

Immunological Effects

ALEXANDER HELM, GSI

There is more in radiotherapy than "simple" cell inactivation

Improved local control rate after CIRT

Takahashi et al., Cancer 2015

Metastatic cancer disease

- Therapy of metastastic cancer disease is normally palliative, with the clinical goal of improving quality of life
- Primary cause of cancer morbidity and mortality, responsible for about 90% of cancer deaths
- Rather low 5-year survival rates

The immune system protects from cancer

Cancer immunoediting

Van der Burg, Nat Rev Cancer, 2016

Immune system

Demaria et al., Nature, 2019

Antigen presenting cells

Cytotoxic T-cells and checkpoints

Checkpoint inhibition

AWARDS

Cancer immunologists scoop medicine Nobel prize

One of the hottest areas in cancer research, immunotherapy can dramatically extend lives.

BY HEIDI LEDFORD, HOLLY ELSE AND MATTHEW WARREN

wo scientists who pioneered a new way to treat cancer have won the 2018 Nobel Prize in Physiology or Medicine. James Allison at the University of Texas MD Anderson Cancer Center in Houston and Tasuku Honjo at Kyoto University in Japan showed how proteins on immune cells can be used to manipulate the immune system so that it attacks cancer cells. The approach has led to therapies that have extended lives, and even wiped out all signs of disease in some people with advanced cancers.

"To have my work really impact people is one of the best things I could think about," said Allison at a press conference on 1 October, the day the 9-million-Swedish-krona (US\$1-million) prize was announced. "It's everybody's dream." In the 1990s, Allison, then at the University of California, Berkeley, studied a protein,

VOL 562 | 4 OCTOBER 2018

Tasuku Honio (left) and James Allison share the 2018 Nobel Prize in Physiology or Medicine.

Ipilimumab anti-CTLA-4

Nivolumab anti-PD-1

Ribas et al., N Engl J Med., 2012

Tumor microenvironment alters the immune function

Verma et al., EBioMedicine, 2022

Wei and Tasken, Biochemical Journal, 2022

Tumors create immune suppressive environments

Zindl and Chaplin, Science, 2010

Optimal: high Immunoscore (inflamed, hot)

Absent: low Immunoscore (non-inflamed, cold)

Altered: intermediate Immunoscore Excluded

Galon and Bruni, Nat Rev Drug Discov., 2019

Cancers exploit many immune evasion strategies

Robust TRIF expression correlated with increased

overall survival

Table 2 | Evasion of danger signalling by pathogens and cancer cells

Patients with hepatocellular

carcinoma

Danger signal	Strategy [‡]	Setting [‡]	Notes	Refs						
Cancer cells					Cancer cells (cont.)				
UPR and ER chaperone	Improved ER homeostasis	Patients affected by multiple tumours	High levels of GRP78 correlated with worsened disease outcome	123	Type I IFN signalling	IFNAR1 SNPs	Patients with glioma	Loss-of-function IFNAR1 mutation was associated with worsened disease outcome	123	
signalling	CALR loss	Patients with NSCLC	CALR levels of expression in malignant cells correlated with the phosphorylation of eIF2A and influenced	93		IRF7 downregulation	Patients with breast cancer	Low IRF7 levels have been linked to decreased metastasis-free survival	110	
	Limited HSP exposure	Pationts with NHI	Limited HSP00 exposure was associated with po			STAT1 deficiency	Patients with breast cancer	Approximately 33% of breast cancer biopsies displayed undetectable or extremely reduced STAT1 levels	111	
	Limited fior exposure		clinical responses to autologous cancer cell-based vaccination		ANXA1 signalling	ng FRP1 SNPs	Patients with breast cancer	Loss-of-function FPR1 mutation was associated with shortened time-to-metastasis and decreased overall	39	
	CD47 upregulation	Patients affected by multiple	Low CD47 levels on neoplastic cells correlated with					survival		
	DD1 decome exclusion	tumours	Improved disease outcome	04	HMGB1 signalling	HMGB1 loss	Patients with breast cancer	Loss of nuclear HMGB1 positively correlated with	104	
	LKF1 downregulation	Fatients with metanoma	slow progression	94		TLR4 SNPs	Patients with breast cancer	tumour size	38	
Autophagy and ATP signalling	Overexpression of	Patients affected by multiple	Several cancers are characterized by the overexpression	125				shortened time-to-metastasis		
	BCL-2-like proteins	tumours	of BCL-2-like proteins, which potently inhibit autophagy		Cell death	TP53 mutations	Patients affected by multiple	Mutations in TP53 are found in >50% of all human	125	
	BECN1 downregulation	Breast cancer patients	Decreased BECN1 mRNA levels were associated with poor prognosis	25			tumours	cancers, and are associated with increased resistance to cell death		
	CD39 and/or CD73 overexpression	Patients affected by multiple tumours	High CD39 and/or CD73 levels on malignant or immune cells correlated with worsened disease outcome	123		Altered expression of BCL-2 family members	Patients affected by multiple tumours	Many cancers overexpress anti-apoptotic BCL-2-like proteins or inactivate their pro-apoptotic counterparts	125	
	P2RX7 SNPs	Patients with breast cancer	Loss-of-function P2RX7 mutation was associated with shortened time-to-metastasis	95	Galluzzi e	Galluzzi et al. Nat Rev Immunol. 2017				
RNA signalling	TLR3 SNPs	Patients affected by multiple tumours	TLR3 mutational status influenced disease outcome	123	Gundzzi c					
	TLR3 downregulation	Patients affected by multiple tumours	High TLR3 mRNA or protein levels were associated with improved disease outcome	123					110 111 39 104 38 125 125	

