

Linear Energy Transfer Painting

UNIV PROF PIERO FOSSATI, MD, MSC

SCIENTIFIC DIRECTOR AND DIRECTOR OF THE CARBON IONS PROGRAM @ MEDAUSTRON ION THERAPY CENTRE

FULL PROFESSOR @ DIVISION RADIATION ONCOLOGY DEPARTMENT FOR BASIC AND TRANSLATIONAL ONCOLOGY AND HAEMATOLOGY KARL LANDSTEINER UNIVERSITY OF HEALTH SCIENCES

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101008548

Carbon ions: Unique Physical and biological properties

¥2

Technical concepts: LET based optimization

Figure 3. LET versus depth in tissue for a single SOBP of p, He, C, and O providing a uniform physical dose (2 Gy). The grey area represents the tumor region, a $2.5 \times 2.5 \times 2.5 \text{ cm}^3$ volume centered at 8 cm in water. The yellow and orange lines are 100 and 20 keV/µm level, respectively. Figure from [15], distributed under Creative Commons CC-BY.

Tommasino, F, et al Int. J. Part. Ther. 2015.

Is CIRT a high LET_d radiation?

Ion Therapy Center

Is CIRT dealing with high LET_d?

Ion Therapy Center

Local control of large pelvic sarcoma is unsatisfactory

Matsunobu A. et al., Cancer, 2012

Demizu Y. et al. IJROBP, 2017

Mohamad O, et al. Oncotarget, 2018

Imai R, et al. Anticancer research. 2017

- Large tumor volume inversely correlate with 5yr LC and 5yr OS
 - Most studies defined CTV/PTV volume of **500cc as cutoff** for large tumors
- For larger tumors apart from high dose coverage several other factors like LET distribution may be important for tumor control
- Some reports suggest increase RBE modeling uncertainties for larger targets.

Background | D_{RBE} + ? LETd

Besides D_{RBE}, quantities such as LETd can play a relevant role in Tumor control"

S. Matsumoto et al. 2020, Y. Hagiwara et al. 2020, S. Molinelli et al. 2021

-S. Matsumoto et al. 2020

lower LETd

Citation Plots **Key results** В А 50 50 ([34] 40 (GV [RBE] 25 (GV 105 (C) 105 Within GTV, if **LETmin ≥44 keV/µm** Hagiwara Y. et al. Clin. Transl. (pancreas) Radiat. Oncol, 18-months LC 100.0% vs 34.3%, p = 2020 0.0366 T-test T-test p=0.006 p=0.267 30 20 Local control Local failure

n=14

n=4

Local control Local failure n=14 n=4

8

Citation	Key results
	Large size - increase RBE modeling
	uncertainties
	Half of the relapse volumes were
Molinelli S, et al,	located in a well-covered high dose
	region (Sacral Chordomas)
2021	LETd 50% - significantly higher for

Plots

col, LETd|50% - significantly higher for the controlled patients compared to

relapsed

Proposed role of multi model RBE-

and LET-based optimization

"Mounting evidence besides RBE weighted dose, quantities such as local distribution of *linear energy transfer (LET)* can play a relevant role"

State of the art of LET based optimization

• LET painting

• Kill painting

• Multi modal therapy

Restricting the high LET radiation to hypoxic compartments of the tumor volume

- Using functional imaging techniques to generate patient specific hypoxia maps
- Desired LET distribution is achieved based on selected beam arrangement
- Dealing with small volumes

N. Bassler et al. 2014 N. Bassler et al. 2010

State of the art of LET based optimization

• LET painting

• Kill painting

• Multi modal therapy

Prescribe uniform cell killing across volumes with heterogeneous radiosensitivity

• Using directly the surviving fraction as optimization quantity rather than using the RBE-weighted dose

W. Tinganelli et al. 2015

State of the art of LET based optimization

• LET painting

• Kill painting

• Multi modal therapy

- Particles as a boost
- Intensity modulated composite particle therapy (IMPACT)

 Two or more species in one treatment session

BIG CONCEPT

"To achieve good clinical outcome, most tumor voxels must receive besides prescribed RBE weighted dose, enough dose with high LET"

RBE weighted dose/LET distribution | LEM vs MKM vs LET

Dose axis:
Absolute
Relative max
Relative dose [Gy (RBE)]:

Volume axis: O Relative O Absolute

Purpose

Evaluating the *feasibility* and *efficiency* of <u>*LET_d-based optimization*</u> strategies for carbon ion treatment plans with a *large sacral chordoma tumor*

