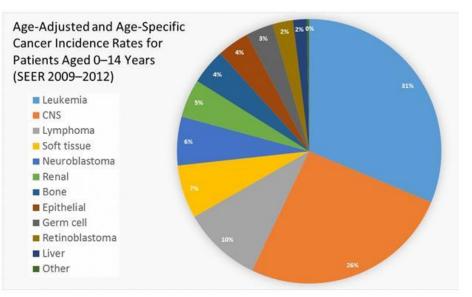


## **Ewing and Rhabdomyosarcoma**

### C. LÜTGENDORF-CAUCIG



This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101008548


## **PEDIATRIC SARCOMAS**

### Paediatric cancers are:

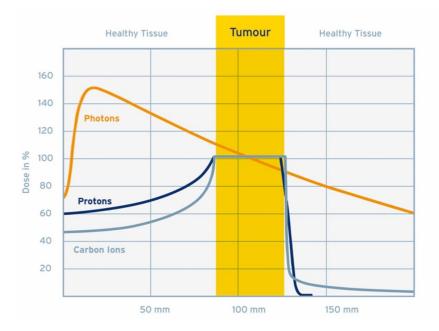
- ≻ Rare
- Heterogeneous group of malignancies
- ➢ Increasing incidence since the 1970ies
- ➢ Increasing OS since the 1970ies
- Soft tissue sarcomas 7% and bode 4% of all paediatric cancers

### > BUT

- Increasing incidence of therapy associated late toxicity health conditions
- > psycho social burden for survivors and their families
- Financial burden for the health system






### MedAustron M

The NEW ENGLAND JOURNAL of MEDICINE

SPECIAL ARTICLE

## Chronic Health Conditions in Adult Survivors of Childhood Cancer

Kevin C. Oeffinger, M.D., Ann C. Mertens, Ph.D., Charles A. Sklar, M.D.,



"Among survivors, the <u>cumulative incidence of a chronic health condition</u> <u>reached 73.4%</u> (95% CI, 69.0 to 77.9) 30 years after the cancer diagnosis, with a cumulative incidence of <u>42.4%</u> (95% CI, 33.7 to 51.2) for severe, disabling, or <u>life-threatening conditions or death due to a chronic condition</u>."

MedAustron

Ewing and Rhabdomyosarcoma - Specialised Course on Heavy Ion Therapy Research, 3rd to 7th July 2023 N Engl J Med 2006;355:1572-82.

### EPTN, PTCOCG, PROS consensus

# Proton therapy for pediatric malignancies: Fact, figures and costs. A joint consensus statement from the pediatric subcommittee of PTCOG, PROS and EPTN



Damien C. Weber<sup>a,\*</sup>, Jean Louis Habrand<sup>b</sup>, Bradford S. Hoppe<sup>c</sup>, Christine Hill Kayser<sup>d</sup>, Nadia N. Laack<sup>e</sup>, Johanes A. Langendijk<sup>f</sup>, Shannon M. MacDonald<sup>g</sup>, Susan L. McGovern<sup>h</sup>, Luke Pater<sup>i</sup>, John P. Perentesis<sup>j</sup>, Juliette Thariat<sup>b</sup>, Beate Timmerman<sup>k</sup>, Torunn I. Yock<sup>g</sup>, Anita Mahajan<sup>e</sup>

<sup>a</sup> Center for Proton Therapy, Paul Scherrer Institute, ETH Domain, Villigen PSI, Switzerland; <sup>b</sup> Centre de lutte contre le cancer François-Baclesse, Caen, France; <sup>c</sup> Department of Radiation Oncology, University of Florida College of Medicine, Gainesville; <sup>d</sup> Department of Radiation Oncology, University of Pennsylvania, Philadelphia; <sup>e</sup> Department of Radiation Oncology, Mayo Clinic, Rochester, USA; <sup>f</sup> Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, The Netherlands; <sup>g</sup> Department of Radiation Oncology, Massachusetts General Hospital, Boston; <sup>h</sup> Department of Radiation Oncology, MD Anderson Cancer Center, Houston; <sup>i</sup> Department of Radiation Oncology, University of Cincinnati; <sup>j</sup> Cincinnati Children's Hospital Medical Center, University of Cincinnati, USA; <sup>k</sup> WPE, University Hospital Essen, Germany

### Conclusions

Many studies still suggest that the predominant cause for early death among cancer survivors remains the primary tumor; however, it is also known survivors have many treatment related sequelae that impair their OOL in many domains. Through almost all dosimetric and model based evaluation, clinical outcomes for PT should be favorable with an improved QOL, organ function, development with a reduction in the risk of SMNs. Several decades of

## MODERN THERAPY CONCEPTS IN PEDIATRIC CANCERS

Maintaining excellent local control and overall survival while reducing long term toxicity / morbidity

International standardized therapy concepts and stud protocols

- Interdisciplinary strategies
- Multimodal therapy approach
- Risk-adapted Therapy strategies
- > Response guided therapy strategies
- > Use Protontherapy whenever available!

## RHABDOMYOSARCOMA

Childhood rhabdomyosarcoma is a soft tissue malignant tumor of mesenchymal origin

Incidence

- 2.7% of cancer cases among children aged 0 to 14 years
- 1.4% of cancer cases among adolescents 15 to 19 years
- $\rightarrow$  Fifty percent of these cases are seen in the first decade of life

• Genetic risk factors:

• Li-Fraumeni cancer susceptibility syndrome (with germline *TP53* mutations); DICER1 syndrome; NF1; Costello syndrome (with germline HRAS mutations); Beckwith-Wiedemann syndrome Noonan syndrome

• Histological characterization:

 embryonal, alveolar, spindle cell/sclerosing, and pleomorphic (WHO 2020)

Molecular characterization :

• FOXO1 gene fusions pos. vs. FOXO1 gene fusions neg.



Other less common primary sites include the trunk, chest wall, perineal/anal region, and abdomen, including the retroperitoneum and biliary tract

### MedAustron

### RHABDOMYOSARCOMA – PROGNOSTIC FACTORS

- Age (between 1 to 9 years)
- Site of origin Tumor size (tumors <5cm)
- Respectability
- Histological subtype (embryonal vs. alveolar)
- Molecular subtype (*FOXO1* fusion neg)
- Metastases at diagnose (nodal, distant)
- Response to therapy

| Primary Site                                            | Number of Patients | Survival at 5 Years (%) |
|---------------------------------------------------------|--------------------|-------------------------|
| Orbit <sup>a</sup>                                      | 82                 | 97                      |
| Head and neck (nonparameningeal) <sup>b</sup>           | 164                | 83                      |
| Cranial parameningeal <sup>C</sup>                      | 204                | 69.5                    |
| Genitourinary (excluding bladder/prostate) <sup>b</sup> | 158                | 89                      |
| Localized bladder/prostate <sup>d</sup>                 | 322                | 84                      |
| Localized extremity <sup>e</sup>                        | 643                | 67                      |
| Trunk, abdomen, perineum, etc. <sup>f</sup>             | 147                | 67                      |
| Biliary <sup>g,h</sup>                                  | 25                 | 76.5–78                 |



## RHABDOMYOSARCOMA – PROGNOSTIC FACTORS

| Group | Incidence            | Definition                                                                                                                                                                                                                                                                                                                                  | Low Ris          |  |  |  |  |
|-------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--|--|--|--|
| I     | Approximately<br>15% | Localized disease, completely resected (regional lymph nodes not involved).                                                                                                                                                                                                                                                                 |                  |  |  |  |  |
| II    | Approximately<br>16% | Localized disease, grossly resected with microscopic residual disease or region<br>grossly resected with or without microscopic residual disease. (a) Localized di<br>grossly resected tumor with microscopic residual disease, regional nodes not i                                                                                        |                  |  |  |  |  |
|       |                      | Regional disease with involved nodes, completely resected with no microscop<br>disease (including most distal node is histologically negative). (c) Regional di-<br>involved nodes, grossly resected with evidence of microscopic residual and/or<br>involvement of the most distal regional node in the dissection.                        | High Ris         |  |  |  |  |
| III   | Approximately 50%    | Localized or regional disease, biopsy only or incomplete resection with gross i disease.                                                                                                                                                                                                                                                    | Very Hig         |  |  |  |  |
| IV    | Approximately 20%    | Distant metastatic disease present at onset. Although not limited to these, the f considered evidence of metastatic disease: (a) presence of positive cytology in                                                                                                                                                                           | Risk             |  |  |  |  |
|       |                      | positive cytology in pleural or abdominal fluids, (c) presence of implants on pleural or peritoneal surfaces. (Note: Regional lymph node involvement and adjacent orga infiltration are not considered metastatic disease. Presence of a pleural effusion without positive cytological evaluation, is not considered evidence of metastatic | n<br>or ascites, |  |  |  |  |

| Risk Group             | Subgroup | Fusion<br>Status     | IRS<br>Group       | Site                | Node<br>Stage | Size or Age                 |
|------------------------|----------|----------------------|--------------------|---------------------|---------------|-----------------------------|
| Low Risk               | A        | Negative             | I                  | Any                 | NO            | Both Favourable             |
| Standard               | В        | Negative             | I                  | Any                 | N0            | One or both<br>Unfavourable |
| Risk                   | с        | Negative             | II, III            | Favourable          | NO            | Any                         |
|                        |          |                      |                    |                     |               |                             |
|                        | D        | Negative             | II, III            | Unfavourable        | N0            | Any                         |
| High Risk              | D<br>E   | Negative<br>Negative | II, III<br>II, III | Unfavourable<br>Any | N0<br>N1      | Any<br>Any                  |
| High Risk              |          | -                    | -                  |                     |               | -                           |
| High Risk<br>Very High | E        | Negative             | II, III            | Any                 | N1            | Any                         |