123

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101008548

TRIF downregulation

Radiotherapy can convert the tumor microenvironment

Demaria and Formenti, Front Oncol., 2012

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101008548

Heavy Ion Therapy Research Integration

Radiotherapy can also be immunosuppressive

Demaria et al., JAMA Oncol., 2015

The way the cell dies matters - immunogenicity of the cell death

Immunogenicity of RT: antigenicity and adjuvanticity

02/07/2023

Antigenicity of RT

Radiation-induced neoantigens broaden the immunotherapeutic window of cancers with low mutational loads

Antigenicity – improved for hadron therapy?

Clustered DNA lesions lead to a higher yield of unrepaired damage

Durante et al., Nature Reviews 2017

Differential gene expression after high LET radiation with respect to DDR A Meta-Analysis of the Effects of High-LET Ionizing Radiations in Human Gene Expression

Theodora-Dafni Michalettou ^{1,2}, Ioannis Michalopoulos ², Sylvain V. Costes ³, Christine E. Hellweg ⁴, Megumi Hada ^{5,*} and Alexandros G. Georgakilas ^{1,*}

Antigenicity – improved for hadron therapy?

Hadron therapy might further improve the mutagenic landscape of tumors with low mutational burden

High LET particles feature different mutation signature as compared to photons

Mutational signatures in tumours induced by high and low energy radiation in *Trp53* deficient mice

Yun Rose Li^{1,2,10}, Kyle D. Halliwill^{1,3,10}, Cassandra J. Adams^{1,4,10}, Vivek Iyer⁵, Laura Riva⁵, Rashid Mamunur⁵, Kuang-Yu Jen^{1,6}, Reyno del Rosario¹, Erik Fredlund^{1,7}, Gillian Hirst¹⁰, Ludmil B. Alexandrov⁸, David Adams⁵ ⁵* & Allan Balmain⁹ ^{1,9}*

damage xrs-5 X-rays 50 Remaining (d) 12 10 0 6 8 Repair Time (h) 8 Remaining Damage C-ions 50 0 2 4 6 8 Repair Time (h) 8 Remaining Damage Ni-ions 50 (f)

Remaining damage

CHO

£ 100

Rose Li et al., Nat Commun., 2020

2

0

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101008548

4

10

Repair Time (h)

Adjuvanticity – danger signals

Galluzzi et al., Nat Rev Immunol., 2017

Adjuvanticity – increased danger signals after CIRT exposure

Different types of cell death – different immunogenicity

Different (more immunogenic) types of cell death for hadron RT?

