

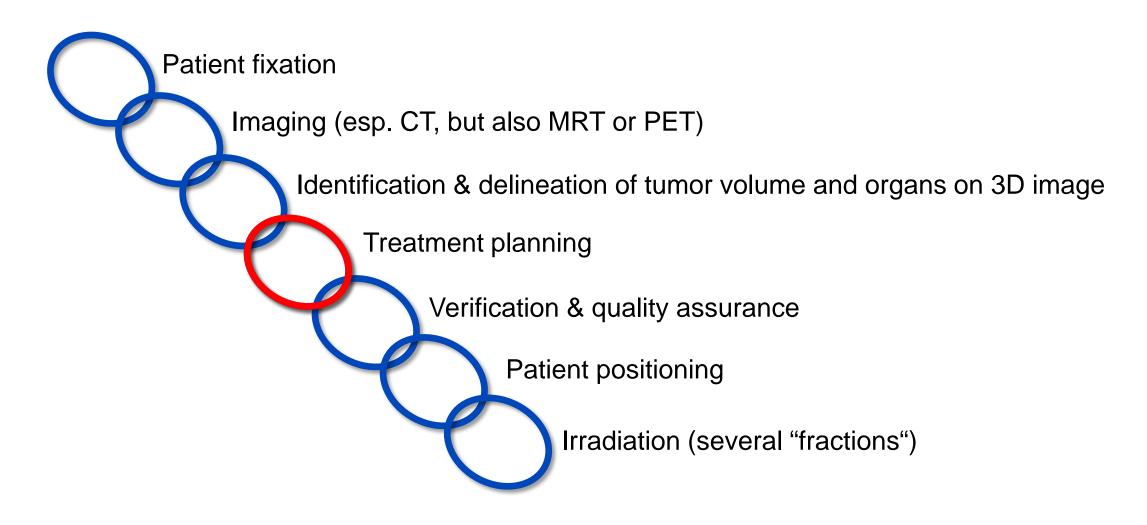
Introduction to Treatment Planning

JOAO SECO & NIKLAS WAHL

DKFZ- GERMAN CANCER RESEARCH CENTER

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101008548

Radiation therapy



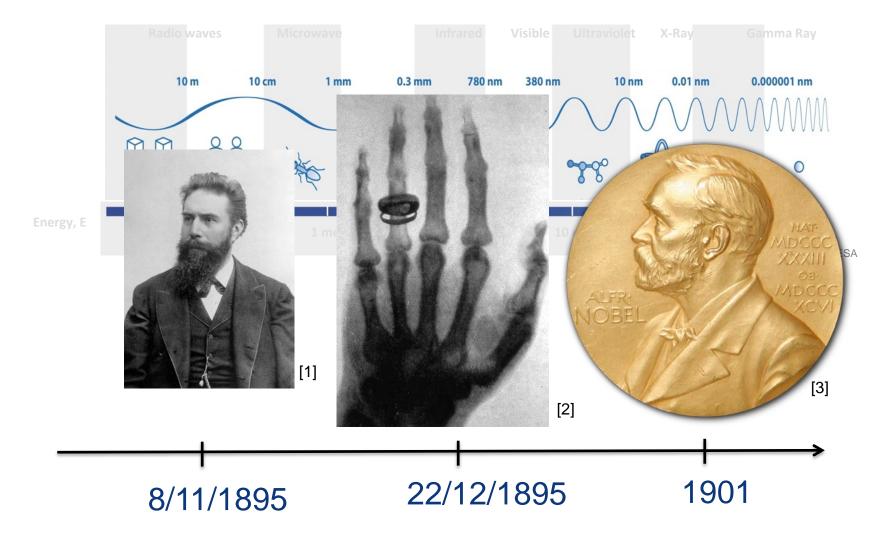
Adapted from W. Schlegel & A. Mahr: 3D Conformal Radiation Therapy Springer Multimedia DVD

A treatment plan should ...

- ... fulfil clinical requirements ("The physician prescribes") ...
- ... based on biological processes (cell death) ...
- ... induced by chemical & physical processes (reactions & interactions) ...
- ... by means of numerical simulation (dose calculation / optimization)

→ Interdisciplinary inverse problem

Imaging: X-ray



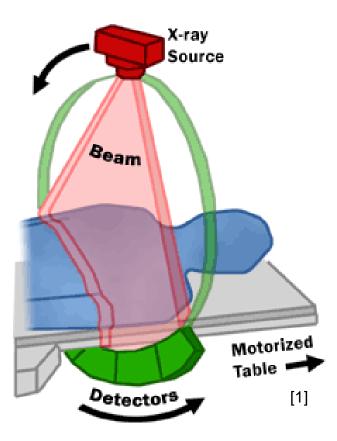
[1] anonym (https://commons.wikimedia.org/wiki/File:Roentgen2.jpg), "Roentgen2", marked as public domain, more details on Wikimedia Commons: https://commons.wikimedia.org/wiki/Template:PD-EU-no author disclosure

[2] Wilhelm Röntgen; current version created by Old Moonraker. (https://commons.wikimedia.org/wiki/File:X-ray_by_Wilhelm_Röntgen_of_Albert_von_Kölliker's_hand_-_18960123-02.jpg), "X-ray by Wilhelm Röntgen of Albert von Kölliker's hand - 18960123-02", marked as public domain, more details on Wikimedia Commons: https://commons.wikimedia.org/wiki/Template:PD-old

[3] Photograph: JonathunderMedal: Erik Lindberg (1873-1966) (https://en.wikipedia.org/wiki/File:Nobel_Prize.png), "Nobel Prize", marked as public domain, more details on Wikimedia Commons: https://commons.wikimedia.org/wiki/Template:PD-US

Imaging: Computed tomography

"3D X-ray"

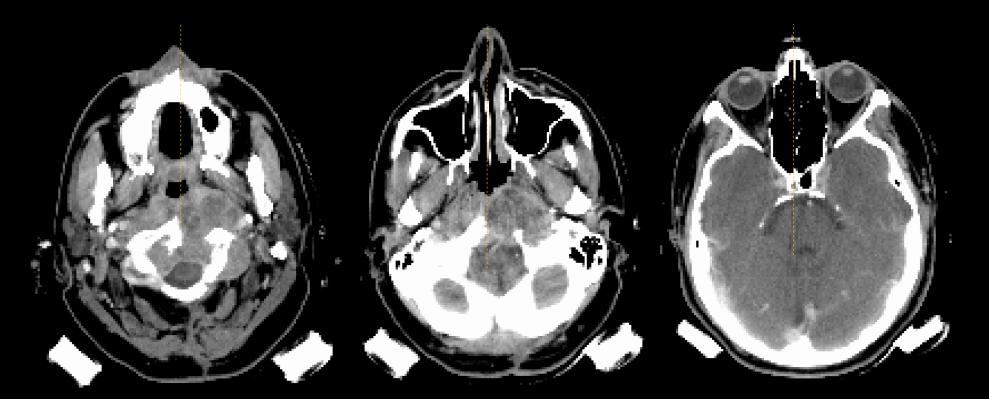


[2]

[1] FDA – Radiation emitting products – Medical X-ray Imaging – What is Computed Tomography? - Accessed from https://www.fda.gov/radiation-emitting-products/medical-x-ray-imaging/what-computed-tomography on 15.02.2021. [2] daveynin from United States (https://commons.wikimedia.org/wiki/File:UPMCEast_CTscan.jpg), "UPMCEast CTscan", https://creativecommons.org/licenses/by/2.0/legalcode

7/4/2023 | Slide 5 | Joao Seco and Niklas Wahl j.seco@dkfz.de and n.wahl@dkfz.de Heavy Ion Therapy Masterclass School | Treatment Planning