p Risk Group assignment is determined at diagnosis

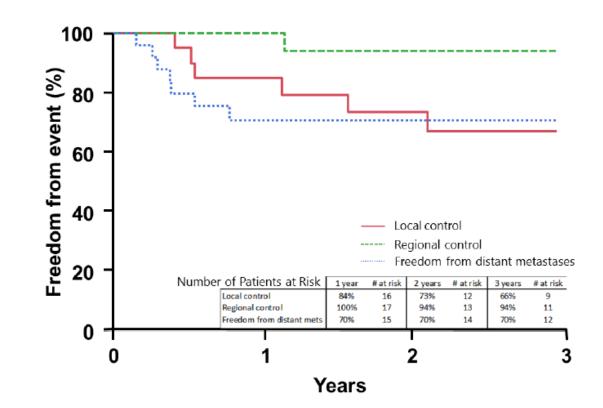
Soft Tissue Sarcoma Committee of the Children's Oncology Group: Rhabdomyosarcoma Risk Group Classification

Soft Tissue Sarcoma Committee of the Children's Oncology Group: Surgical-Pathological Group System

## RHABDOMYOSARCOMA – TREATMENT OPTION

- All children with rhabdomyosarcoma require multimodality therapy with systemic chemotherapy, in conjunction with either surgery, radiation therapy (RT), or both modalities to maximize local tumor control
- surgical resection is performed before chemotherapy if it will not result in disfigurement, functional compromise, or organ dysfunction. If this is not possible, only an initial biopsy is performed.
- Group I: about 15% of patients; complete tumor resection  $\rightarrow$  OP+CHT
- Group II: about 20% of patients; CHT and local tumor bed irradiation
- Oroup III: about 50% of patients; initial CHT + definitive RT or STR + RT or no GTR / no response to CHT + CHT
- Group IV: about 15% of patients; CHT + RT to the primary tumor and metastatic disease sites when feasible

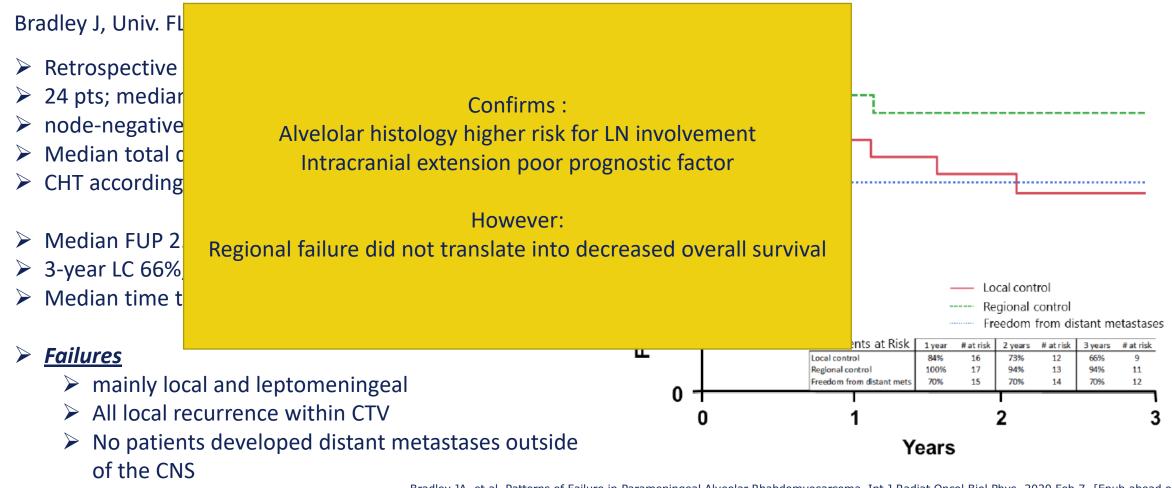
## **PARAMENINGEAL RMS**


### Patterns of Failure in Parameningeal Alveolar Rhabdomyosarcoma

Bradley J, Univ. FL, Jacksonville. Feb.2020,

- Retrospective institutional analysis
- > 24 pts; median age 3.5 years (range, 1–20)
- node-negative (67%), intracranial extension (54%).
- Median total dose 50.4GyRBE (range, 41.4–59.4)
- CHT according to COG, EpSSG or St Judes RMS 13
- Median FUP 2.4 yrs.
- > 3-year LC 66%, LRC 94%, DFS 40%, OS 60%,
- Median time to any failure 0.5a (range, 0.2–2.1).

### > Failures


- mainly local and leptomeningeal
- All local recurrence within CTV
- No patients developed distant metastases outside of the CNS



Bradley JA, et al. Patterns of Failure in Parameningeal Alveolar Rhabdomyosarcoma. Int J Radiat Oncol Biol Phys. 2020 Feb 7. [Epub ahead of print]

## **PARAMENINGEAL RMS**

### Patterns of Failure in Parameningeal Alveolar Rhabdomyosarcoma

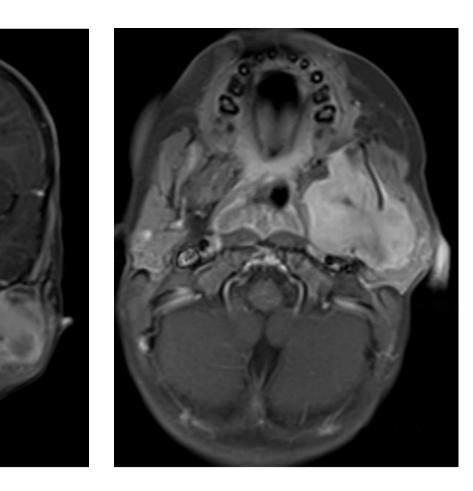


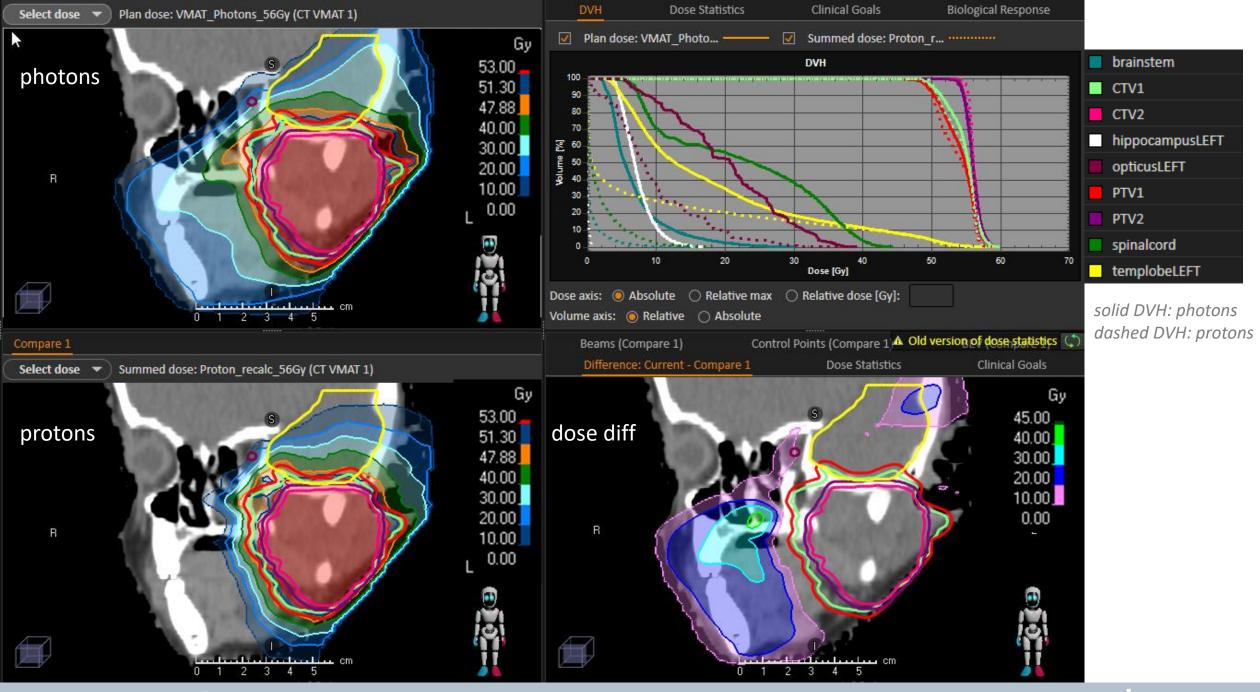
Bradley JA, et al. Patterns of Failure in Parameningeal Alveolar Rhabdomyosarcoma. Int J Radiat Oncol Biol Phys. 2020 Feb 7. [Epub ahead of print]

