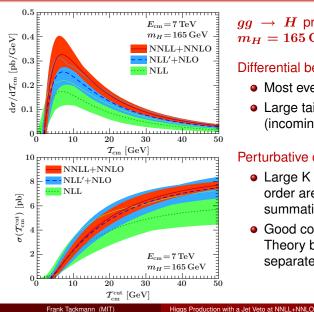
Function	contains	at the scale
Hard H_{gg}	hard virtual radiation	$ \mu_H \simeq m_H$
Beam B_g	virtual & real energetic ISR	$\mu_B\simeq \sqrt{\mathcal{T}_{ m cm}m_H}$
Soft S_B^{gg}	virtual & real soft radiation	$\mu_S \simeq \mathcal{T}_{ m cm}$

Summation of Jet-Veto Logarithms

Logarithms are split apart by factorization

Jet Vetoes

$$\begin{split} \frac{\mathrm{d}\sigma^{\mathrm{s}}}{\mathrm{d}\mathcal{T}_{\mathrm{cm}}} &= H_{gg}(\mu) \int \mathrm{d}t_{a} \mathrm{d}t_{b} \, B_{g}(t_{a},\mu) \, B_{g}(t_{b},\mu) \, S_{B}^{gg} \bigg(\mathcal{T}_{\mathrm{cm}} - \frac{t_{a} + t_{b}}{m_{H}},\mu\bigg) \\ \ln^{2} \frac{\mathcal{T}_{\mathrm{cm}}}{m_{H}} &= 2 \ln^{2} \frac{m_{H}}{\mu} \qquad - \qquad \ln^{2} \frac{\mathcal{T}_{\mathrm{cm}} m_{H}}{\mu^{2}} \qquad + \qquad 2 \ln^{2} \frac{\mathcal{T}_{\mathrm{cm}}}{\mu} \\ \Rightarrow \qquad |\mu_{H}| \simeq m_{H} \qquad \mu_{B} \simeq \sqrt{\mathcal{T}_{\mathrm{cm}} m_{H}} \qquad \mu_{S} \simeq \mathcal{T}_{\mathrm{cm}} \end{split}$$


- Each function is computed in perturbation theory at its own scale (where it has no large logarithms): $H_{qq}(\mu_H), B_q(\mu_B), S_B^{gg}(\mu_S)$
- RG evolution to common scale μ resums all logarithms

Perturbation theory at *each scale* contributes to scale uncertainties

- Jet-veto introduces sensitivity to smaller scales $\alpha_s(\mathcal{T}_{cm}^{cut})$ or $\alpha_s(p_T^{cut})$
- Separate variation of each scale directly probes large logarithms

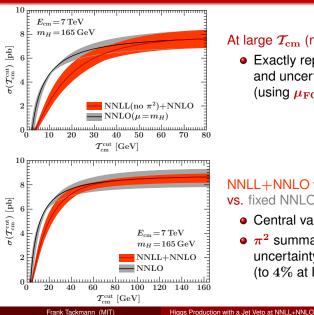
< 67 →

Ast Veroes COCOCO Results for Beam Thrust Spectrum and Cumulant

gg
ightarrow H production cross section for $m_H = 165\,{
m GeV}$ at the LHC

Differential beam-thrust spectrum

- Most events at small $T_{\rm cm}$
- Large tail from ISR (incoming gluons radiate a lot)


Perturbative corrections are important

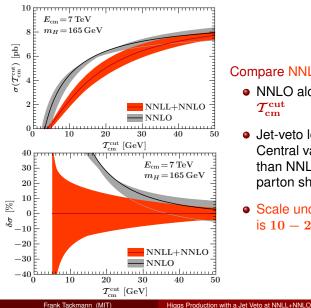
- Large K factors (~ 2-3) at fixed order are reduced by log+π² summation
- Good convergence at higher orders: Theory bands overlap (from separate μ_H, μ_B, μ_S variation)

Jet Vetoes	
000000000	

Results 0000

Results at Large \mathcal{T}_{cm}

At large T_{cm} (no jet veto)


 Exactly reproduce central value and uncertainties of fixed NNLO (using $\mu_{\rm FO} = m_H$)

NNLL+NNLO with π^2 summation (default) vs. fixed NNLO (using $\mu_{\rm FO}=m_H/2)$

- Central values agree at large \mathcal{T}_{cm}^{cut}
- π^2 summation reduces scale uncertainty in total cross section (to 4% at LHC)

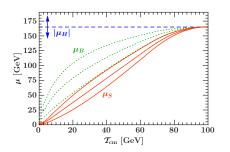
Results at Small $\mathcal{T}_{\mathrm{cm}}^{\mathrm{cut}}$ (0-Jet Region)