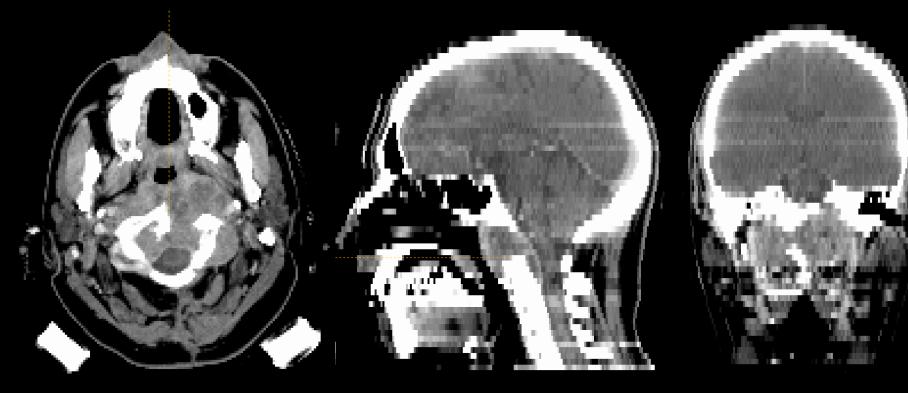
CT scans for treatment planning



transversal slices

Slide by courtesy of Dr. Simeon Nill

CT scans for treatment planning



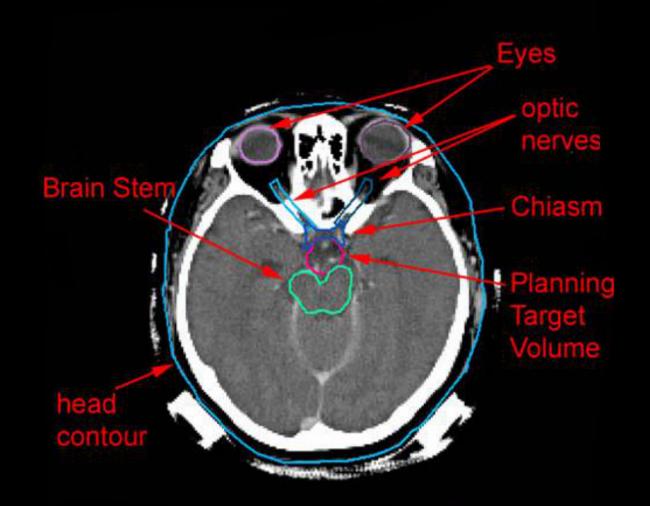
transversal/axial

sagittal

frontal/coronal

Slide by courtesy of Dr. Simeon Nill

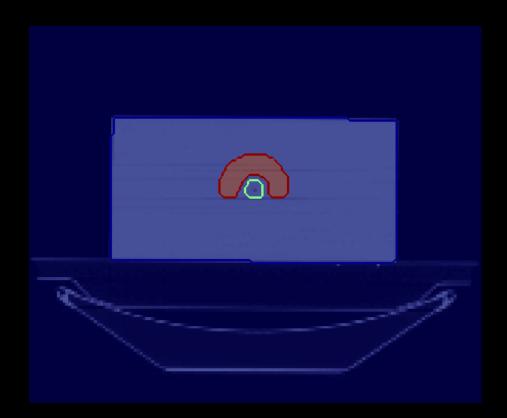
Delineating volumes of interest



W. Schlegel & A. Mahr: 3D Conformal Radiation Therapy Springer Multimedia DVD

Slide by courtesy of Dr. Simeon Nill

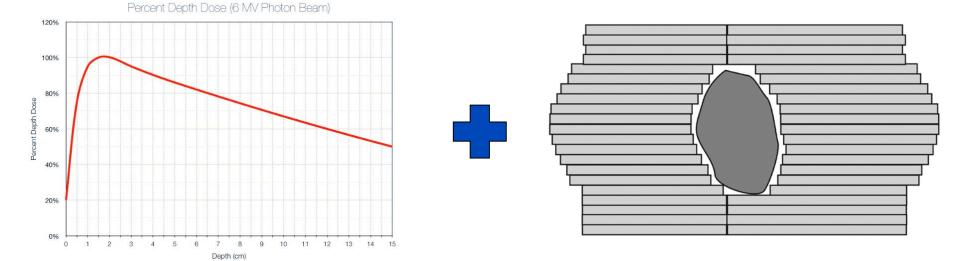
The ideal dose distribution



- High / prescribed dose in the tumor
- No dose in normal tissue

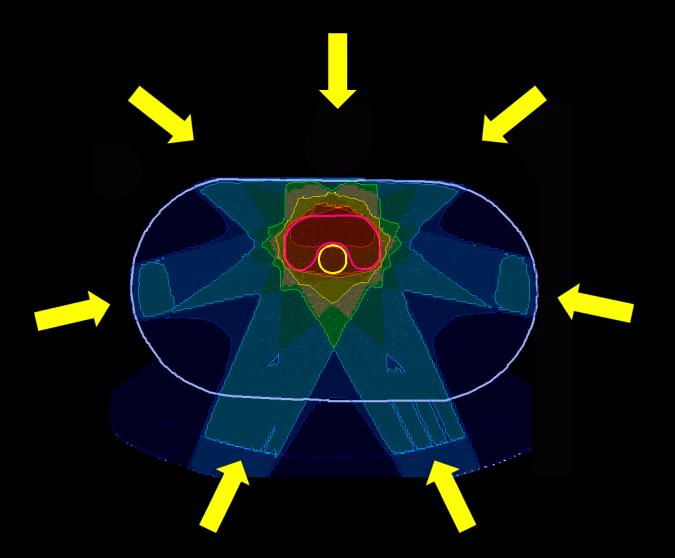
Modern 3D-planning with photons

Photon beam



\rightarrow Adaptation of the photon beam to the tumor shape

A realistic dose distribution



Can we do better?

The concept of the "beamlet"

- "Multi-leaf" collimator are able to generate fine beams (let's call them beamlets)
- We calculate their dose for unit intensity using various algorithms, e.g.:
 - Analytical Pencil beam

Precomputed / measured dose curves in water are "scaled" to the patient

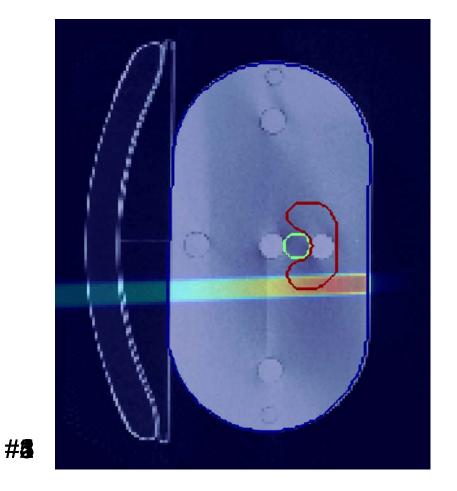
 \rightarrow deterministic, very quick, but inaccurate

Monte Carlo

Simulation of individual particle trajectories ("histories") through the patient

 \rightarrow stochastic, slow, but mostly more accurate

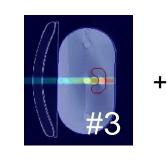
\rightarrow we are able to simulate and "modulate" our beams

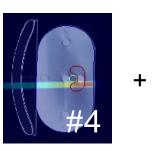


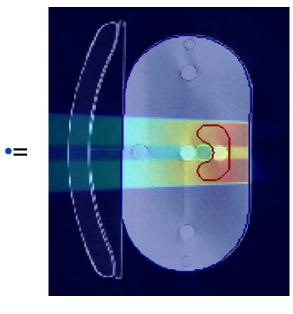
Intensity-modulation with pencil-beams



+



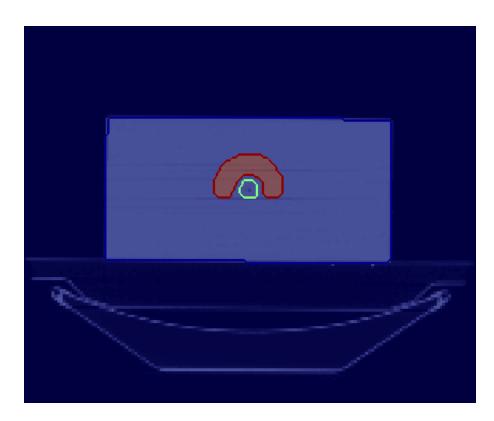




Different beamlet weights w

- = Intensity-modulated field
- Number of beamlets: ~100-1000 per field
- Number of fields: 5 to 12
- \rightarrow We can't do it by hand