### MedAustron

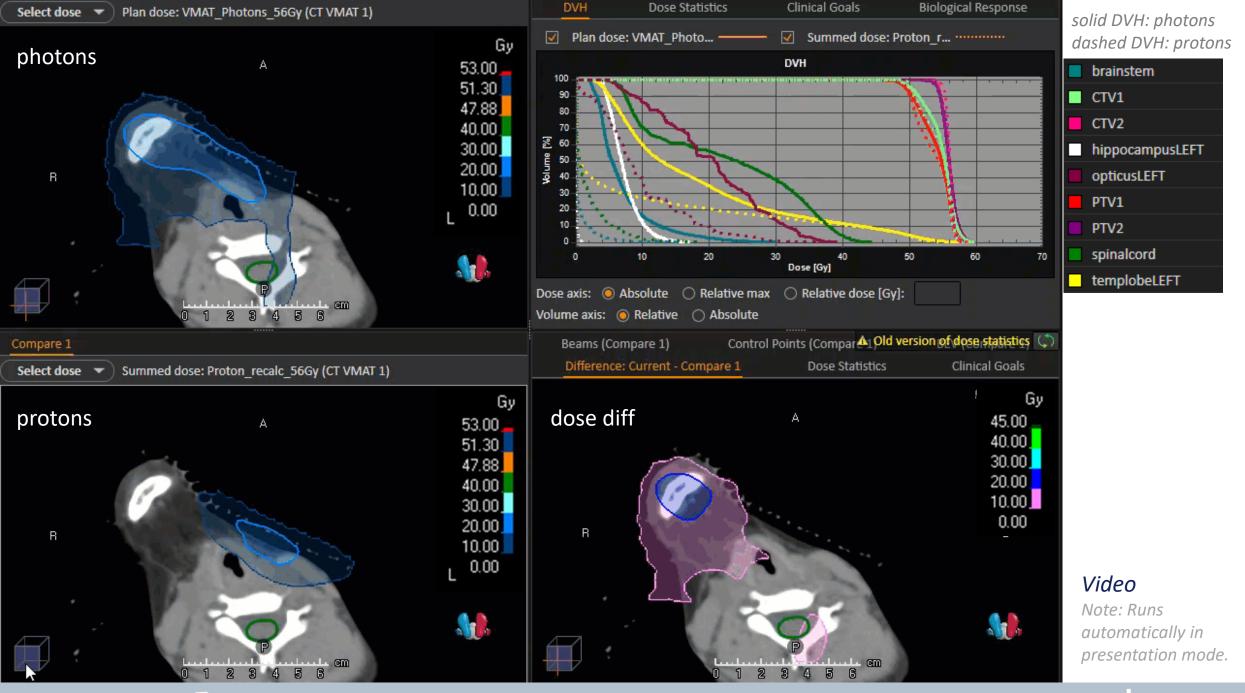
## **CASE HISTORY**

male, 4 years


### <u>Dx 02/2019</u>


### Parameningeal rhabdomyosarcoma, embryonal

- > St.p. biopsy 02/2019
- St.p. chemotherapy according to EpSSG RMS 2005


≻ Re-evaluation on week 9 → minor response
> No surgery → PBT

SIB: PTV1 50.4Gy, PTV2 55.4Gy





MedAustron <sup>©</sup>

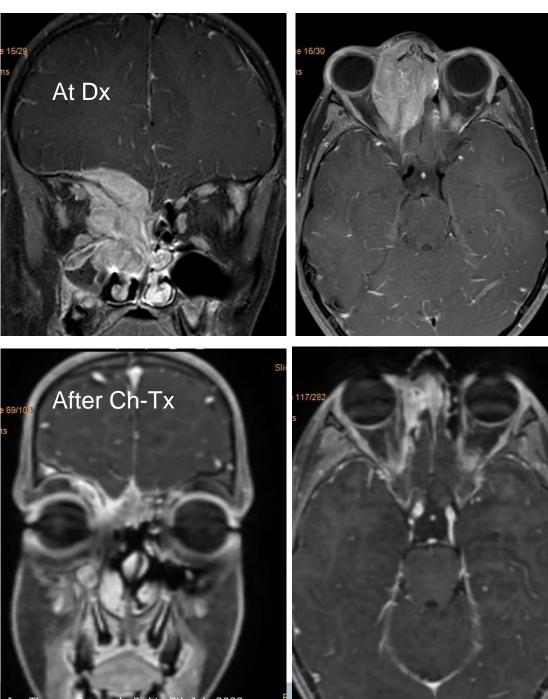


MedAustron 🏻

## **CASE HISTORY**

female, 10 years

### <u>Dx 10/2021</u>

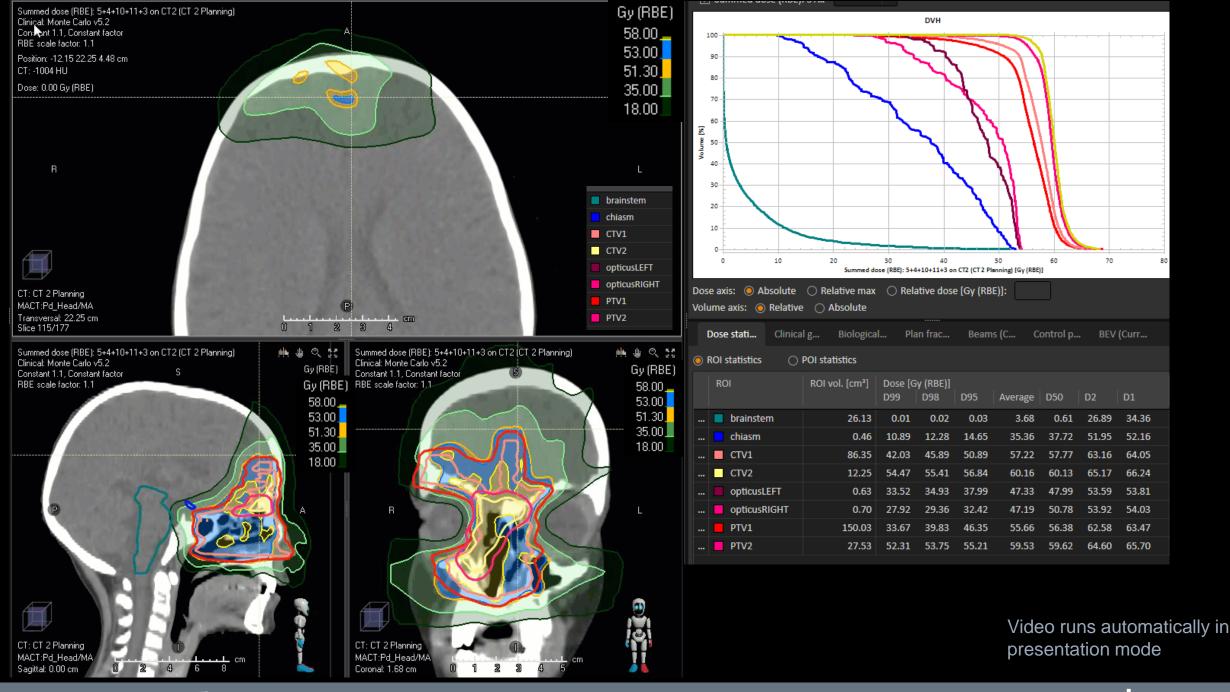

Parameningeal RMS with initial infiltration of the right orbit, maxillary sinus, frontal sinus and ethmoid sinus; Localized disease, IRSIII St.p. biopsy 10/2021

Pathology: Alveolar Rhabdomyosarcoma, FOXO1 positive

CSF, BM neg; nodes neg.

>chemotherapy according protocol Far RMS; d1 14.10.2021

>Re-evaluation on week 9 → good response
>No surgery → consolidating PBT
>PTV1 54.0Gy, PTV2 59.4Gy




MedAustron 🏧

## Note: Use of Protons results in minimal additional dose to normal tissues in process of boost-dose increase



MedAustron 🏻



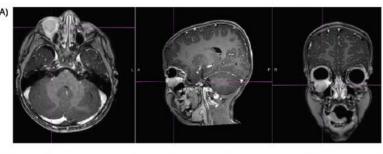
MedAustron M

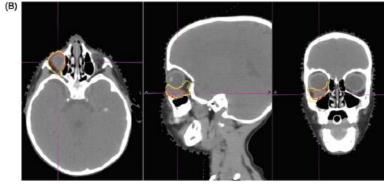
## **ORBITAL EMBRYONAL RMS**

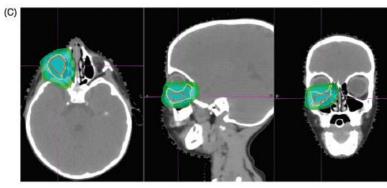
## 45 GyRBE for group III orbital embryonal rhabdomyosarcoma

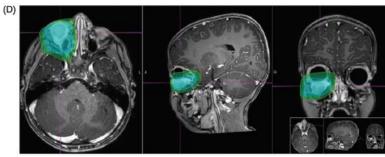
- prospective outcome study
- ➢ 30 pts; median age 4.8a (range, 1−11.4)
- Median total dose 45Gy (36 GyRBE+9 GyRBE)
- Median FUP 4.0 a (range, 0.5–9.5)

### Results:


- ➤ 5a LC 97%, PFS 97%, OS 100%
- "Serious" late toxicity


2/30 – reduced visual acuity: 18 pts with cataracts (15 required surgery or laser treatment, 2 of 15 cataract with reduced visual acuity)


4 pts severe keratoconjunctivitis, 4 pts severe dry eye, 1 chron. sinusitis


Indelicato DJ, et al. 45 GyRBE for group III orbital embryonal rhabdomyosarcoma. Acta Oncol. 2019 Oct;58(10):1404-1409.