CIRT can induce p53-independent apoptosis

DIFFERENT MECHANISMS OF CELL DEATH IN RADIOSENSITIVE AND **RADIORESISTANT P53 MUTATED HEAD AND NECK SQUAMOUS CELL CARCINOMA** CELL LINES EXPOSED TO CARBON IONS AND X-RAYS

MIRA MAALOUF, M.S.,*[†] Gersende Alphonse, Ph.D.,^{†‡} Anthony Colliaux, M.S.,*^{†§} MICHAËL BEUVE, PH.D.,*§ SELENA TRAJKOVIC-BODENNEC, PH.D.,* PRISCILLIA BATTISTON-MONTAGNE, B.Sc.,*[†] ISABELLE TESTARD, PH.D.,[¶] OLIVIER CHAPET, M.D., PH.D.,[‡] MARCEL BAJARD, PH.D.,^{*§} GISELA TAUCHER-SCHOLZ, PH.D.,^{||} CLAUDIA FOURNIER, PH.D.,^{||} AND CLAIRE RODRIGUEZ-LAFRASSE, PH.D.*^{†‡}

Indications for efficient induction of necroptosis

Carbon ion triggered immunogenic necroptosis of nasopharyngeal carcinoma cells involving necroptotic inhibitor BCL-x

Cihang Bao^{1,3#}, Yun Sun^{2,3#}, Bilikere Dwarakanath^{2,3}, Yuanli Dong^{1,3,4}, Yangle Huang^{1,3,4}, Xiaodong Wu^{2,3}, Chandan Guha⁵, Lin Kong^{1,3⊠}, Jiade J. Lu^{1,3⊠}

CIRT was found to trigger ceramide pathway

p53-independent early and late apoptosis is mediated by ceramide after exposure of tumor cells to photon or carbon ion irradiation

Heavy Ion Thera

Gersende Alphonse^{1,2,3,4}, Mira Maalouf^{1,2,3}, Priscillia Battiston-Montagne^{1,2,3}, Dominique Ardail^{1,2,3,5}, Michaël Beuve^{1,2,6}, Robert Rousson⁵, Gisela Taucher-Scholz⁷, Claudia Fournier⁷ and Claire Rodriguez-Lafrasse^{1,2,3,4*} High LET Heavy Ion Radiation Induces p53-Independent Apoptosis

Eiichiro MORI¹, Akihisa TAKAHASHI¹, Nobuhiro YAMAKAWA², Tadaaki KIRITA² and Takeo OHNISHI^{1*}

> J Pharmacol Exp Ther. 2021 Jun 22; JPET-AR-2021-000629. doi: 10.1124/jpet.121.000629 Online ahead of print

Sphingosine kinase inhibition enhances dimerization as received funding from the European Union's Horizon 2020 of calreticulin at the cell surface in mitoxantrone-_ induced immunogenic cell death

innovation programme under grant agreement No 101008548

Asvelt J Nduwumwami¹, Jeremy A Hengst¹, Jong K Yun²

Type-I interferons

Berglund et al., Exp Mol Med., 2021

Demaria et al., Nature, 2019

Type-I interferon signaling upon irradiation

02/07/2023

Sparing circulating blood/immune cells is important

A single radiation fraction delivered 0.5 Gy to 5% of circulating cells, after 30 fractions 99% of circulating blood had received ≥0.5 Gy

Need:

- Reduced integral dose
- High dose-rate
- Hypofractionation

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101008548

Yovino et al., Cancer Invest, 2013

Particle therapy can better spare circulating immune cells

Neuro-Oncology

23(2), 284–294, 2021 | doi:10.1093/neuonc/noaa182 | Advance Access date 5 August 2020

Proton therapy reduces the likelihood of high-grade radiation-induced lymphopenia in glioblastoma patients: phase II randomized study of protons vs photons

Radhe Mohan[®], Amy Y. Liu, Paul D. Brown, Anita Mahajan, Jeffrey Dinh, Caroline Chung, Sarah McAvoy, Mary Frances McAleer, Steven H. Lin, Jing Li, Amol J. Ghia, Cong Zhu, Erik P. Sulman, John F. de Groot, Amy B. Heimberger, Susan L. McGovern, Clemens Grassberger, Helen Shih, Susannah Ellsworth, and David R. Grosshans