The ideal dose distribution (again)



• Write ideal dose as a vector:

 $\boldsymbol{d}^* = (\ldots, 0, \ldots, d^p, \ldots)^T \in \mathbb{R}^I_+$

- I = number of voxels
- Put the beamlets in a *dose influence matrix:*

 $D \in \mathbb{R}_+^{J \times I}$

- J = number of beamlets
- Fluence weight vector: $w \in \mathbb{R}^{J}_{+}$

Finding the right vector *w*^{*}

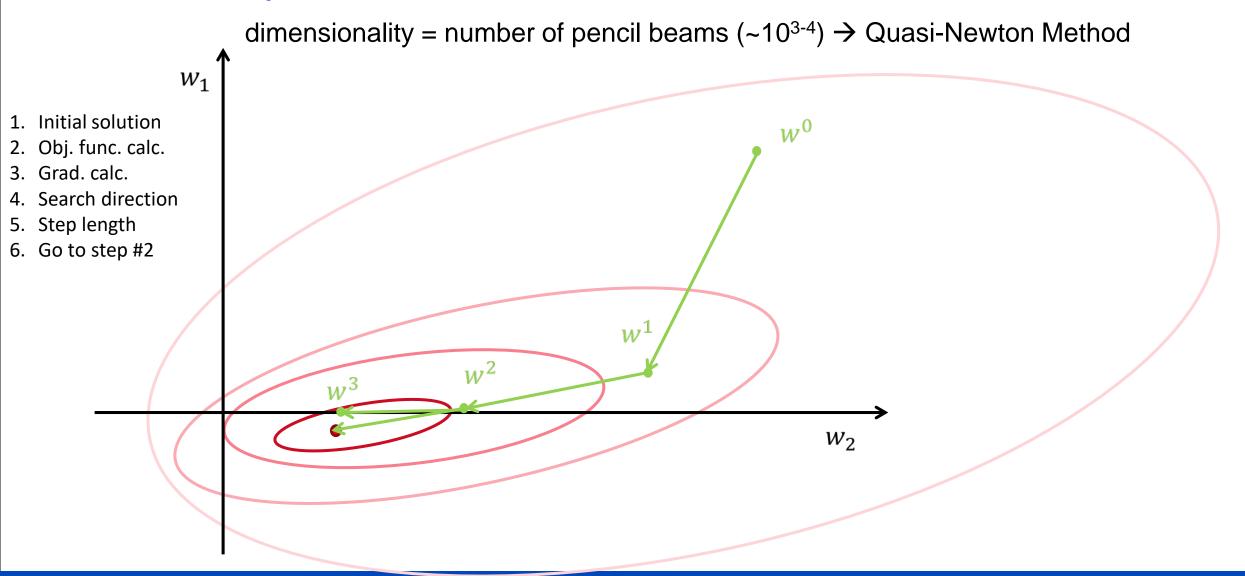
- $d^* = Dw$ has no solution: $d^* = Dw + \epsilon$
- Approximate $d^* \rightarrow$ We need to minimize ϵ !
- An exemplary straightforward optimization approach:

weighted/penalized least squares

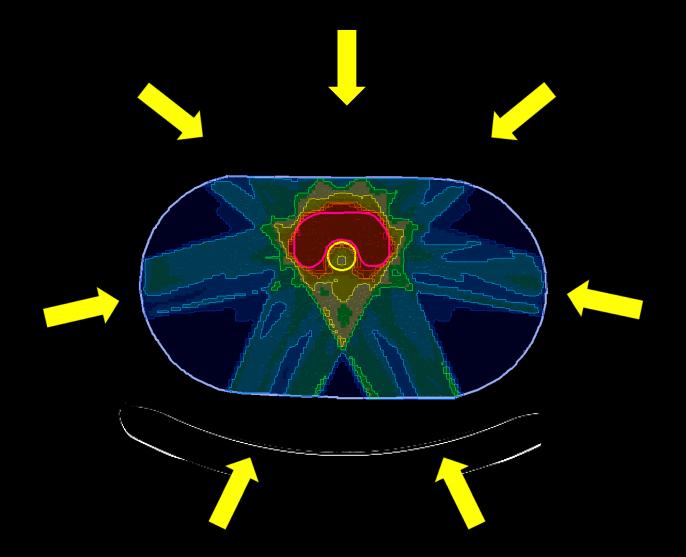
$$w^* = \arg\min_{w} (Dw - d^*)^T P(Dw - d^*)$$

s.t. $w \ge 0$
$$P = \operatorname{diag}(p_1, p_2, \dots, p_I)$$

Optimize for w^*

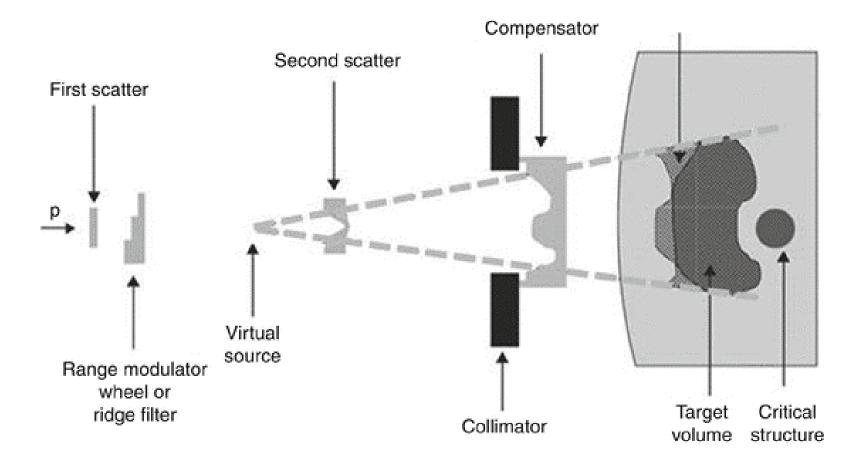


Intensity modulated treatment plan – dose distribution



Let's move to hadrons & ions...

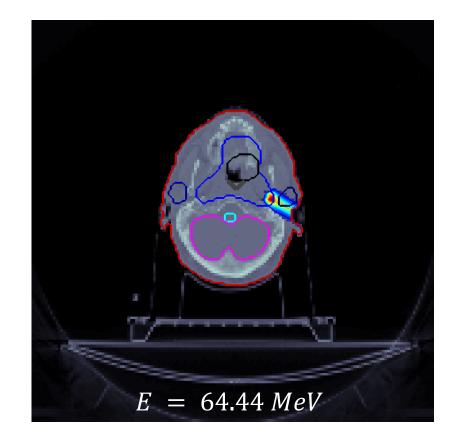
The "old" way: Passive Scattering



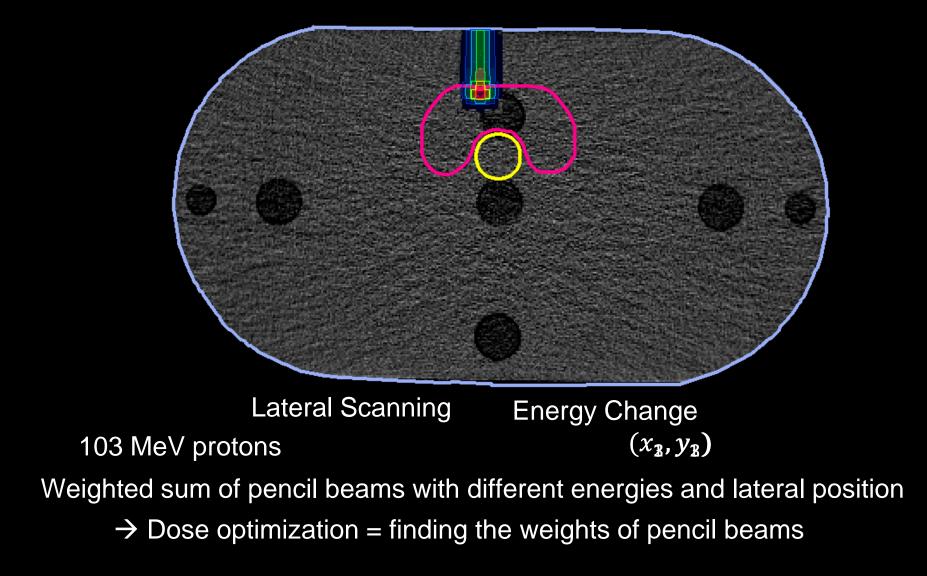
RL Maughan, MJ Hardy, MJ Taylor, J Reay, R Amos: Radiation Shielding and safety for particle therapy facilities, IPEM Report 75 Ed. 2