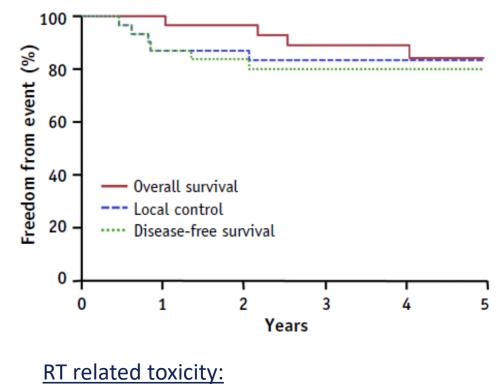








## **PELVIC RMS**


### Outcomes Following Proton Therapy for Group III Pelvic Rhabdomyosarcoma

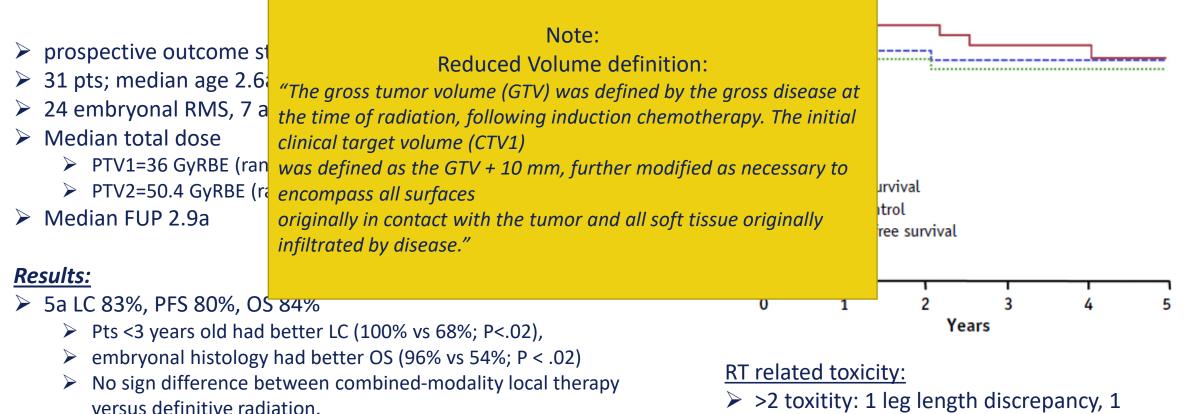
D. Indelicato, U. FL, USA, 2020

- prospective outcome study
- 31 pts; median age 2.6a (range, 1-20)
- 24 embryonal RMS, 7 alveolar RMS
- Median total dose
  - PTV1=36 GyRBE (range, 30.6-43.2)
  - PTV2=50.4 GyRBE (range, 36-59.4)
- Median FUP 2.9a

### Results:

- 5a LC 83%, PFS 80%, OS 84%
  - Pts <3 years old had better LC (100% vs 68%; P<.02),</p>
  - embryonal histology had better OS (96% vs 54%; P < .02)</p>




>2 toxicity: 1 leg length discrepancy, 1 stress fracture of S1, 1 gonadal failure.

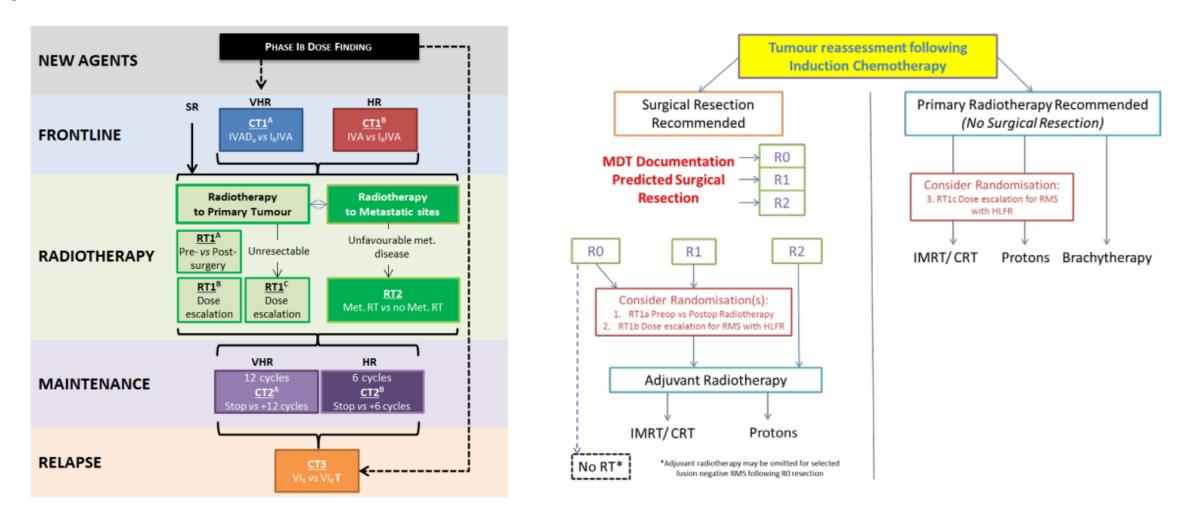
Indelicato DJ, et al. Outcomes following Proton Therapy for Group III Pelvic Rhabdomyosarcoma. Int J Radiat Oncol Biol Phys. 2020 Jan 24. [Epub ahead of print]

### MedAustron

## **PELVIC RMS**

### Outcomes Following Proton Therapy for Group III Pelvic Rhabdomyosarcoma




stress fracture of S1, 1 gonadal failure.

Indelicato DJ, et al. Outcomes following Proton Therapy for Group III Pelvic Rhabdomyosarcoma. Int J Radiat Oncol Biol Phys. 2020 Jan 24. [Epub ahead of print]

### MedAustron

## RHABDOMYOSARCOMA – RADIOTHERAPY (FAR-RMS)

#### TRIAL SCHEMA Figure 1: Overall Trial Schema



### MedAustron 🏻

## **DOSES: PATIENTS WITH RESECTABLE DISEASE**

Resectable pre or post-op radiotherapy SLFR standard dose:

| Phase        | Target volume | Dose prescription | Fractions | Dose/Fraction |
|--------------|---------------|-------------------|-----------|---------------|
| Single phase | PTVp_Pre_4140 | 41.4 Gy           | 23        | 1.8 Gy        |

Resectable pre or post-op radiotherapy HLFR standard dose:

| Phase        | Target volume | Dose prescription | Fractions | Dose/Fraction |
|--------------|---------------|-------------------|-----------|---------------|
| Single phase | PTVp_Pre_4140 | 41.4 Gy           | 23        | 1.8 Gy        |

#### Resectable pre or post-op radiotherapy HLFR escalated dose:

Two phase technique:

| Phase | Target volume  | Dose prescription | Fractions | Dose/Fraction |
|-------|----------------|-------------------|-----------|---------------|
| 1     | PTVp_Pre_4140  | 41.4 Gy           | 23        | 1.8 Gy        |
| 2     | PTVp_Post_5040 | 9.0 Gy            | 5         | 1.8 Gy        |

OR Simultaneous integrated boost (SIB):

| Phase        | Target volume  | Dose prescription | Fractions | Dose/Fraction |
|--------------|----------------|-------------------|-----------|---------------|
| Qingle phase | PTVp_Pre_4250  | 42.5 Gy           | 28        | 1.518 Gy      |
| Single phase | PTVp_Post_5040 | 50.4 Gy           | 28        | 1.8 Gy        |

FaR-RMS Protocol\_v1.b\_11-Nov-2019

MedAustron 🏧

## **DOSES: PATIENTS WITH UN-RESECTABLE**

## DISEASE

#### r-----

Unresectable complete response (to induction chemotherapy) standard dose:

| Phase        | Target volume | Dose prescription | Fractions | Dose/Fraction |
|--------------|---------------|-------------------|-----------|---------------|
| Single phase | PTVp_Pre_4140 | 41.4 Gy           | 23        | 1.8 Gy        |

#### Unresectable incomplete response (to induction chemotherapy) HLFR standard dose:

#### Two phase technique:

| Phase | Target volume  | Dose prescription | Fractions | Dose/Fraction |
|-------|----------------|-------------------|-----------|---------------|
| 1     | PTVp_Pre_4140  | 41.4 Gy           | 23        | 1.8 Gy        |
| 2     | PTVp_Post_5040 | 9.0 Gy            | 5         | 1.8 Gy        |

#### OR Simultaneous integrated boost (SIB):

| Phase        | Target volume  | Dose prescription | Fractions | Dose/Fraction |
|--------------|----------------|-------------------|-----------|---------------|
| Single phase | PTVp_Pre_4250  | 42.5 Gy           | 28        | 1.518 Gy      |
|              | PTVp_Post_5040 | 50.4 Gy           | 28        | 1.8 Gy        |

#### Unresectable incomplete response (to induction chemotherapy) HLFR escalated dose:

#### Two phase technique:

| Phase | Target volume  | Dose prescription | Fractions | Dose/Fraction |
|-------|----------------|-------------------|-----------|---------------|
| 1     | PTVp_Pre_4140  | 41.4 Gy           | 23        | 1.8 Gy        |
| 2     | PTVp_Post_5940 | 18.0 Gy           | 10        | 1.8 Gy        |

