

re-irradiation of central nervous system tumors

DR. MED. SEMI B. HARRABI

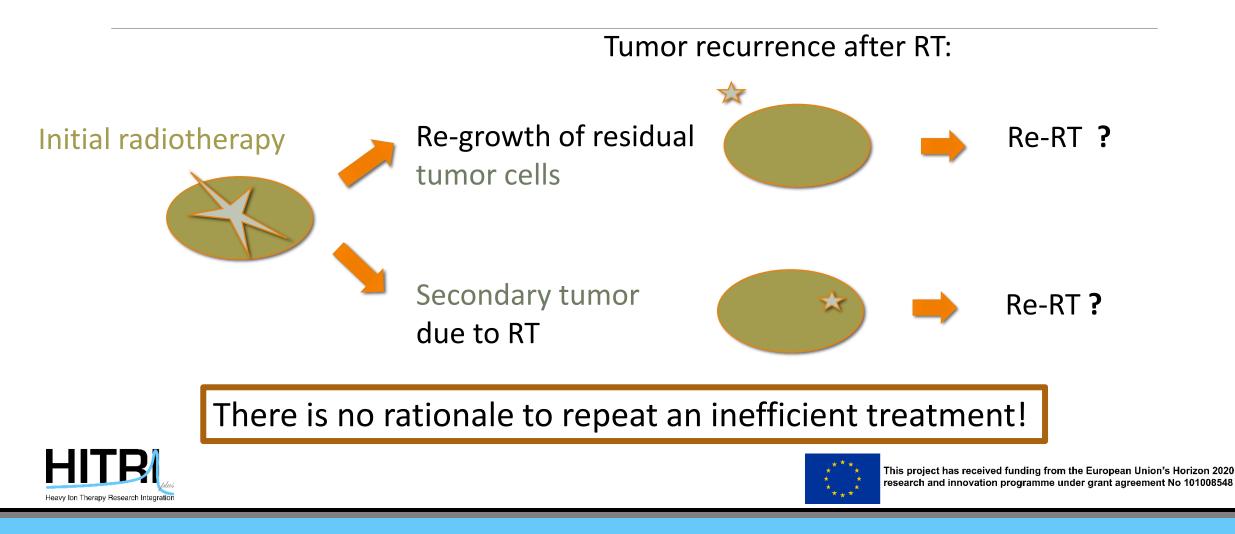
HIT

HEIDELBERG ION-BEAM THERAPY CENTER

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101008548

Rationale for re-irradiation

- What are we trying to achieve?
 - A second chance of cure
 - A long term local control
 - A meaningful palliation
- What dose do we need for each aim?



• And at what cost?

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101008548

Rationale for re-irradiation

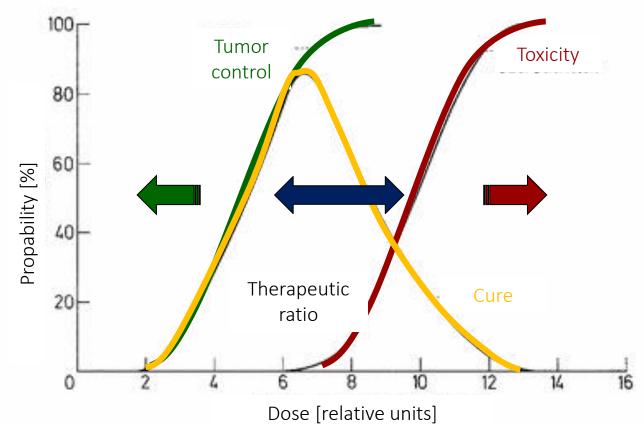
How to improve outcome of re-irradiation

Modifiers:

radiation sensitizers and radiation protectants

- Hyperthermia combined with re-RT
- Chemotherapy
- New drugs

Improved imaging:

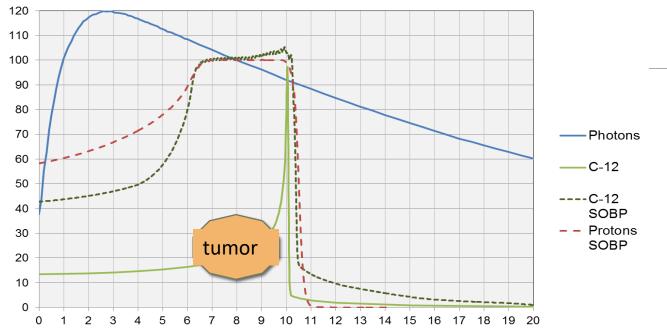

to detect recurrences earlier / precise targeting

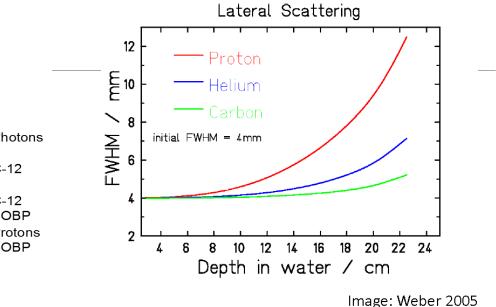
- FDG-PET /CT
- (functional) MRI, MRI-guided RT

Other radiation modalities :

"new beams"

- Protons
- Carbon ions
- Helium? Oxygen?

