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Direct vs. indirect effect of radiation
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... S0 they can travel farther




More oxygen = more cell killing with the same dose

THE OXYGEN EFFECT
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OER (Oxygen Enhancement Ratio)
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Dose required to cause effect without oxygen

OER =

Dose required to cause effect with oxygen



A very big effect
tipically:

OER = 2.5-3



REOXYGENATION
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[llustrating the process of
reoxygenation. Tumors contain a
mixture of aerated and hypoxic cells.
A dose of x rays kills a greater
proportion of aerated than hypoxic
cells because they are more
radiosensitive. Immediately after
irradiation, most cells in the tumor are
hypoxic. But the pre-irradiation
pattern, tends to return due to the
process of REOXYGENATION. Ifthe
radiation is given in a series of
fractions separated in time sufficient
for reoxygenation to take place, the
presence of hypoxic cells does not
greatly influence the response of the
tumor.




Two false statements:

1.High LET radiation is
insensitive to hypoxia

2.Carbon ion RT is high
LET radiation
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Phys. Med. Biol. 56 (20011) 32513268 doi: 1OL1088/003 1-9155/56/41 1/006

Modelling of the oxygen enhancement ratio for ion
beam radiation therapy

Tatiana Wenzl and Jan .J Wilkens

Department of Radiation Oncology, Technische Universitit Miinchen, Klinikum rechts der Isar,
Ismaninger Str. 22, 81675 Munich., Germany
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Figure 5. Calculated OER (right ordinate) as a function of LET and hence depth for a clinical
carbon ion beam for various oxygen partial pressures. The data for LET as a function of depth
(dotted line) were taken from Kohno et al (2005).
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Modelling hypoxia in TPS
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Experimental verification: Hypoxic cell chambers
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Human cancers are hypoxic

normal breast breast cancer

N=16 ' N =15/n= 851
n=1009 median pO, = 10 mmHg
median pO, = 65 mmHg ' f (0-2.5 mmHg) = 30%
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Figure 3. Frequency distribution (histogram) of measured pO; values in normal breast tissue (left) and in locally advanced breast cancers

(right). N, number of patients investigated; n, number of pO, values measured; f(0- 2.5 mm Hg), fraction of pO, values between 0 and
2.5 mm Hg; f(0-5 mm Hg), fraction of pO; values between () and 5 mm Hg (adapted from Vaupel et al. 2002).




Only very smal tumors are not hypoxic
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Figure 4. Microvascular pattern (upper left) and pO; histograms for small (upper right) and large rat DS-sarcomas (lower right). Blood flow

rate (BFR), oxygen consumpton rate (MRO;), and oxygen extraction in experimental rat mumors are greatly volume dependent {adapted
from Vaupel er al. 2003).




Hypoxia is an interesting subject
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Small, oxic tumors and Node negative , n= 35
Small hypoxic or large oxic and node negative , n= 31
Large hypoxic or node positive , n= 40

Years to first failure

Cervical cancer survival dependso on tumor hypoxia (polarographic

Eppendorf needle electrode measurments)
Fyles et al. JCO 2003
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Review

Cyclic Hypoxia: An Update on Its Characteristics, Methods to
Measure It and Biological Implications in Cancer

Samuel B. Bader !, Mark W. Dewhirst 2*( and Ester M. Hammond 1*

1 Department of Oncology, The Oxford Institute for Radiation Oncology, Oxford University, O C
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Two favourable
characteristics

1.Hypoxia is @ microenvironment
property (not a single cell one)

2.Hypoxia can be measured
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Perfused zones (Hoechst 33342) are blue, and vascular structures in these zones are pink
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Measuring hypoxia

e polarographic needle electrodes
e PET




* First reduction only inside living cells, if pO2>
20 mmHg there is a immediate re-oxidation,
otherwise there is a second reduction and the
drug can bind to nmacromolecules and
accumulate within the cell

e Easy to produce and ship



Sub-optimal contrast

FMISO




* First reduction only inside living cells (NADH is
needed )

* Second reduction only if low pO2
* Good contrast

e Radioactive Cu is more difficult to produce:
Cu60 half life 24 min



Better contrast with Cu-ATSM




Hypoxia measured with Cu-ATSM PET
is still predictive of survival in cervical
cancer

TIM > 3.5
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Hypoxia measured with F-miso PET is
predictive of outcome in head and
neck cancer
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Static or kinetic
PET
measurements?
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Phys. Med. Biol. 50 (2005) 2209-2224 doi:10.1088/0031-9155/50/10/002

A Kinetic model for dynamic [13F]-Fmiso PET data to
analyse tumour hypoxia

Daniela Thorwarth', Susanne M Eschmann?, Frank Paulsen®
and Markus Alber!