#### OR Simultaneous integrated boost (SIB):

| Phase        | Target volume  | Dose prescription | Fractions | Dose/Fraction |
|--------------|----------------|-------------------|-----------|---------------|
| Single phase | PTVp_Pre_4250  | 42.5 Gy           | 28        | 1.518 Gy      |
|              | PTVp_Post_5810 | 58.1 Gy           | 28        | 2.075 Gy      |

Unresectable incomplete response (to induction chemotherapy) SLFR standard dose:

#### Two phase technique:

| Pł | nase | Target volume  | Dose prescription | Fractions | Dose/Fraction |
|----|------|----------------|-------------------|-----------|---------------|
| 1  |      | PTVp_Pre_4140  | 41.4 Gy           | 23        | 1.8 Gy        |
| 2  |      | PTVp_Post_5040 | 9.0 Gy            | 5         | 1.8 Gy        |

#### OR Simultaneous integrated boost (SIB):

| Phase        | Target volume  | Dose prescription | Fractions | Dose/Fraction |
|--------------|----------------|-------------------|-----------|---------------|
| Single phase | PTVp_Pre_4250  | 42.5 Gy           | 28        | 1.518 Gy      |
|              | PTVp_Post_5040 | 50.4 Gy           | 28        | 1.8 Gy        |

FaR-RMS Protocol\_v1.b\_11-Nov-2019

MedAustron 🏻

## **DOSES: NODAL RADIOTHERAPY**

| Phase        | Target volume | Dose prescription | Fractions | Dose/Fraction |
|--------------|---------------|-------------------|-----------|---------------|
| Single phase | PTVn_Pre_4140 | 41.4 Gy           | 23        | 1.8 Gy        |

Nodal radiotherapy, in case of bulky macroscopic residual involved lymph nodes after induction chemotherapy:

#### Two phase technique:

| Phase | Target volume  | Dose prescription | Fractions | Dose/Fraction |
|-------|----------------|-------------------|-----------|---------------|
| 1     | PTVn_Pre_4140  | 41.4 Gy           | 23        | 1.8 Gy        |
| 2     | PTVn_Post_5040 | 9.0 Gy            | 5         | 1.8 Gy        |

#### OR Simultaneous integrated boost (SIB):

| Phase        | Target volume  | Dose prescription | Fractions | Dose/Fraction |
|--------------|----------------|-------------------|-----------|---------------|
| Single phase | PTVn_Pre_4250  | 42.5 Gy           | 28        | 1.518 Gy      |
|              | PTVn_Post_5040 | 50.4 Gy           | 28        | 1.8 Gy        |

FaR-RMS Protocol\_v1.b\_11-Nov-2019

MedAustron 🏻

## **DOSES: METASTATIC RADIOTHERAPY**

Metastatic radiotherapy:

| Phase        | Target volume | Dose prescription | Fractions | Dose/Fraction |
|--------------|---------------|-------------------|-----------|---------------|
| Single phase | PTVm_Pre_4140 | 41.4 Gy           | 23        | 1.8 Gy        |

Metastatic radiotherapy, in exceptional case of bulky macroscopic residual metastatic disease after induction chemotherapy:

Two phase technique:

| Phas | e | Target volume  | Dose prescription | Fractions | Dose/Fraction |
|------|---|----------------|-------------------|-----------|---------------|
| 1    |   | PTVm_Pre_4140  | 41.4 Gy           | 23        | 1.8 Gy        |
| 2    |   | PTVm_Post_5040 | 9.0 Gy            | 5         | 1.8 Gy        |

#### OR Simultaneous integrated boost (SIB):

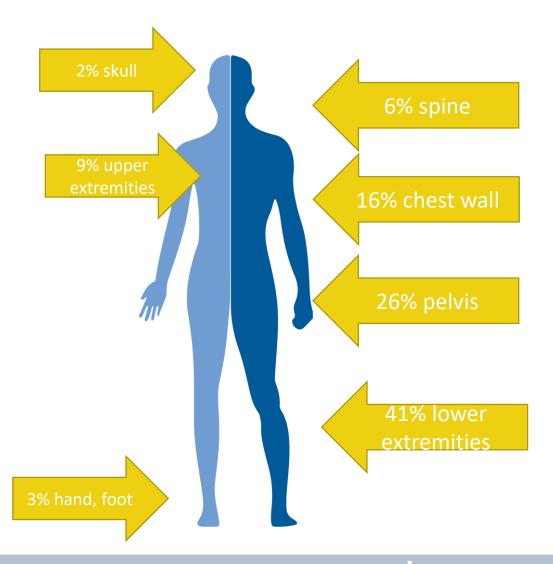
| Phase        | Target volume  | Dose prescription | Fractions | Dose/Fraction |
|--------------|----------------|-------------------|-----------|---------------|
| Single phase | PTVm_Pre_4250  | 42.5 Gy           | 28        | 1.518 Gy      |
|              | PTVm_Post_5040 | 50.4 Gy           | 28        | 1.8 Gy        |

FaR-RMS Protocol\_v1.b\_11-Nov-2019

MedAustron

## EWING SARCOMA AND UNDIFFERENTIATED SMALL ROUND CELL SARCOMAS OF BONE AND SOFT TISSUE

• Ewing sarcoma originates from a primordial bone marrow-derived mesenchymal stem cell


- Older terms such as peripheral primitive neuroectodermal tumor, Askin tumor (Ewing sarcoma of chest wall), and extraosseous Ewing sarcoma (often combined in the term Ewing sarcoma family of tumors) refer to this same tumor
- Before the widespread availability of genomic testing, Ewing sarcoma was identified by the appearance of small round blue cells on light microscopic examination, along with positive staining for CD99 by immunohistochemistry
- The detection of translocation involving the EWSR1 gene on chromosome 22 band q12 and any one of a number of partner chromosomes is the key feature in the diagnosis of Ewing sarcoma
- CAVE: WHO classification 2020 to introduce a new chapter on undifferentiated small round cell sarcomas of bone and soft tissue. This chapter consists of Ewing sarcoma and three main categories
  - Undifferentiated Small Round Cell Sarcomas With BCOR Genetic Alterations.
  - Undifferentiated Small Round Cell Sarcomas With CIC Genetic Alterations.
  - Undifferentiated Small Round Cell Sarcomas With EWSR1::non-ETS Fusions.

 $\rightarrow$  There is agreement that these tumors are sufficiently different from Ewing sarcoma. These tumors should be stratified and analyzed separately from Ewing sarcoma with the common translocation, even if they are treated with similar therapy.

## **EWING SARCOMA**

- 5-year survival rate has increased from 59% to a range of 75% to 80% for children <15 years and from 20% to 65% for children <15 to 19 years</li>
- median age of patients with Ewing sarcoma is 15 years, and more than 50% of patients are adolescents
- Primary tumor location: osseous and extraosseous (trunk, extremities, head/neck, retroperitoneum, other)

| Characteristic          | Extraosseous Ewing Sarcoma | Skeletal Ewing Sarcoma | P Value |
|-------------------------|----------------------------|------------------------|---------|
| Mean age (range), years | 20 (0-39)                  | 16 (0-39)              | <.001   |
| Male                    | 53%                        | 63%                    | <.001   |
| White race              | 85%                        | 93%                    | <.001   |
| Axial primary sites     | 73%                        | 54%                    | <.001   |
| Pelvic primary sites    | 20%                        | 27%                    | .001    |



### MedAustron

### **EWING SARCOMA PROGNOSTIC FACTORS**

### Pretreatment factors

- Site of tumor: Patients with Ewing sarcoma in the distal extremities have the best prognosis. Patients with Ewing sarcoma in the proximal extremities have an intermediate prognosis, followed by patients with central or pelvic sites
- Extraskeletal versus skeletal primary tumors: extra-skeletal primary tumors statistically significant better prognosis than did patients with skeletal primary tumors.
- **Tumor size or volume:** Cutoffs of a volume of 100 mL or 200 mL and/or single dimension greater than 8 cm are used to define larger tumors.
- Age: Infants and younger patients have a better prognosis than do patients aged 15 years and older
- Sex: Girls with Ewing sarcoma have a better prognosis than do boys with Ewing sarcoma
- Increased LHD and mets are adverse prognostic factors

### Response to initial therapy factors

- minimal or no residual viable tumor after presurgical chemotherapy have a significantly better EFS
- decreased PET uptake after chemotherapy correlated with good histological response and better outcome.

## EWING SARCOMA BONE AND SOFT TISSUE TREATMENT

The successful treatment of patients

with **Ewing sarcoma** requires systemic chemotherapy in conjunction with surgery and/or radiation therapy for local tumor control

<u>Chemotherapy</u>: Multidrug chemotherapy for **Ewing sarcoma** always includes vincristine, doxorubicin, ifosfamide, and etoposide.

*Local therapy (surgery and RT):* Treatment approaches for **Ewing sarcoma** and therapeutic aggressiveness must be adjusted to maximize local control while also minimizing morbidity.