Translation to intensity-modulated particle therapy (IMPT) → We do not need a collimator

- Hadron / ion accelerators (synchrotrons / cyclotrons) produce "natural" beamlets
- improved dose distribution (Bragg-Peak)
- can also be simulated with deterministic or MC algorithms
- additional modulation in depth
 - \rightarrow much higher number of beamlets per beam



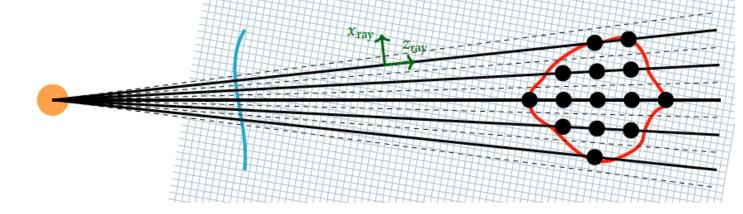
The "new" way: Fluence Modulation \rightarrow intensity-modulated particle therapy



Dose Influence Matrix *D*: Analytical Dose Calculation

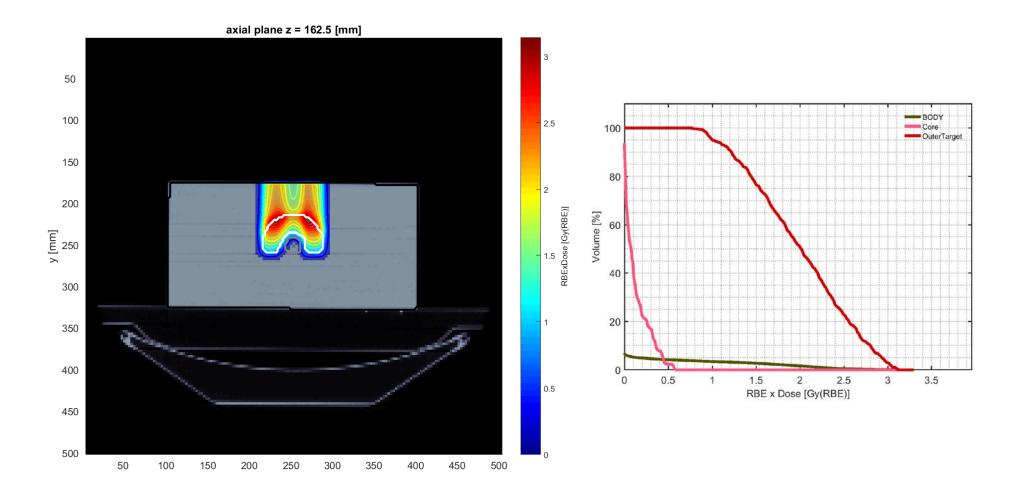
- separate depth dose from lateral dose component
- based on pre-computed / measured dose distributions in water
- fast but inaccurate in heterogeneous tissues

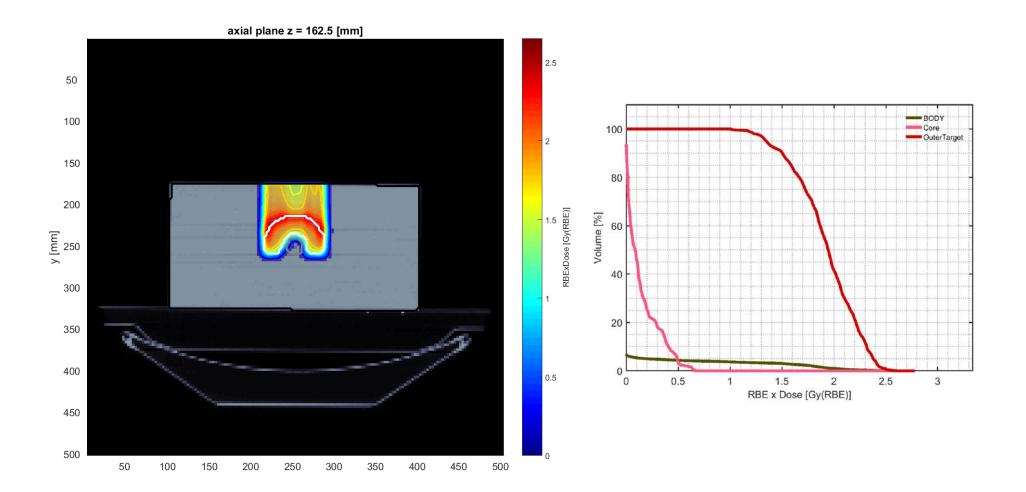
$$d_{i} = \sum_{j=1}^{B} w_{j} D_{ij} = \sum_{j=1}^{B} w_{j} L_{ij}^{x} L_{ij}^{y} Z_{ij}^{z}$$

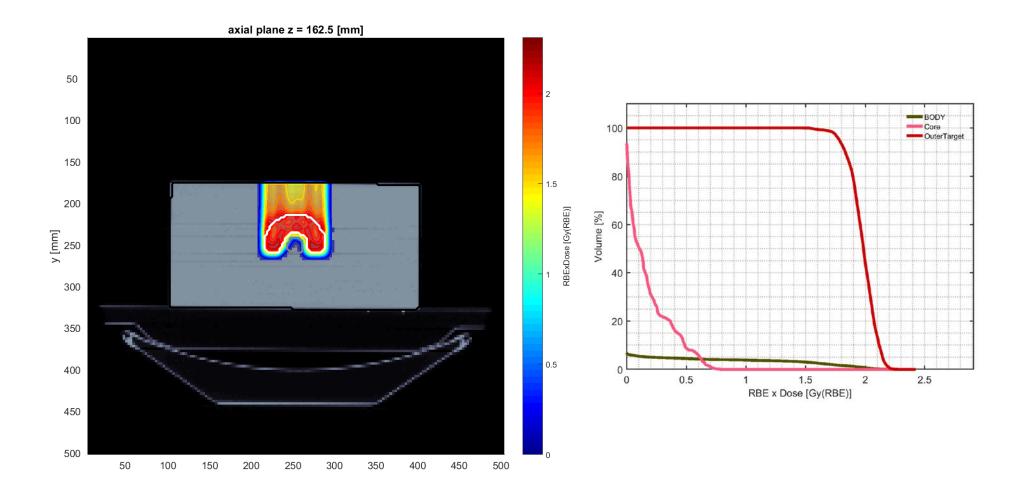


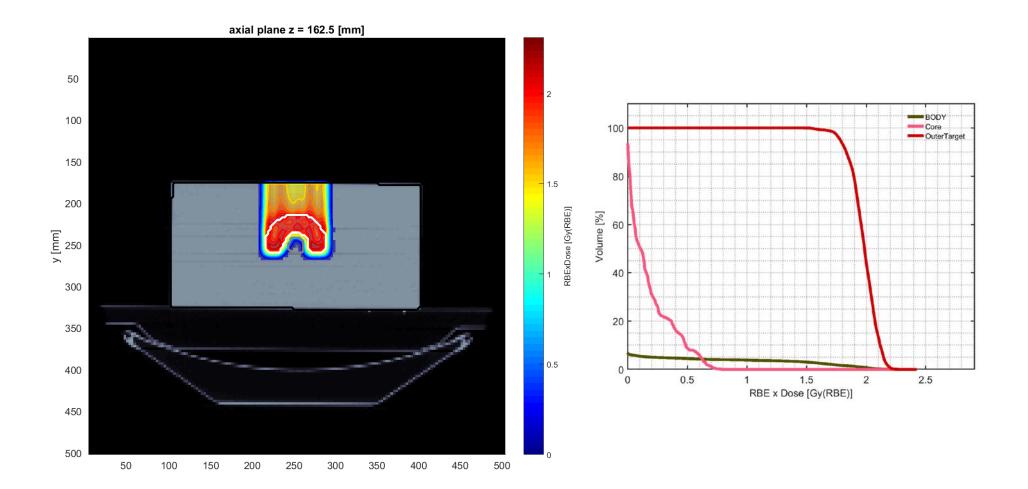
geometry and ray-casting for "radiological depth" / Water-equivalent path length (WEPL) computation