Strategy 1: LETd optimization

Strategy 2: Blocking

Results / Dose_{LEM} distribution

No LETd-optimization

LETd-optimization

Blocking

Similar dose distribution with and without LET_d optimization

18_

Results / LET_d distribution

No LETd-optimization

LETd-optimization

Blocking

"LETd-optimization" and "Blocking" resulted in higher LET_d

Patient Characteristics

Patient Characteristics

- N= 22 (Non-metastatic Pelvic chordoma/ sarcoma)
- Age = 64 yr (range, 43-77)
- Chordoma (21), Synovial sarcoma (1)

- Registry Study, SACRO Trial
- Small : HD-PTV < 400 cc, HD-CTV < 250 cc</p>
- Large: HD-PTV >/= 400 cc, HD-CTV >/= 250 cc
- Dose prescription-HD-PTV, doses, LETd evaluation -HD-CTV

Tumor Characteristics		Small	Large	p - value	
		(n = 9)	(n = 13)	Small vs Large	
GTV	Mean ± SD (cc)	55.94 ± 39.8	300.95 ± 243.5	0.004	
HD-CTV	Mean ± SD (cc)	116.26 ± 52.57	551.72 ± 211.3	<0.001	
HD-PTV	Mean ± SD (cc)	195.13 ± 76.8	776.66 ± 257.7	<0.001	
Maximum Tumor diameter along the beam path	(cm)	5.6 ± 2.1	8.3 ± 3.8	0.01	
CIRT dose	Median [Gy RBE]	73.6	73.6	NS	
	Range [Gy RBE]	70.4 - 73.6	70.4 - 73.6		

Dose prescription: LD-PTV: 4.4-4.6Gy RBE x 9 fr followed by HD-PTV: 4.4-4.6Gy RBE x 7 fr

Clinical planning: clinical TPS RayStation 8B, 11A and 11B, LETd evaluation /optimization-Blocking: Research TPS RayStation 11B

Results | LETd | small vs large tumors

Key Results

LETd-cold portion of the HD-CTV

in large tumors in received LETd

of 28 - 32keV/µm,

To convert LETd behaviour of

large similar to small tumors, the

LETd cold portion of HD-CTV

should receive atleast 33-

40keV/µm, or more.

21

Methods | Blocking

Original Clinical plans : D_{RBE}, LEM-I | D_{RBE}, mMKM | LETd

Blocking structures Only boost volume (HD-PTV) i.e.6-7 fractions of treatment were blocked) for Large tumors

D_{RBE} and LETd distribution with Blocking

D-/ L-VH

unpublished data do

Results | Cumulative LVH | Small vs Large vs Large Blocked

BLOCKING \rightarrow Improvement in high LETd component, median LETd in HD-CTV of large tumors increased from 38 ± 3.4 KeV/µm (unblocked) to 47 ± 8.1 KeV/µm (blocked)

Ankita Nachankar

not copy

Results | Cumulative LVH | Small vs Large vs Large Blocked

BLOCKING \rightarrow Improvement in high LETd component, median LETd in HD-CTV of large tumors increased from 38 ± 3.4 KeV/µm (unblocked) to 47 ± 8.1 KeV/µm (blocked), fraction of HD-CTV receiving > 50 KeV/µm improved from <10% in

Ankita Nachankar

not copy

D_{RBE}, LETd :2%, 50%, 98%, 95% | HD-CTV | Small vs Large vs Large Blocked

LETd-cold portion | HD-CTV

BLOCKING \rightarrow Significant improvement in LETd distribution in the critical volume that must be treated with high LETd i.e. LETd-cold portion (for HD-CTV)

Key Results

LETd-cold portion for HD-PTV

improved from 31.7 +/- 2.5 KeV/µm to

35.4 +/-3.6 KeV/µm.

LETd-cold portion for HD-CTV

improved from 32 +/-2.3 KeV/µm to

36.2 +/- 3.6 KeV/µm.

KeV/µm.

LETd-cold portion for GTV improved

from 32.3 +/-3 KeV/µm to 36.8 +/- 3.7

26

LETd Spatial Redistribution | central portion of GTV

BLOCKING \rightarrow Redistribution of high LETd component from distal region of PTV & between PTV & OARs to the center of GTV, median LETd in central region of GTV in large tumors > 55 keV/µm

LVH | OARs

BLOCKING → No Significant improvement difference in LETd on OARs especially dose filtered LETd in Rectum and small intestines

not copy

Rectosigmoid | LET Literature

No correlations were found between severe rectal toxicities and LETd alone or physical dose Okonogi N, et al Radiotherapy and Oncology. 2020

Sacral insufficiency fracture

RBE-weighted dose distribution

LETd distribution

Univariate analyses of risk factors for sacrum insufficiency fracture in 51 patients whose D_REE 50% was above the median in the relative biological effectiveness-weighted dose.