Surgery is the most commonly used form of local control. *RT* is an effective alternative modality for local control in cases where the functional or cosmetic morbidity of surgery is deemed too high by experienced surgical oncologists.

| Treatment Group          | Standard Treatment Options                                                        |  |  |  |  |
|--------------------------|-----------------------------------------------------------------------------------|--|--|--|--|
| Localized Ewing sarcoma  | <u>Chemotherapy</u>                                                               |  |  |  |  |
|                          | Local-control measures:                                                           |  |  |  |  |
|                          | Surgery                                                                           |  |  |  |  |
|                          | Radiation therapy                                                                 |  |  |  |  |
|                          | High-dose chemotherapy with autologous stem cell rescue                           |  |  |  |  |
| Metastatic Ewing sarcoma | a <u>Chemotherapy</u>                                                             |  |  |  |  |
|                          | Surgery                                                                           |  |  |  |  |
|                          | Radiation therapy                                                                 |  |  |  |  |
| Recurrent Ewing sarcoma  | Chemotherapy (not considered standard treatment)                                  |  |  |  |  |
|                          | Surgery (not considered standard treatment)                                       |  |  |  |  |
|                          | Radiation therapy (not considered standard treatment)                             |  |  |  |  |
|                          | High-dose chemotherapy with stem cell support (not considered standard treatment) |  |  |  |  |
|                          | Other therapies (not considered standard treatment)                               |  |  |  |  |

### MedAustron M

## EWING SARCOMA BONE AND SOFT TISSUE RADIOTHERAPY

### Radiation therapy is usually employed in the following cases:

- > Patients who do not have a surgical option that preserves function and cosmesis.
- > Patients whose tumors have been excised but with inadequate margins.
- Preoperative radiation therapy if gross-total resection is possible but without adequate margins (and preservation of function and cosmesis).
- Standard radiation dose varies between 45.0Gy and 55.8Gy (12Gy-15Gy whole lung RT)



## TREATMENT OUTCOME IN EWING SARCOMA DOSE – EFFECT RELATIONSHIP

| Author                        | Localisation                                         | n  | RT dose                                                                            |   | Out_ome                                                                 |
|-------------------------------|------------------------------------------------------|----|------------------------------------------------------------------------------------|---|-------------------------------------------------------------------------|
| Worawongsakul et al.<br>2022  | Pelvis ES                                            | 47 | Total dose<br>59.4 GyRBE                                                           | / | 3 year local control 80.2%                                              |
| Uezono et al.<br>2020         | Pelvis ES                                            | 35 | Definite RT:<br>54 – 64.8 GyRBE                                                    | / | 3 year local control 92%                                                |
| Talleur et al.<br>2016        | all localisations                                    | 45 | Adjuvant RT 50.4 Gy<br>Definitive RT (< 8 cm) 55.8<br>Definitve RT (> 8cm) 64.8 Gy |   | 10 year local failure rate: 4%, no faliure in the escalated dose group  |
| Ahmed et al.<br>2017          | Pelvis ES                                            | 48 | Median dose 55.8 Gy<br>(range 48-63 Gy)                                            |   | Definite RT with doses >56 Gy had the lowest incidence of local failure |
| Laskar et al.<br>(ASTRO 2019) | All sites<br>(except chest wall and<br>intracranial) | 95 | Randomisation 55.8 vs. 70.2 Gy                                                     |   | Local control<br>70.2 Gy group: 79.2%<br>55.8 Gy group: 55.3 %          |

MedAustron

## EWING SARCOMA: PROGNOSTIC FACTORS

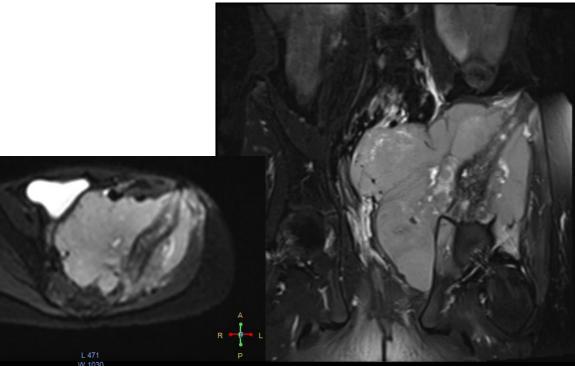
## **1. Patient/ Tumor factors:**

- > Tumour size (</> 5-10 cm negatively impacts outcome)
- > Tumor site (pelvic localisation is worse when compared to extremities)

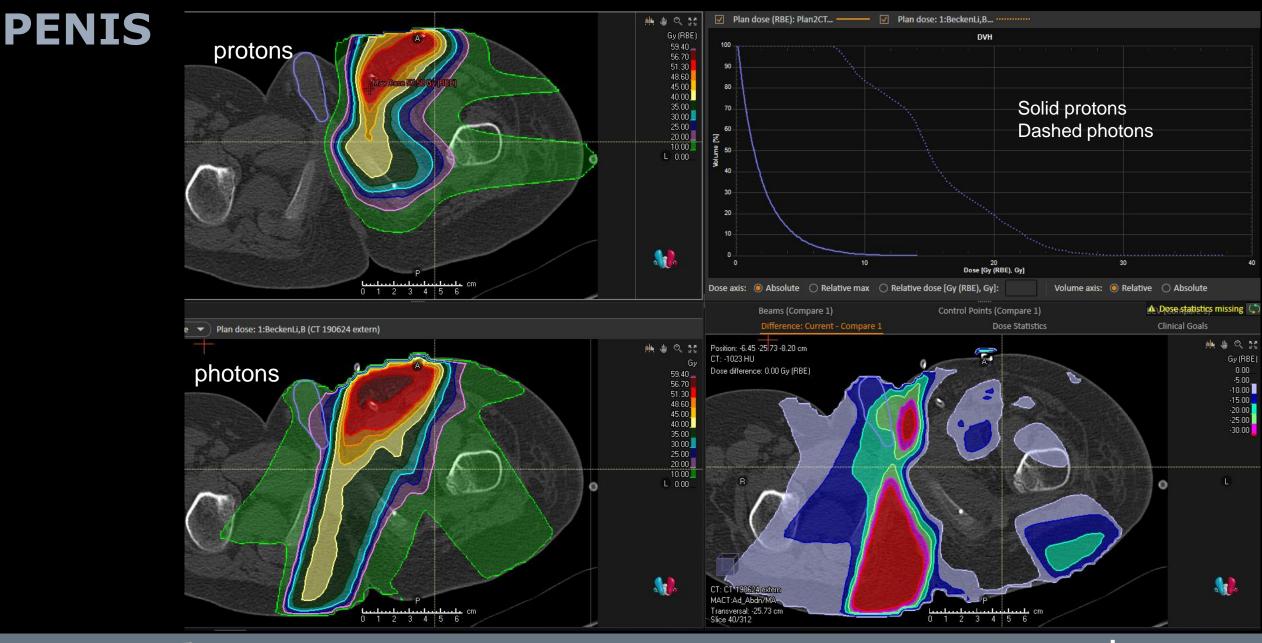
### Indictions for dose escalation

- Tumor localisation (pelvis)
- Large initial tumor volume (> 8 cm)
- Poor histological response to chemotherapy
- Inoperable / incomplete resected tumors