Durante et al., Int. J. Radiat. Oncol. Biol. Phys., 2000

Importance of (sparing) the draining lymph node

Importance of (sparing) the draining lymph node

Combination of RT with immunotherapy

medicine

LETTERS https://doi.org/10.1038/s41591-018-0232-2

Radiotherapy induces responses of lung cancer to CTLA-4 blockade

Silvia C. Formenti[®]^{1*}, Nils-Petter Rudqvist[®]^{1,15}, Encouse Golden^{1,14,15}, Benjamin Cooper², Erik Wennerberg¹, Claire Lhuillier¹, Claire Vanpouille-Box[®]¹, Kent Friedman³, Lucas Ferrari de Andrade^{4,5}, Kai W. Wucherpfennig^{4,5}, Adriana Heguy^{6,7}, Naoko Imai⁸, Sacha Gnjatic[®]⁸, Ryan O. Emerson⁹, Xi Kathy Zhou[®]¹⁰, Tuo Zhang[®]¹¹, Abraham Chachoua¹² and Sandra Demaria[®]^{1,13*}

RECIST = Response Criteria In Solid Tumors

Combination of RT with immunotherapy

Formenti et al., Nat Med., 2018

Abscopal tumor models

Combination of CIRT with immunotherapy

Combination of CIRT with immunotherapy

research and innovation programme under grant agreement No 101008548

Combination with dendritic cell injection

CIRT (",clinically available dose") +/- intratumoral DC injection in SCCVII (poorly immunogenic squamous cell carcinoma) in C3H/He mice

CIRT: efficient elimination of primary tumor, significant reduction of tumor formation after secondary challenge (contralateral site)

SCCVII b. a. 50 100 specific lysis (%) Solid line: CIB+DC P =0.23 40 80 % survival Dashed line: CIB alone %survival (C.I.) 60 CIB+DC 94.4% (90.4-98.4) 30 CIB 88.9% (78.0-99.8) 40 0.0% (0.0- 0.0) Naïve CIB + DC (n=122) -20 CIB (n=49) 20 _ Naive (n=46) _ 0 10 50 60 70 0 20 30 40 10 Days after tumor inoculation 0 Naïve (n=45) 50 25 12.5 6.25 100 ************** E:T ratio Ratio of mice baring 2nd tumor (%) CIB nu/nu (n=20) 75 *P<0.01 50 rejection rate Matsunaga et al., Cancer, 2010 CIB+DC 88.5% CIB (n=71) 70.4% CIB 25 Naïve 2.2% * CIB + DCs (n=139) 0.0% CIB (nu/nu) 0 20 0 10 30 40

Days after 2nd inoculation

CIRT + DC: antitumor effects significantly increased (e.g. cytolytic activity)

Heavy Ion Therapy Research Integratio

Importance of sequence in combination therapy

Moore et al., Int J Radiat Oncol Biol Phys., 2021

Importance of sequence in combination therapy

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101008548

Heavy Ion Therapy Research Integration

Importance of sequence in combination therapy

)20 **j**48

Dose and fractionation scheme

Hadron therapy allows for a more precise delivery of higher doses, which is of advantage if higher doses or hypofractionation are to be delivered (more immunogenic?)

Priming anti-tumor immunity by radiotherapy: Dying tumor cell-derived DAMPs trigger endothelial cell activation and recruitment of myeloid cells

Julia Krombach^{a*}, Roman Hennel [©]^{a*}, Nikko Brix^a, Michael Orth^{a,b,c}, Ulrike Schoetz^{a,d}, Anne Ernst^{a,e}, Jessica Schuster^a, Gabriele Zuchtriegel^{fg,h}, Christoph A. Reichel^{f,g}, Susanne Bierschenk^g, Markus Sperandio [©]^g, Thomas Voglⁱ, Steffen Unkel [©], Claus Belka^{a,b,k}, and Kirsten Lauber^{a,b,k}

DNA exonuclease Trex1 regulates radiotherapy-induced tumour immunogenicity

Claire Vanpouille-Box¹, Amandine Alard^{2,†}, Molykutty J. Aryankalayil³, Yasmeen Sarfraz¹, Julie M. Diamond¹, Robert J. Schneider², Giorgio Inghirami⁴, C. Norman Coleman³, Silvia C. Formenti¹ & Sandra Demaria^{1,4}

mRNA vaccines in combination with RT

ONCOIMMUNOLOGY 2020, VOL. 9, NO. 1, 1–13 https://doi.org/10.1080/2162402X.2020.1771925