Sacrum	Subgroup	Number of patients	Number of patient with SIF	<i>p</i> -value
LETd				
V _L 10 keV/µm (mean ± SD, cc)	< 192.7 / ≥ 192.7	25 / 26	5 / 12	0.034
$V_L 20 \text{ keV}/\mu m \text{ (mean } \pm \text{SD, } \text{cc)}$	< 161.3 / ≥ 161.3	25 / 26	6 / 11	0.139
$V_L 30 \text{ keV}/\mu m \text{ (mean ± SD, cc)}$	< 104.5 / ≥ 104.5	25 / 26	6 / 11	0.415
$V_L40 \text{ keV}/\mu m \text{ (mean ± SD, cc)}$	<29.5 / ≥ 29.5	25 / 26	6 / 11	0.174

On Cox regression analysis LETd was not associated with SIF.

Ankita Nachankar

Carbon ion therapy for Pelvic sarcomas

Carbon ion therapy is a potentially curative treatment for unresectable Pelvic sarcomas

(OS, solid line), and disease-free survival (DFS, dotted line) curves of the 188 patients.

- Imai R IJROBP 2016, Mohamad, O. Oncotarget 2018, Shiba S Cancers 2021

Late Radiation induced Lumbo-sacral neuropathy (RILSN) is a debilitating morbidity associated with CIRT treatment for pelvic malignancies!

Fig. 3. Representative dose–volume histograms of sciatic nerves with grade 3 toxicity (dotted and dashed lines) that received a total dose of 70.4 gray equivalents/16 fractions. Compared with the grade 0 dose–volume histogram (solid line), a higher dose was applied to a long distance of the sciatic nerves.

- Imai R BJR 2011, Imai R IJROBP 2016, Takenaka S, Cancer. 2020

Sacral nerve sparing optimization | SNSO-CIRT Strategy

Contouring

Contouring the individual sacral nerveroots between L5–S3 levels until sciatic nerves

Sacral nerve sparing optimization | SNSO-CIRT Strategy

Dose Constraints

D(RBE) LEM-I: 73.6-76.8 Gy RBE/16 fractions @ 4.6-4.8 Gy RBE /fr (PBS)

Sacral nerves outside HD-CTV i.e. "S. nerves to spare" : D5% <69 Gy RBE

Sacral nerves inside of HD-CTV: D2% <73Gy RBE, avoid hot spots

Sacral nerve sparing optimization | SNSO-CIRT Strategy

Robustness

Ensure robustness against range and set-up uncertainties

Clinical Results | SNSO-CIRT Strategy

Patient / Tumor Characteristics		No RILSN	RILSN	p - value
		(n = 31)	(n = 4)	No RILSN vs RILSN
A .co	Median (years)	51.8	56.1	NS
Age	Range (years)	30.8-75.8	54-66	
Gender	Male	19	3	NS
	Female	12	1	NS
Follow up	Median (months)	15.2	14.3	NS
	Range (months)	3-42.8	6-28	
Histology	Chordoma	24	4	NS
	Chondrosarcoma	3	0	NS
	Leiomyosarcoma	2	0	NS
	Others	2	0	NS
	Surgery	8	1	NS
	Chemotherapy	5	1	NS
	Diabetes	1	1	NS
Comorbidities	Neurodegenerative disease	0	0	NS
CIRT dose	Median [Gy RBE]	73.6	73.6	NS
	Range [Gy RBE]	70.4 - 73.6	70.4 - 73.6	

RILSN Results | SNSO-CIRT Strategy

D_{RBE} analysis for Sacral nerves | LEM- I/mMKM

Dose calculation by both biological models did not show any significant difference between those with or without neuropathy RBE weighted Dosimetric parameters and DVH

Dose [Gy RBE]

mMKM (modified microdosimetric kinetic model: Japanese)

LETd analysis for Sacral nerves

LETd in sacral nerves with RILSN was higher but no significant difference in both groups.

D_{RBE} filtered LETd analysis | Hypothesis

But LETd alone may not be reliable

\mathbf{D}_{RBE} filtered LETd analysis

Robustness | HD-CTV | LEM-I

BLOCKING \rightarrow No significant compromise in Robustness in terms of LEM-I

Robustness | HD-CTV | mMKM

BLOCKING → Hotspot increases for mMKM