## **CASE HISTORY**

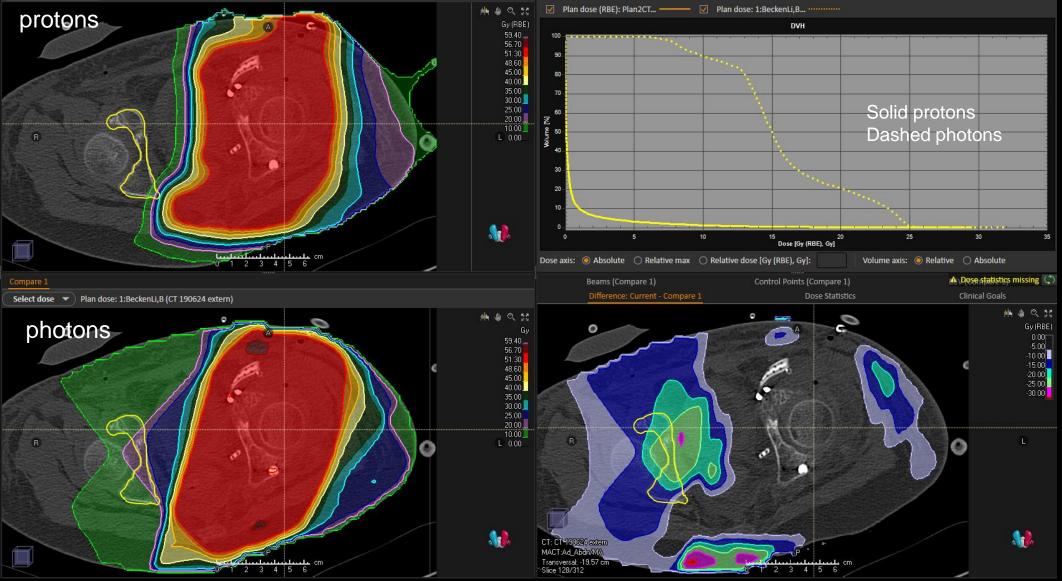

male, 15 years

### <u>Dx 01/2019</u>

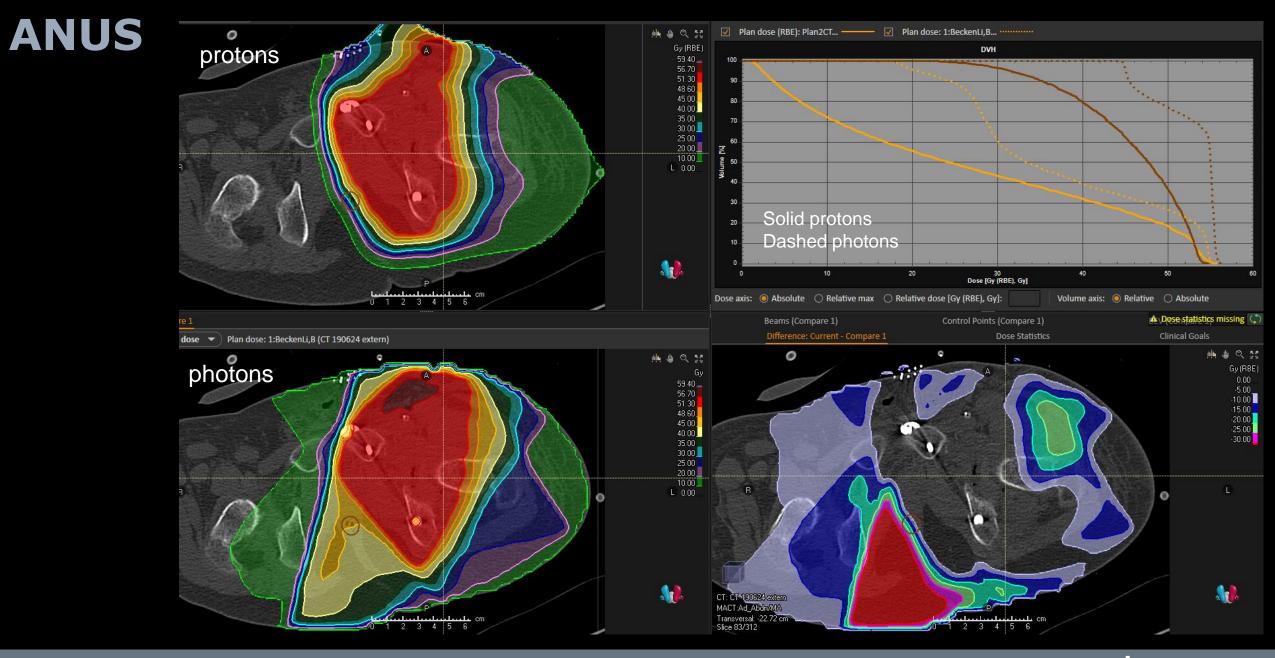

### Ewing Sarcoma os ileum sin.

- > St.p. biopsy 01/2019
- St.p. chemotherapy according to Euro Ewing protocol
- > Re-staging after 6 cycles: tumor regression
- St.p. tumor resection 06/2019 with intraoperative extra-corporal photon radiation of the pelvic bone with 100Gy
- > Adjuvant PBT treatment 54.0Gy\_1.8Gy