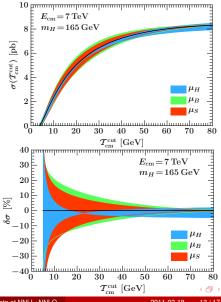
Results

Jet Vetoes

Compare NNLL+NNLO to NNLO only

- NNLO alone is not reliable for small \mathcal{T}_{cm}^{cut}
- Jet-veto logarithms are important: Central value including NNLL lower than NNLO (partly accounted for by parton shower)
- Scale uncertainty at NNLL+NNLO is 10 - 20%


Jet Vetoes	Results	
00000000	000●	


Individual Scale Uncertainties

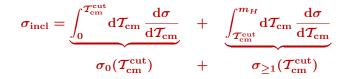
Perturbative uncertainties estimated by envelope of three variations

- Overall scale by factor of 2 (equivalent to FO scale variation)
- $\ \ \, oxed{9} \ \, \mu_B(\mathcal{T}_{
 m cm})$ profile
- $\bigcirc \mu_S(\mathcal{T}_{cm})$ profile

 $\Rightarrow \mu_B$ and μ_S dominate at small \mathcal{T}_{cm}^{cut}

How Can the Results Be Used?

Directly using $\mathcal{T}_{\mathrm{cm}}$ to implement the jet veto?


- Event shape sums over particles \rightarrow pile-up and UE are problematic
- Perhaps summing over (mini-)jets instead

Use $\mathcal{T}^{\mathrm{cut}}_{\mathrm{cm}}$ as a proxy for p^{cut}_T

- Reweight the partonic beam-thrust spectrum in Monte Carlo to partonic NNLL+NNLO results (then add hadronization, UE, ...)
 - Improves 0-jet phase-space region with higher-order resummation
 - At the same time produces correct inclusive NNLO cross section
- Use reweighted sample to analyze jets with a standard $p_T^{
 m cut}$ method
- Similarly, use MC to translate the NNLL+NNLO uncertainty band for T_{cm}^{cut} into an uncertainty for p_T^{cut}
 - Uncertainties in p_T^{cut} might be a bit smaller
 - Not identical to directly resumming p_T^{cut} but still much better than relying on fixed-order uncertainties

Summing over Different Jet Bins

Dependence on \mathcal{T}_{cm}^{cut} cancels between $\sigma_0(\mathcal{T}_{cm}^{cut})$ and $\sigma_{\geq 1}(\mathcal{T}_{cm}^{cut})$

Large logarithms and uncertainties are caused by the "boundary" *T*^{cut}_{cm} → cancel in the sum

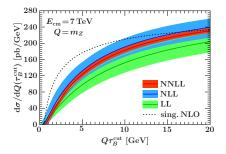
Theory error matrix =
$$\begin{pmatrix} \delta_0^2 & \delta_0 \delta_{\geq 1} \rho_{0,\geq 1} \\ \delta_0 \delta_{\geq 1} \rho_{0,\geq 1} & \delta_{\geq 1}^2 \end{pmatrix} \approx \begin{pmatrix} \delta_0^2 & -\delta_0^2 \\ -\delta_0^2 & \delta_0^2 + \delta_{\text{incl}}^2 \end{pmatrix}$$

Repeats when splitting $\sigma_{\geq 1} = \sigma_1 + \sigma_{\geq 2}$

• σ_1 will have an uncertainty from lower and upper boundary

< 67 →

Results


Using Existing Data

MC reweighting procedure can be tested with identical analysis for Drell-Yan

• Uncertainties in Drell-Yan turn out to be much smaller [arXiv:1005.4060]

Using data to reduce jet-veto uncertainties?

- Dividing H + 0 jets by W/Z + 0 jets is unlikely to help (incoming quarks instead of gluons)
- Unfortunately there is no other color singlet dominantly produced by *gg* (At least none that I could think of)
- Maybe $gg
 ightarrow q ar q \gamma$ or $gq
 ightarrow q \gamma$ can help?

Jet Vetoes	Results	Discussion
000000000	0000	OOO●
Theory Plans		

- Similar calculation can be carried out for H + 1 jet (using cut on "1-jettiness"). This is already work in progress.
- Calculation of irreducible background $pp \rightarrow WW + 0$ jets at NNLL+NLO using beam thrust is straightforward
- Calculation of H + 0 jet cross section at one higher order (N³LL) is feasible. "Only" requires a doable 2-loop calculation. This will help to reduce the perturbative uncertainties.
- \Rightarrow What is most important to you? What else would be useful?