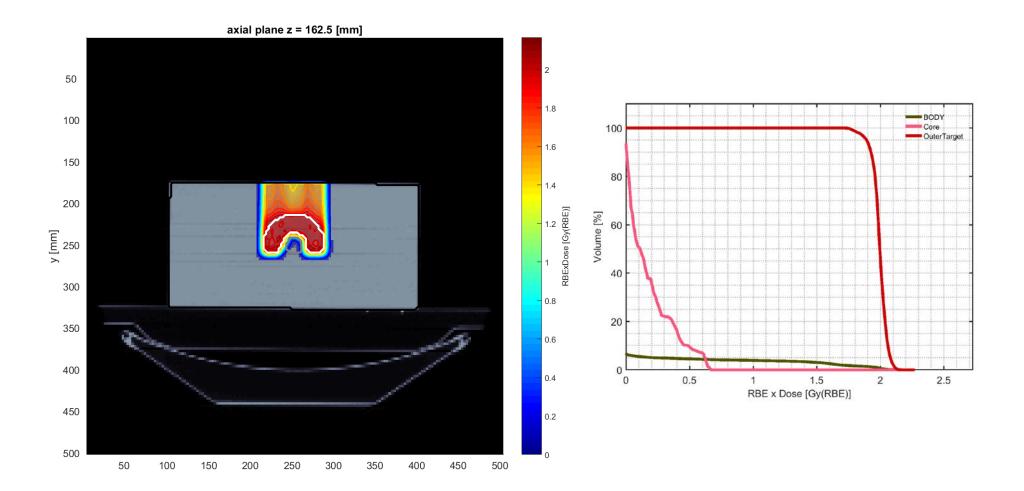
• particles: lateral Gaussian, depth tabulated