A liposomal RNA vaccine inducing neoantigen-specific CD4⁺ T cells augments the antitumor activity of local radiotherapy in mice

Nadja Salomon^a, Fulvia Vascotto^a, Abderaouf Selmi^a, Mathias Vormehr^b, Juliane Quinkhardt^b, Thomas Bukur^a, Barbara Schrörs^a, Martin Löewer^a, Mustafa Diken^a, Özlem Türeci^b, Ugur Sahin^{b,c}, and Sebastian Kreiter^a

 $CT26 P_{ME}1 = RNA$ vaccine (pentatope, engineered from 5 highly expressed CT26-specific mutations)

Clinical trials combining particle therapy and immunotherapy

Table 1. Currently ongoing or initiated clinical trials regarding proton RT (PrRT) and carbon ion RT (CIRT) in combination with immunotherapy (IO).

	Identifier	Pathology	RT Dose	ΙΟ	Dose	Status	Study Type
PrRT	NCT02648997	Meningiomas	Unknown	Nivolumab * Ipilimumab *	N: 1 mg/kg for 3 weeks I: 3 mg/kg for 3 weeks	Recruiting	Open-label Phase-II
	NCT03267836	Meningiomas	fRT; 5 × 0.04 Gy Total 0.2 Gy	Avelumab *	Concurrent RT, 10 mg/kg, every 2 weeks for 3 months	Recruiting	Phase I
	NCT03539198	Head and neck cancer	fRT; 5× Total 35–45 Gy	Nivolumab *	Before and after RT, Q2/week for 2 weeks	Recruiting	Observational
	NCT03764787	Unknown	Unknown	a-PD-1	Unknown, for 1 year	Not yet recruiting	Phase I/II
	NCT03765190	Neoplasm metastasis	Unknown	a-PD-1	Unknown	Not yet recruiting	Phase I/II
	NCT03818776	Non-small cell lung cancer	fRT; 20–23× Total 60–69 Gy (cardiac sparing)	Durvalumab	1500 mg Q4W, max. 12 months (to 13 doses/cycles)	Recruiting	Early Phase I
	NCT03087760	Non-small cell lung cancer	Reirradiation, unknown	Pembroluzimab	Unknown	Recruiting	Phase II
	NCT02444741	Non-small cell lung cancer	fRT, 15× low dose, Total unkown	Pembroluzimab	Unknown dose for 21 days, up to 16 cycles	Recruiting	Phase I/II
	Identifier	Pathology	RT Dose	IO	Dose	Status	Study Tyr
CIRT	NCT04143984	Locally recurrent nasopharyngeal carcinoma	fRT; 21 × 3 Gy Total 63 Gy	Camrelizumab *	C: 200 mg i.v. every 2 weeks for a year maximum	Not yet recruiting	Phase II/I
CIRT	NCT03705403 **, [102]	Non-small cell lung cancer	SABR	Darleukin	C: 15 Mio IU, 6 cycles, 3 infusions within one cycle, every 3 weeks	Not yet recruiting	Phase II

* Nivolumab and durvalumab are PD-L1 antibodies, ipilimumab is a CTLA-4 antibody, pembroluzimab, avelumab and camrelizumab are PD-1 antibodies, darleukin is the immunocytokine L19-IL2. ** CIRT treatment arm is currently being under consideration by BfS (Federal Office for Radiation Protection, Germany). fRT: fractionated RT, Q: dose per week (Q4 is 4 doses a week), i.v.: intravenous administration.

CIRT NCT

NCT05229614 Non Small Cell Lung Cancer Head and Neck Squamous Cell Carcinoma Melanoma

Urothelial Carcinoma

fRT; 3 x 8 Gy[RBE] Total 24 Gy [RBE] Pembrolizumab (unknown dose) Not yet recruiting Phase II

Adapted from Marcus et al., Cancers, 2021

Take Home Messages

The immune system plays a pivotal role in (metastatic) cancer treatment; immunotherapy is established as additonal pillar in cancer therapy

The mechanisms by which the immune system is triggered and interacts with radiotherapy are not well enough understood to reliably exploit it in a combined treatment strategy

Hadrontherapy has the potential to improve the outcome of a combined therapy

Thank you for your kind attention