! Section for Biomedical Physics, University Hospital for Radiation Oncology.,
Hoppe-Seyler-Str. 3, 72076 Tiibingen, Germany

2 Department of Nuclear Medicine, Radiological University Clinic, Otfried-Miiller-Str. 14,
72076 Tiibingen, Germany

3 Department of Radiation Therapy, University Hospital for Radiation Oncology,
Hoppe-Seyler-Str. 3, 72076 Tiibingen, Germany




TAC (Time Activity Curves) are created

A kinetic model to analyse tumour hypoxia

Table 1. Table of acquired image frames for each patient (n = 16).

Time p.i. (min)  0-2 2-4 4-15 15-60 120 180 240
Acquisitiontime [12x 10s 8x15s 11 x60s 9x5mimn I x5min | x89mn 1 x [0-12 min

Patient no.

1,4

3,5,7,9,10,

12, 13,15

E —_—

11,16 x

2,14 ' 3 x 5 min

6 y y 5 x5 min

One F-miso injection, multiple data acquisition
over time



Figure 1. Compartmental model consisting of a diffusive and an accumulative compartment. The
input function Cyy(f) comprises the tracer concentration in the blood and in the interstitial space
close to the vessels.

KiCin(r) — (k2 + k3)Cp(t)
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Three patterns
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Scatter plots

(b) Patient 2

W Kg [rnln'gl

W, describes how fast the radiodrug goes from the
blood to the interstitial fluid

W_k; describes how fast it is trapped in hypoxic cells



Three kinds of tumors:

a) hypoxic because of poor blood supply

b) Hypoxic despite good blood supply (increased
consumption ?)

c) Well oxygenated



Quantitative Assessment of Hypoxia Kinetic
Models by a Cross-Study of Dynamic
IBF.FAZA and 'O-H,O in Patients with
Head and Neck Tumors

Kuangyu Shi', Michael Souvatzoglou?, Sabrina T. Astner!, Peter Vaupel', Fridtjof Niisslin', Jan J. Wilkens',
and Sibylle L. Ziegler®

! Department of Radiotherapy and Radi inikum req
and 2Department of Nuclear Medicine,

Voxel-by-voxel
quantitative
comparing

in tumor

Although kinetic modeling has advantages over static
assessment (27), the behavior varies greatly for different
models of hypoxia evaluation. Different models even lead
(o opposite interpretations 1n some sifuations.




Dose escalation for hypoxic tumors

 More dose to the tumor (uniform dose
escalation)

* More dose to the hypoxic part of the tumor
(dose painting by contours DPBC)

* The more it is hypoxic the higher the dose
(Dose Painting By Numbers DPBN)



Hypoxia information is used only to decide weather or not
to give an additional 6 Gy (70 = 76) the volume is decided
indipendently (e.g. FDG - PET)



The tumor contour was shown on the
corresponding 5°Cu-ATSM image after
image registration and fusion

Fig. 7. Delineation of the gro on by CT-PET imaging fusion.

All the volume with drug uptake (Cu-ATSM) over a
threshold receives the boost (80 Gy vs. 70 Gy)



Dose painting by numbers
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A NOVEL APPROACH TO OVERCOME HYPOXIC TUMOR RESISTANCE:
Cu-ATSM-GUIDED INTENSITY-MODULATED RADIATION THERAPY
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More drug (F-Miso)
more hypoxia
more dose






Hypoxic volume changes, thanks to RT

* |t would be desiderable to describe the
change of hypoxia and possibly the influence
of RT on reoxygenation.

 Multiple PET over the RT treatment duration
would be necessary



Int. J. Radiation Oncology Biol. Phys., Vol. 68, No. 2, pp. 515-521, 2007
Copyright © 2007 Elsevier Inc.

Printed in the USA. All rights reserved

0360-3016/07/5-see front matter

ELSEVIER doi:10.1016/j.ijrobp.2006.12.037
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A MODEL OF REOXYGENATION DYNAMICS OF HEAD-AND-NECK
TUMORS BASED ON SERIAL 18F-FLUOROMISONIDAZOLE POSITRON
EMISSION TOMOGRAPHY INVESTIGATIONS

DaNIELA THORWARTH, PH.D.,* SuSANNE-MARTINA Escumann, M.D.," Frank Pavursen, M.D..*
AND MARKUS ALBER, Pu.D.*

Only 15 HN patients, serial F-Miso
(dynamic) PET: at least at 0 and 20 Gy,
for some patients also at 50 Gy and 70
Gy



How do perfusion and retention change
during therapy ? (according to Thorwarth
model)

Inflammation ? reoxigenation



What is the mechanism of
reoxygenation ?