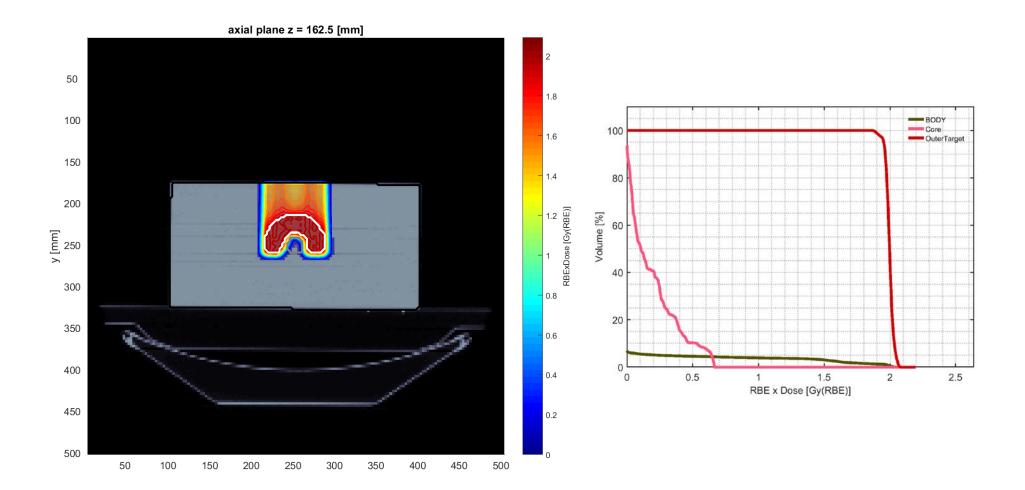




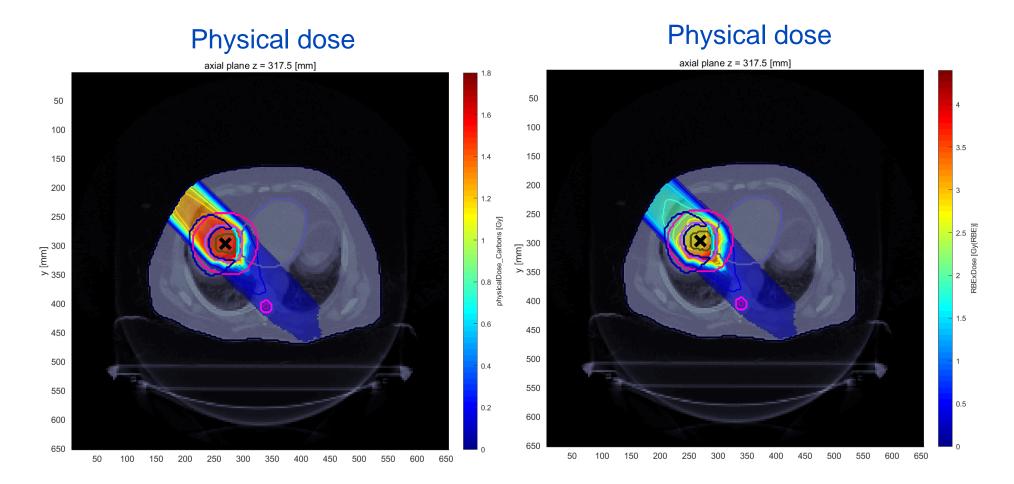






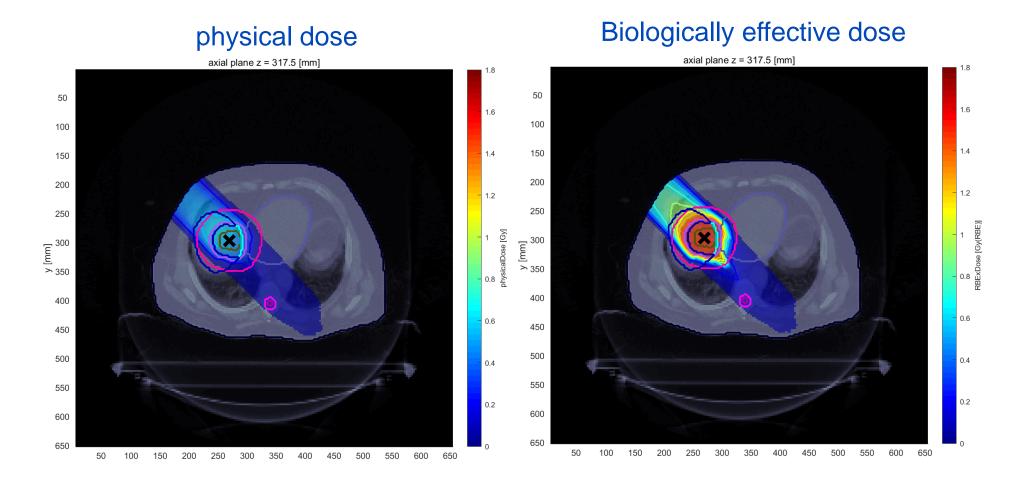


Example Liver Case – Carbons



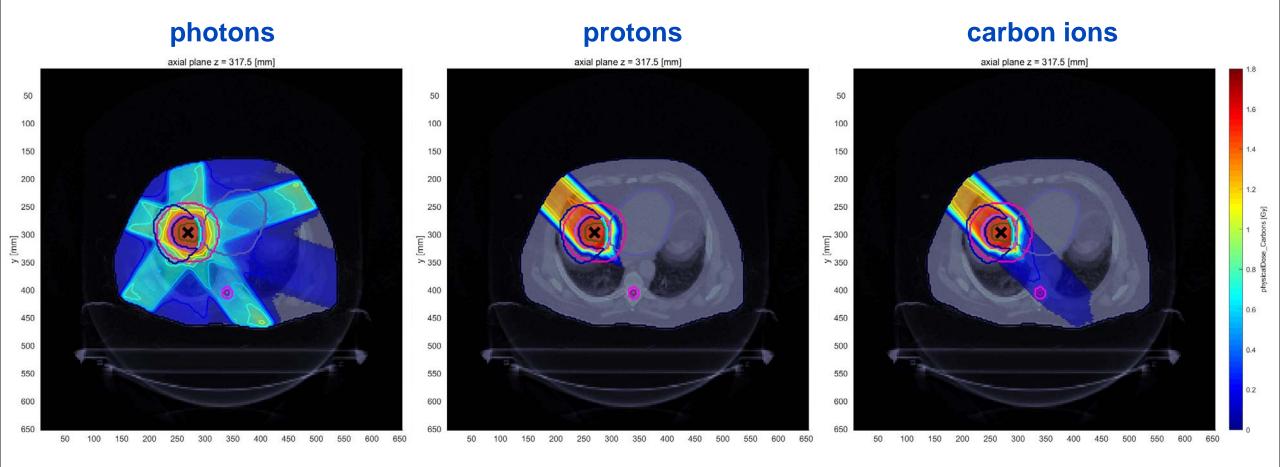
\rightarrow The same physical dose induces different biological effect!

Example Liver Case – Carbons



 \rightarrow Optimize for biology (i.e. RBE) directly instead of dose

Examples: Liver patient



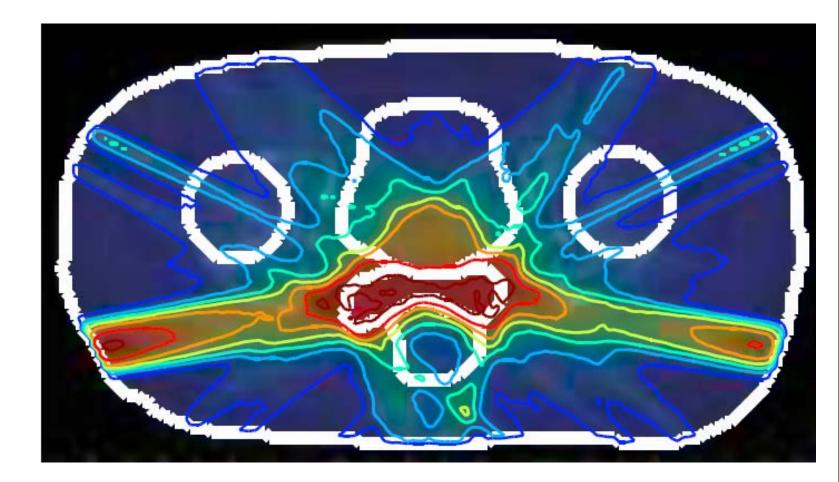
How do we analyze a dose / quantify a plan?

Evaluation of the 2D tomographic images

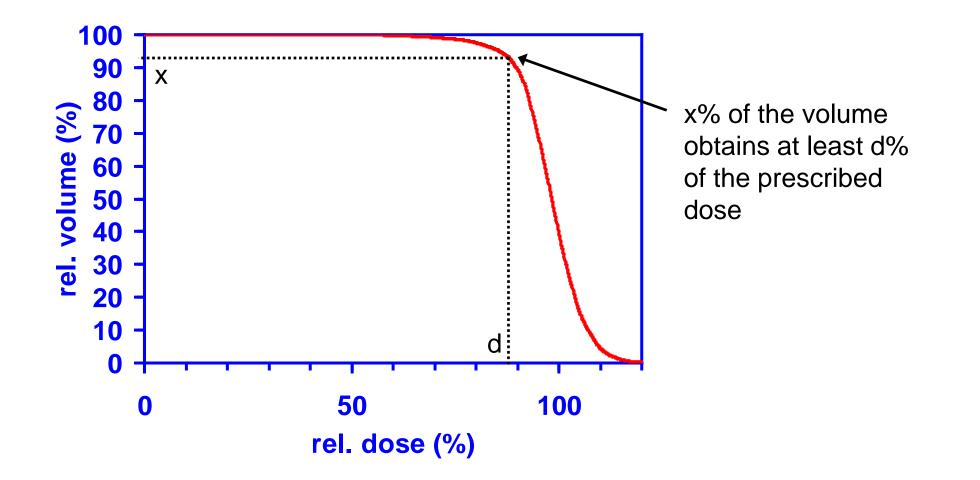
Dose statistics: Mean, maximum, minimum dose

Dose-volume histograms 2D display of the 3D dose distribution

Complication / Control Models (N)TCP, mostly derived empirically



Dose-volume histograms



7/4/2023 | Slide 34 | Joao Seco and Niklas Wahl| j.seco@dkfz.de and n.wahl@dkfz.de| Heavy Ion Therapy Masterclass School | Treatment Planning

TCP / NTCP models

- Tumor control & normal tissue complication often modeled with logistic functions
 → Lyman-Kutcher-Burman – LKB
- Empirically determined, more recently often ML/AI-driven
- May be used directly in planning, but more commonly used to assess plan quality and "design" prescriptions

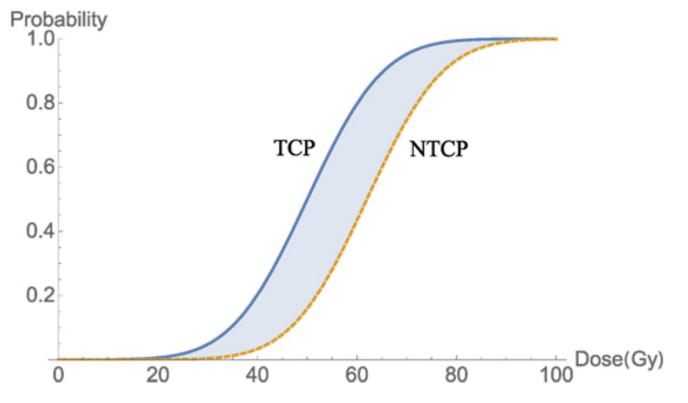


Image from Tseng H-H, Luo Y, Ten Haken RK and El Naqa I (2018) The Role of Machine Learning in Knowledge-Based Response-Adapted Radiotherapy. *Front. Oncol.* 8:266. doi: 10.3389/fonc.2018.00266

More complex prescriptions...

- The prescription can be much more complex / abstract than the initial example
- Prescriptions need to be translated into the language of the optimizer (math)

"Keep the mean dose to the parotid gland low...."