Backup Slides

2011-02-18 17 / 17

< **∂** >

Backup ●00000

H ightarrow WW Signal and Backgrounds at LHC

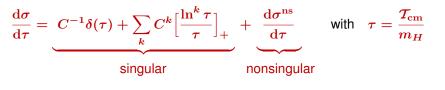
Expected WW	$\rightarrow e \nu \mu \nu$ events in 1 fb ⁻¹
-------------	--

[ATLAS arXiv:0901.0512]

Cut	$H \rightarrow WW$	$t\bar{t} \rightarrow WWb\bar{b}$	WW	Z ightarrow au au	W+ jets
Lepton selection	166	6501	718	4171	209
$p_T^{ m miss} > 30{ m GeV}$	148	5617	505	526	182
Z ightarrow au au rejection	146	5215	485	164	150
Central jet veto	62	15	238	32	76
b-jet veto	62	7	238	31	76
$M_T < 600{ m GeV} \ \Delta \phi_{\ell\ell} < \pi/2$	50.6 ± 2.5	2.3 ± 1.6	85.4 ± 2.7	< 1.7	38 ± 38

- Central jet veto essential to eliminate huge $tar{t} o WWbar{b}$ background
- Main irreducible background from pp
 ightarrow WW

Theory Uncertainties Used at Tevatron

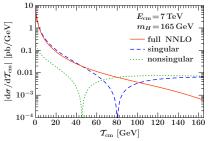

Relative uncertainties for $W^+W^- \rightarrow \ell^{\pm}\ell'^{\mp}$ [CDF numbers from arXiv:1007.4587]

	pp ightarrow WW	gg ightarrow H + 0 jets	gg ightarrow H+1 jets
Scale		7.0% (HNNLO)	23.5% (HNNLO)
PDF Model		7.6%	17.3%
Total	6.0% (MCFM)		

- Theory uncertainties are taken from fixed-order calculations
 - \blacktriangleright Do not take into account large logarithms \rightarrow likely underestimated
- Uncertainties in exclusive jet cross section are different from inclusive cross section
 - Uncertainty for $pp \rightarrow WW$ (and other) background(s) should also be evaluated for each jet multiplicity separately

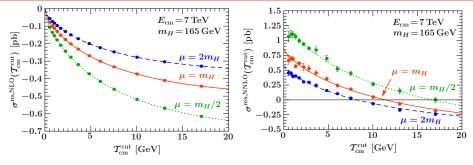
Backup 00●000

General Structure of the Cross Section



Singular (log-enhanced) terms

- Dominant contribution at small au
- ⇒ Resummed to NNLL using SCET


Nonsingular terms

- Suppressed by O(τ) relative to singular ones
- Required to reproduce full fixed-order cross section at large au
- ⇒ Obtained numerically from FEHiP to NNLO

Nonsingular Corrections

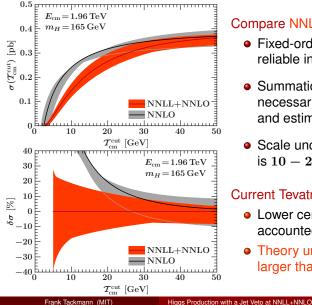
Backup

$$\begin{split} \sigma^{\rm ns,NLO}(\tau^{\rm cut}) &= \sigma^{\rm NLO}(\tau^{\rm cut}) - \sigma^{\rm s,NNLL}(\tau^{\rm cut}) \big|_{\rm NLO} \\ \sigma^{\rm res,NNLO}(\tau^{\rm cut}) &= \sigma^{\rm NNLO}(\tau^{\rm cut}) - \sigma^{\rm s,NNLL}(\tau^{\rm cut}) \big|_{\rm NNLO} \end{split}$$

• $\sigma^{
m NLO}$ and $\sigma^{
m NNLO}$ numerically from FEHiP [Anastasiou, Melnikov, Petriello]

• NNLO $C^{-1}\delta(\tau)$ term is not part of $\sigma^{s,NNLL}$

- Obtained from intercept at $\tau^{cut} = 0$ and added to singular
- Proper treatment requires 2-loop hard, beam, soft functions


Frank Tackmann (MIT)

Higgs Production with a Jet Veto at NNLL+NNLO

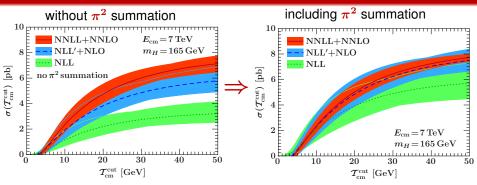
< 🗗 >

Results for the Tevatron

Backup

Compare NNLL+NNLO to NNLO only

- Fixed-order expansion is not reliable in 0-jet region at small *T*_{cm}
- Summation of jet-veto logarithms is necessary for reliable predictions and estimation of uncertainties
- Scale uncertainty at NNLL+NNLO is 10 - 20%


Current Tevatron Higgs limits

- Lower central value partly accounted for by parton shower
- Theory uncertainty $\sim 20\%$ much larger than currently used 7%

2011-02-18 22 / 17

Backup

π^2 Summation

Hard virtual corrections contain large $\ln^2(-1 - i0) = -\pi^2$ terms [Magnea, Sterman; Eynck, Laenen, Magnea; Ahrens, Becher, Neubert, Yang]

$$H_{gg}(m_H,\mu_H) \propto 1 - rac{lpha_s(\mu_H)C_A}{2\pi} \ln^2 rac{-m_H^2 - \mathrm{i}0}{\mu_H^2} + \cdots$$

• Can be summed along with double logarithms by taking $\mu_H = -i m_H$ \Rightarrow Convergence improves significantly when including π^2 summation