 Reduced consumption of stunned tumor cells
* [ncreased perfusion due to inflammation

 Tumor shrinkage




How much dose escalation ?

* Arbitrary: 70 Gy -2 80 Gy

ﬂ!ﬂDﬂ Oy

* Based on TCP model : DEF = D =

M being the excess
number of live cell
in a voxel due to
hypoxia

PHYSICS CONTRIBUTION

HYPOXIA DOSE PAINTING BY NUMBERS: A PLANNING STUDY

DANIELA THORWARTH, PH.D..* SusaNNE-MaRTINA EscHmany, M.D.." Frank PauLsen, M.D..* anp
Markus R, PH.D.*



Sooner or later ?

* Appling dose escalation after the re-
oxygenation has taken place might be more
efficient as you do not ‘waste’ precious extra
dose in the initial phase when the hypoxic
cells would not be damaged

DEF. < DEF,
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Fig. 3. The rate of change in TMR from pre-PET to post-PET in each tumor according to the treatment schedule arms. Pre-PET values were converted to 1.00 and post-PET
values were converted into post-PET TMR divided by pre-PET TMR. a) in Arm A, b) in Arm B, ¢) in Arm C. Dotted lines indicate tumors with pre-treatment hypoxia, and solid
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FIGURE 4 A schema of the biological effect of the radiation therapy against solid tumors considering cycling hypoxia in the reoxygenation
process
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Fig. 2 Serial changes in the SUVmax
SUVmax analysis by FMISO-
PET (a), the TMR analysis in
FMISO-PET (b), and the
SUVmax analysis in FDG-PET
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Fig. 1. Study design.
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Fig. 2. Patient stratification by residual tumour hypoxia after second week of treatment: loco-regional umour control of patients in the exploration cohort (A) and the
validation cohort (B), stratified by the median individual residual tumour hypoxia determined after the second week of reatment in the exploration cohort Residual tumour
hypoxia was defined as ratio of HV, 5 after the second week of treatment and the corresponding pre-treatment HV.



Carbon and hypoxia

Present Future

 We know what hypoxia * We want to know what
does to carbon carbon does to hypoxia



Hypoxia and reoxygenation
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Fig. 1. Volume changes of the NFSa fibrosarcomas after irradia-
tion. Closed circles, closed triangles, and open squares are untreated,
X-ray, and carbon-ion irradiated tumors, respectively. The symbols
and bars are the mean and SEM calculated from five mice each.
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Fig. 3. Time course of the number of pO; peaks after irradiation.
The average number of pO, peaks was calculated from 20-25 pO,
profiles per day for each group. The striped, white, and black bars are
untreated, X-ray, or carbon-ion irradiated tumors, respectively. The
error bars indicate SEM. The statistical significance (*p < 0.05) was
obtained between untreated and irradiated tumors.

Fukawa et al. 2004
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Hypoxia: Importance in tumor biology, noninvasive measurement
by imaging, and value of its measurement in the management of

Reality is a complex thing

"Hypoxia promotes adaptive processes that lead to tumor
aggressiveness, progression, and acquired resistance to treatment
... Changes dependent on hypoxia inducible factors

(HIF) trigger metabolic adaptation, improved systemic oxygen
supply, cell survival, and cell proliferation. Changes independent of
HIF promote resistance to apoptosis and suppression of anticancer
immune response. Tumors with pO2 values less than 1 mm Hg
exhibit genomic changes such as point mutations, chromosomal
aberrations, gene amplification, and polyploidy. Genetic instability
results in the emergence of new genetic variants that can survive
under otherwise lethal conditions, leading to a Darwinian selection
process of the most resistant clones’
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Intratumoral Hypoxia Reduces IFN-y—Mediated Immunity and
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Vacancies
Karl Landsteiner University of Health Sciences/MedAustron

POSTDOCTORAL RESEARCH FELLOW (POST DOC) DIVISION ,,RADIATION ONCOLOGY" - UNIV. PROF. DR. PIERO FOSSATI MD
40 Hours (F/M/D)

PHD Position - DIVISION ,,RADIATION ONCOLOGY" - UNIV. PROF. DR. PIERO FOSSATI MD
30 Hours (F/M/D)

PHD Position - DIVISION ,,MEDICAL PHYSICS" - UNIV.-PROF. PD DI MARKUS STOCK, PHD
30 Hours (F/M/D)

Workplace: MedAustron in Wiener Neustadt
For more details contact:
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