"while achieving a coverage with 60 Gy in the tumor"

"do not exceed a dose of 10 Gy in the brainstem"

...require more complex optimization problems

"Keep the mean dose to the parotid gland low"	Objective (minimize)	$f_1 = \frac{1}{N_S} \sum_{i \in S} d_i$
"while achieving a coverage with 60 Gy in the tumor"	Objective (minimize)	$f_2 = \frac{1}{N_S} \sum_{i \in S} \left(d_i - \hat{d} \right)^2$
"do not exceed a dose of 10 Gy in the brainstem"	Constraint (enforce)	$c_1 = d_{max} + \kappa \log\left(\sum_{i \in S} \frac{d_i - d_{max}}{\kappa}\right)$

- Optimizers:
 - interior-point method
 - Sequential quadratic programming (e.g. in RayStation)

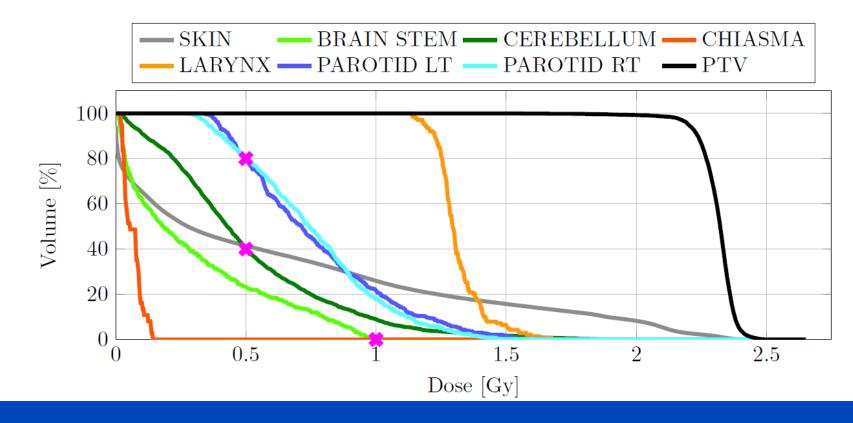
$$\min_{w \in \mathbb{R}^B} f(w) = \sum_n p_n f_n(w)$$

s.t. $c_k^l \le c_k(w) \le c_k^u$

 $0 \le w$

Example of fulfilled constraints in a DVH

- DVH constraints on cerebellum & parotid glands
- Maximum dose constraint on brainstem



In practice: "Sea" of objective functions for targets and healthy tissue

Non-linear constrained optimization problem

$$w^* = \arg\min f(d(w)) = \sum_{k}^{K} p_k f_k(d(w))$$

s.t. $c_q^L \le c_q(d(w)) \le c_q^U$
 $w \ge 0$

• Example from matRad paper:

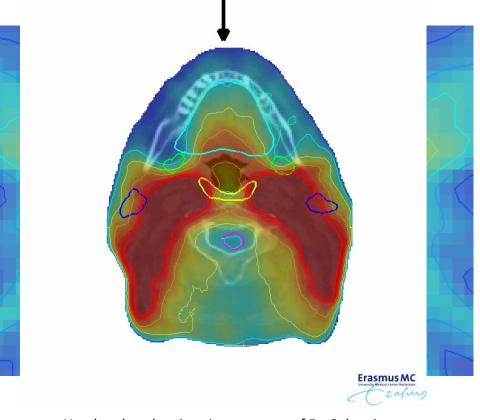
objectives		constraints	
$f_{sqdeviation}$	$= \frac{1}{N_S} \sum_{i \in S} (d_i - \hat{d})^2$		
$f_{squnderdosage}$	$= \frac{1}{N_S} \sum_{i \in S} \Theta(\hat{d} - d_i) (d_i - \hat{d})^2$	$C_{mindose}$	$= d_{min} - \kappa \log\left(\sum_{i \in S} e^{\frac{d_{min} - d_i}{\kappa}}\right)$
$f_{sqoverdosage}$	$= \frac{1}{N_S} \sum_{i \in S} \Theta(d_i - \hat{d}) (d_i - \hat{d})^2$	$c_{maxdose}$	$= d_{max} + \kappa \log\left(\sum_{i \in S} e^{\frac{d_i - d_{max}}{\kappa}}\right)$
f_{mean}	$= \frac{1}{N_S} \sum_{i \in S} d_i$	c_{mean}	$= \frac{1}{N_S} \sum_{i \in S} d_i$
f_{EUD}	$= \left(\frac{1}{N_S} \sum_{i \in S} d_i^a\right)^{\frac{1}{a}}$	c_{EUD}	$= \left(\frac{1}{N_S}\sum_{i \in S} d_i^a\right)^{\frac{1}{a}}$
f_{minDVH}	$= \frac{1}{N_S} \sum_{i \in S} \Theta(\hat{d} - d_i) \Theta(d_i - \tilde{d}) (d_i - \hat{d})^2$	C_{minDVH}	$= \frac{1}{N_S} \sum_{i \in S} \Theta(\hat{d} - d_i)$
f_{maxDVH}	$= \frac{1}{N_S} \sum_{i \in S} \Theta(d_i - \hat{d}) \Theta(\tilde{d} - d_i) (d_i - \hat{d})^2$	c_{maxDVH}	$= \frac{1}{N_S} \sum_{i \in S} \Theta(d_i - \hat{d})$

Most important thing to never forget: It's a trade-off

- Trade-off between target coverage and sparing of normal tissues
- Trade-off between sparing of different organs at risk

Multicriteria decision/planning/optimization problem

More options to solve this problem, e.g., with Pareto surface approximation & exploration

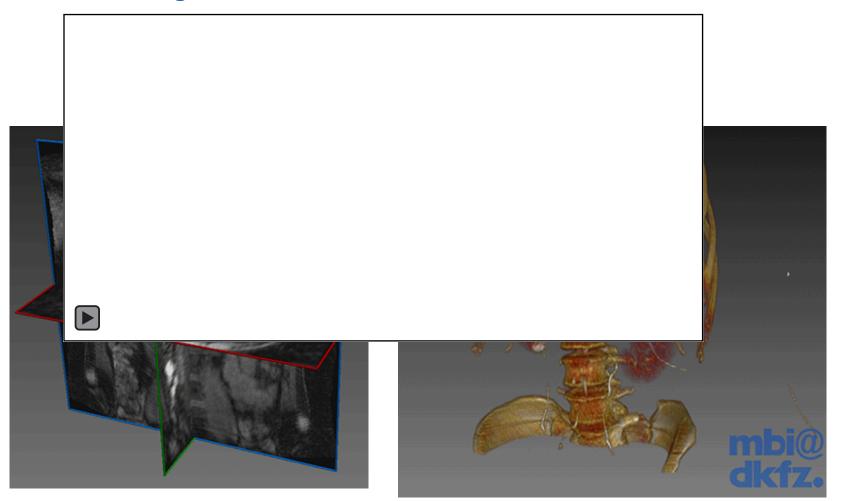


Head and neck animation courtesy of Dr. Sebastiaan Breedvelt @ Erasmus MC Cancer Institute Rotterdam

https://sebastiaanbreedveld.nl/rt_tradeoffs.html

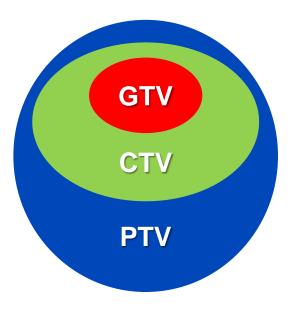
Now we have fully understood and solved the problem of inverse treatment planning using intensity modulation for photons & ions?

Problem: Dealing with uncertainties



Animations courtesy of Paul Merca & Markus Stoll

Margins in treatment planning



• GTV = Gross tumor volume

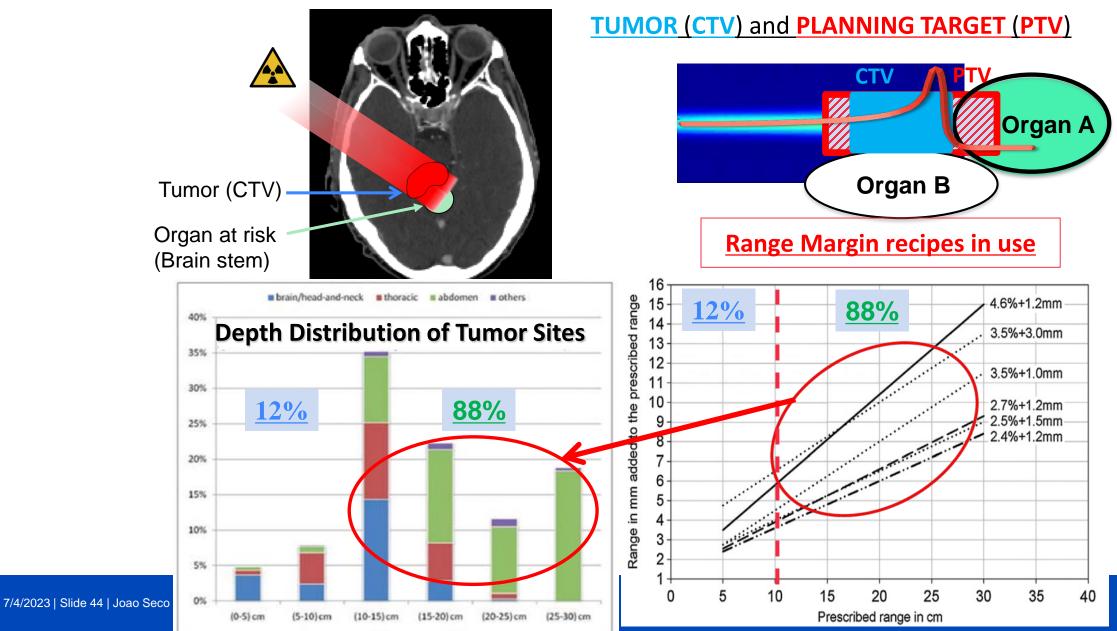
tumor volume that is visible on the images