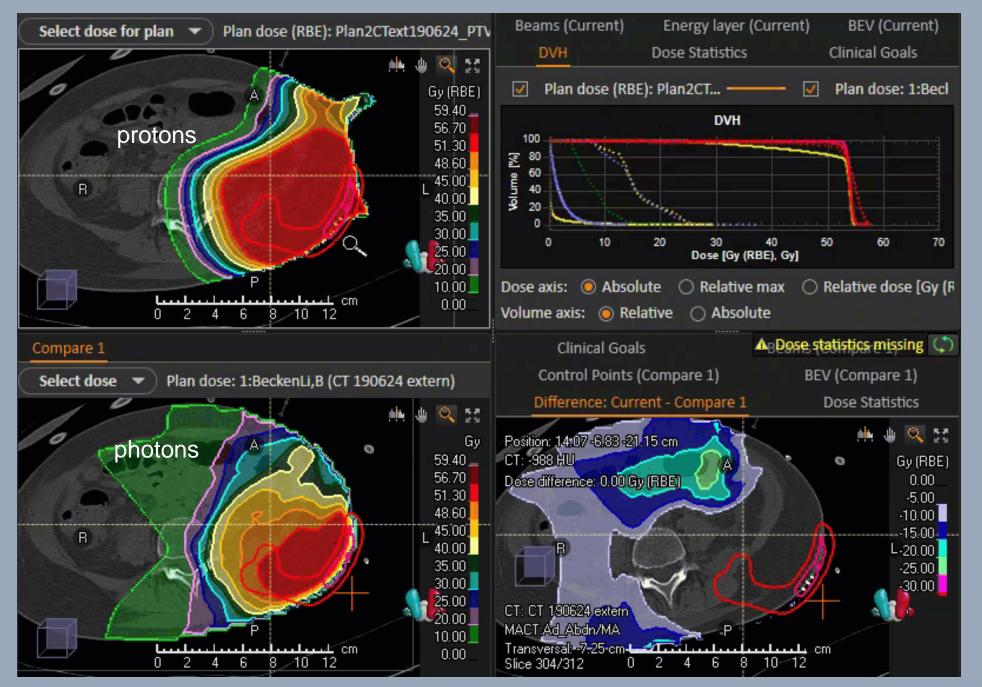





### MedAustron M




MedAustron 🖾


## ACETABULUM

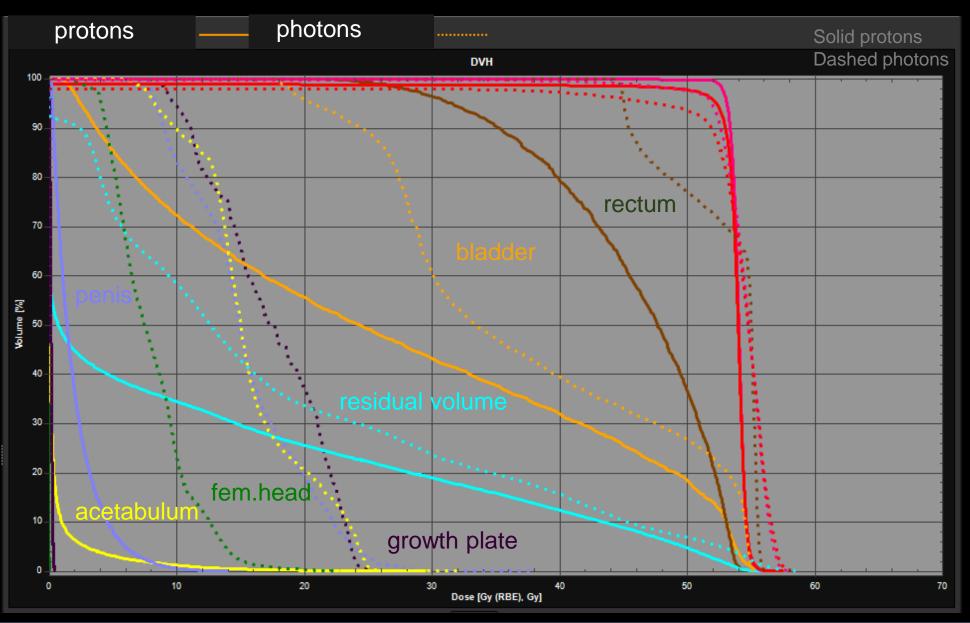


MedAustron 🖾



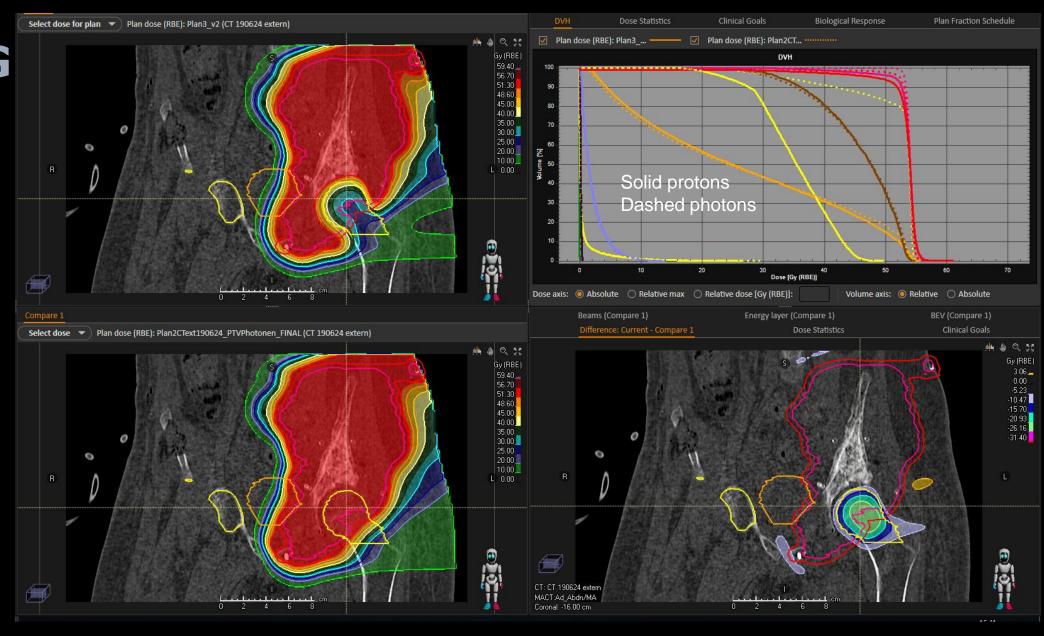




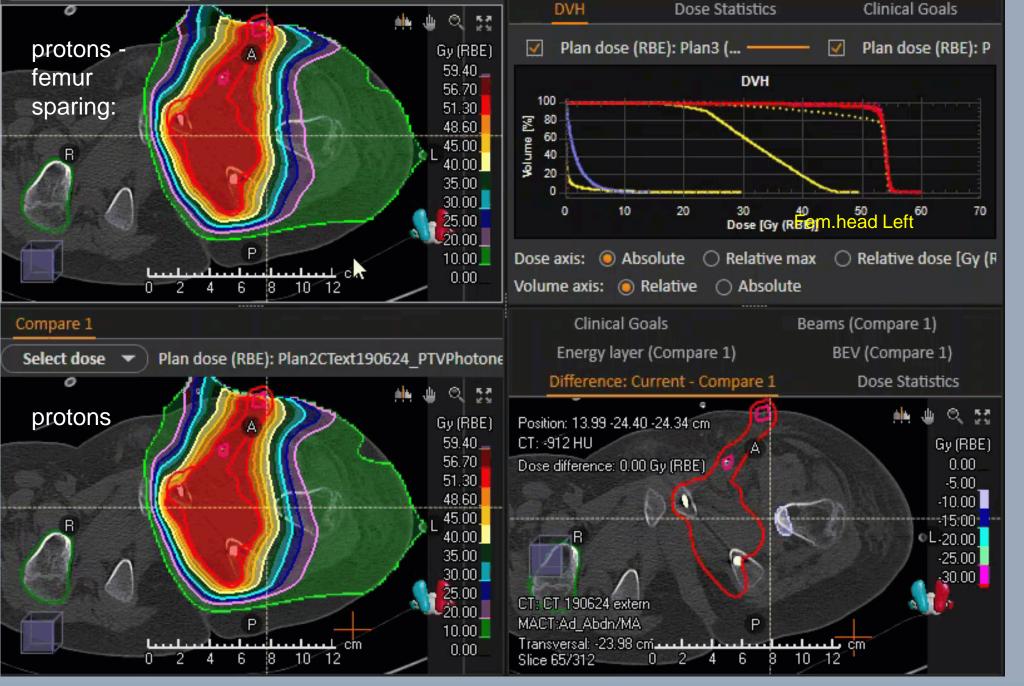

### rectum fem.head bladder acetabulum penis growth plate

### Video Note: Runs automatically in presentation mod

### MedAustron


### Summed plans: Protons vs. Photons

DVH

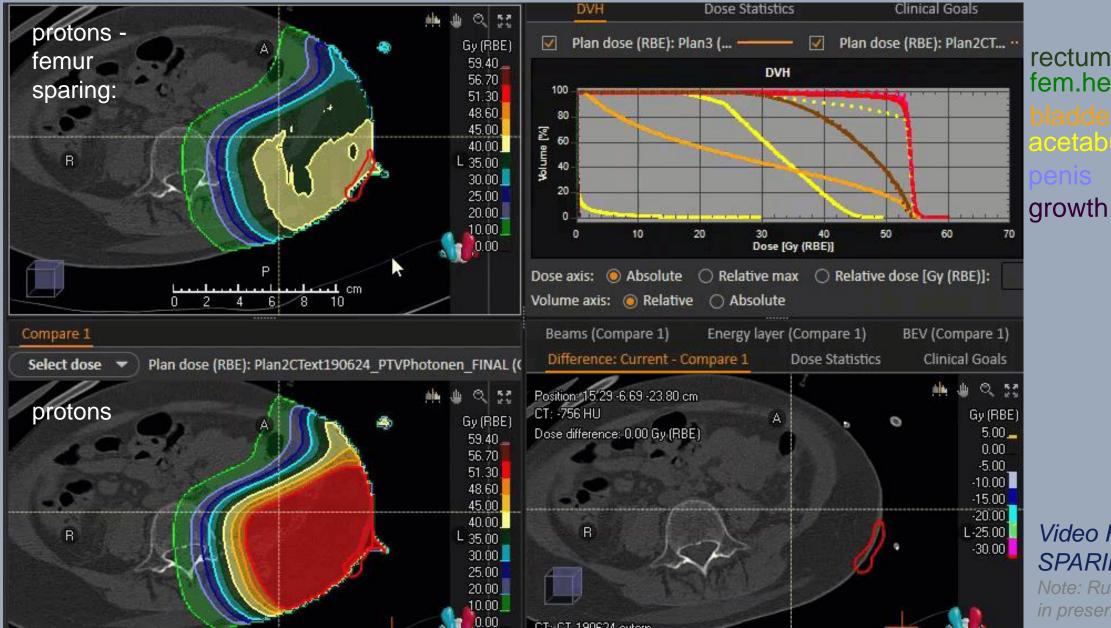



MedAustron

## FEMUR SPARING








rectum fem.head bladder acetabulum penis growth plate

Video FEMUR SPARING short (i.e. only femur region)

Note: Runs automatically in presentation mode.

MedAustron 🏧

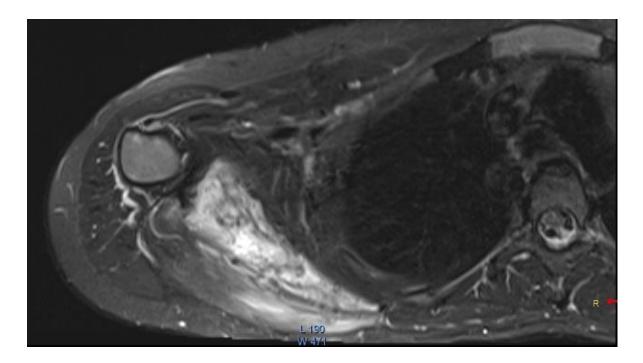


fem.head acetabulum growth plate

### Video FEMUR **SPARING**

Note: Runs automatically

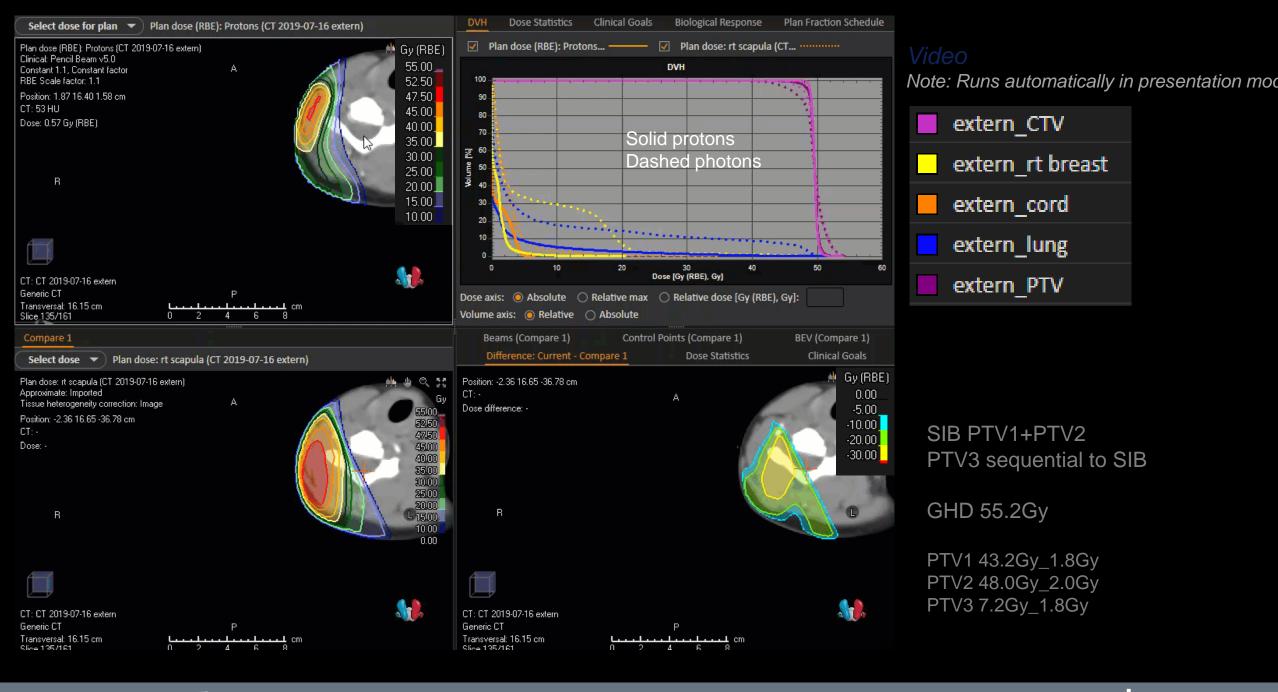
### MedAustron 🖾


## **CASE HISTORY**

female, 14 years


<u>Dx 01/2019</u>

### Ewing Sarcoma scapula


- St.p. neoadjuvant chemotherapy acc. to COG AEWS0031
- St.p. resection of the scapula and axillary lymphadenectomy - minimal bone margins
- > St.p. adjuvant CHT
- Indication for adjuvant local treatment with <u>PBT</u>



## LUNG SPARING



MedAustron



MedAustron 🖾

RMS and Ewing Sarcomas are pediatric bone and soft tissue sarcomas which

Have good overall prognosis

Show good response to chemotherapy and radiotherapy

## → RMS and Ewing are NO standard indication for CIRT





This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101008548