- CTV = Clinical target volume includes the GTV and regions where invisble tumor tissue is expected
- PTV = Planning target volume safety margin to take uncertainties into account

W. Schlegel & A. Mahr: 3D Conformal Radiation Therapy Springer Multimedia DVD

ICRU report 50

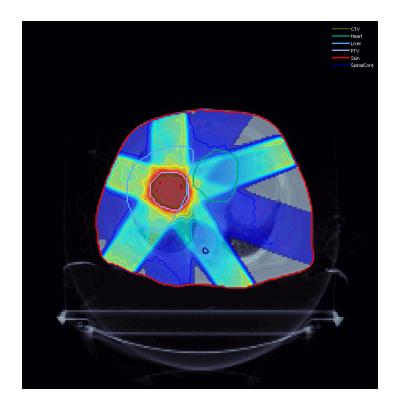
"Bragg Peak" Range Uncertainty



dk

Margins – really?

• The "original" margin recipe for photon therapy: "Minimum dose to CTV is 95% for 90% of population" $2.5 \sigma_{sys} + 0.7 \sigma_{rand} - 3 mm$

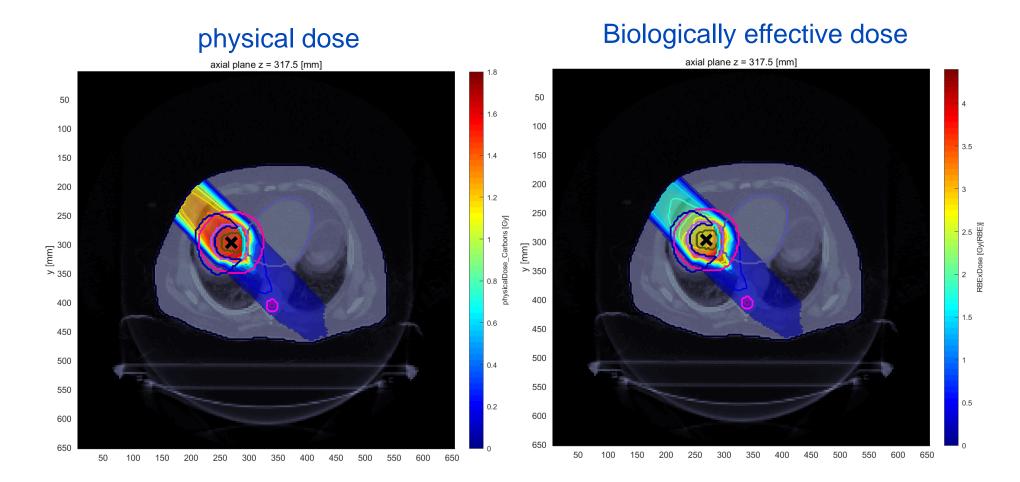


 \rightarrow Not applicable for protons / ions!

Dose [Gy RBE] pat.6 dose for fraction 0 (conv) Slice # 57 ل Ω [mm] [3] Steitz et al., Radiation Oncology 2016, 11:134

van Herk et al., IJRBOP 2000, 57(4):1121

Difference in biological effect

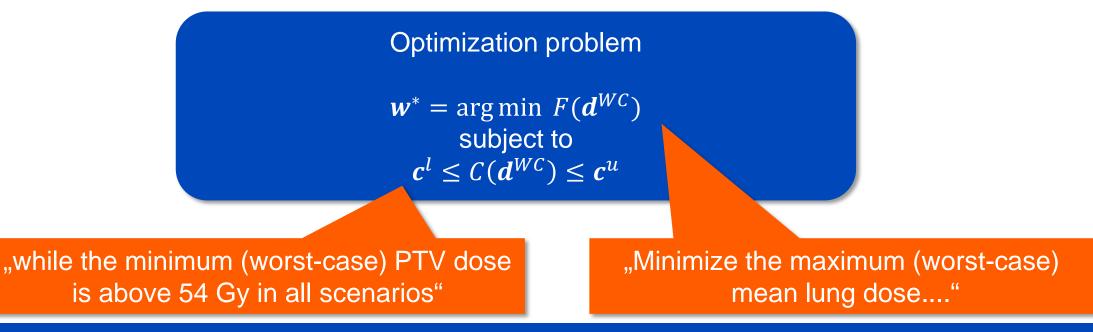


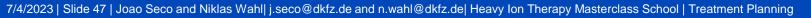
\rightarrow Physical doses similar to photons induce different biological effect!

Robust/worst case optimization

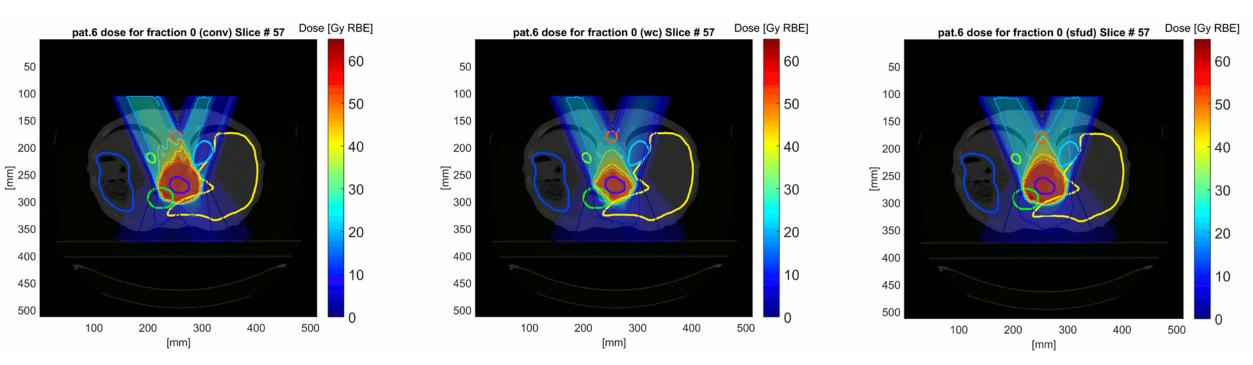
- Describe uncertainty with scenarios π from a discrete uncertainty set
- All scenarios may contribute to a voxel-wise combination of a worst case dose distribution

$$d_i^{WC} = \begin{cases} \min(d_i^{\pi}), i \in target\\ \max(d_i^{\pi}), i \in rest \end{cases}$$





Robust/worst case optimization



Worst case

conventional

J Steitz, P Naumann, S Ulrich, MF Haefner, F Sterzing, U Oelfke & M Bangert. (2016). Worst case optimization for interfractional motion mitigation in carbon ion therapy of pancreatic cancer. *Submitted to Radiation Oncology*

SFUD

Summary

- In treatment planning we try to find the best approximation to an ideal dose distribution / prescription
 - → Multiple factors (biology, importance of objectives / organs, etc.)
- The problem is approached by optimization techniques (inverse planning)
- It is a multicriteria problem that let's the planner choose trade-offs
- Ion therapy has its advantages but also pitfalls during planning, most notably
 - Biology
 - Localization (NT sparing & tumor coverage) ⇔ Uncertainties
 - <u>Robustness of treatment plan</u>

THANK YOU

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101008548