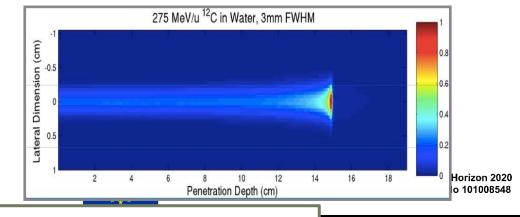




This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101008548

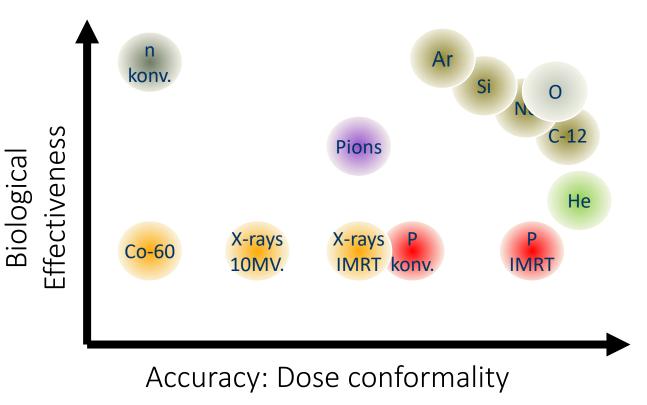
Modified from Scherer (Ed.) Strahlentherapie (1987, Springer)

Physical rationale for protons and other ions



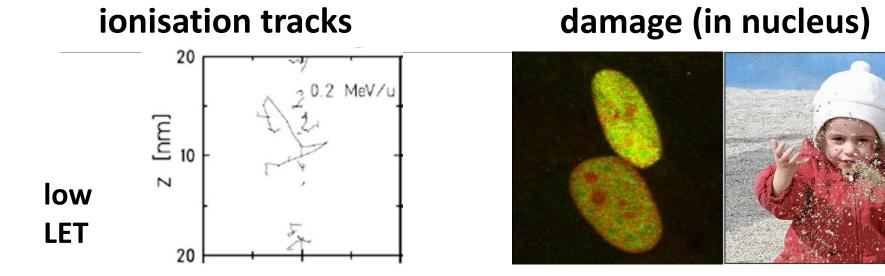
Advantageous physical properties:

• Less entry dose


• No or less exit dose

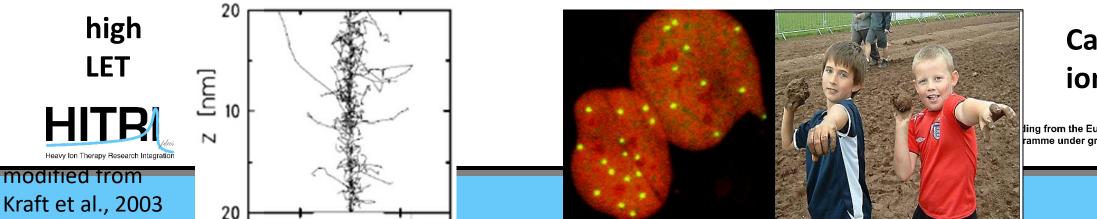
Sparing of normal tissue, dose escalation, better tumor coverage

Biological rationale for helium and carbon ions


Heavy Ion Therapy Research Integrati

Advantageous biological properties of light ions:

- Higher biological effectiveness
- More efficient in killing hypoxic tumor cells



Biological rationale for helium and carbon ions

Photons, protons

Increase of direct radiation damage and RBE for high-LET radiation

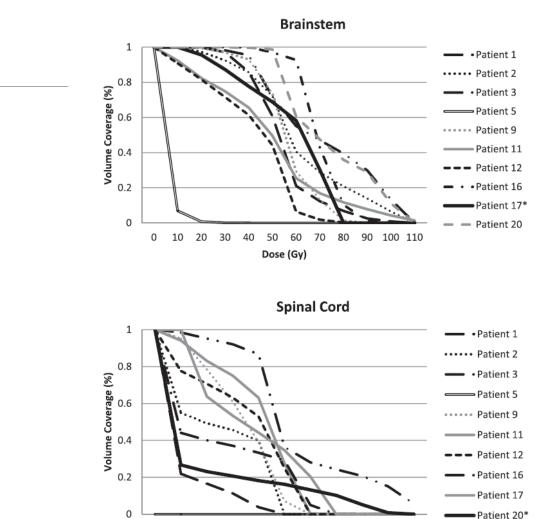
Carbon ions

ling from the European Union's Horizon 2020 ramme under grant agreement No 101008548

Radiotherapy and Oncology 116 (2015) 301-308

Proton re-irradiation

Use of proton therapy for re-irradiation in pediatric intracranial ependymoma


CrossMark

Bree R. Eaton^a, Varun Chowdhry^a, Kenneth Weaver^a, Li Liu^a, David Ebb^b, Shannon M. MacDonald^a, Nancy J. Tarbell^a, Torunn I. Yock^{a,*}

^aDepartment of Radiation Oncology; and ^bDepartment of Pediatrics, Massachusetts General Hospital, Boston, USA

Results (N=20): First failure was local (55%), distant (30%) or both (15%) at a median time of 23.9 months from first treatment.

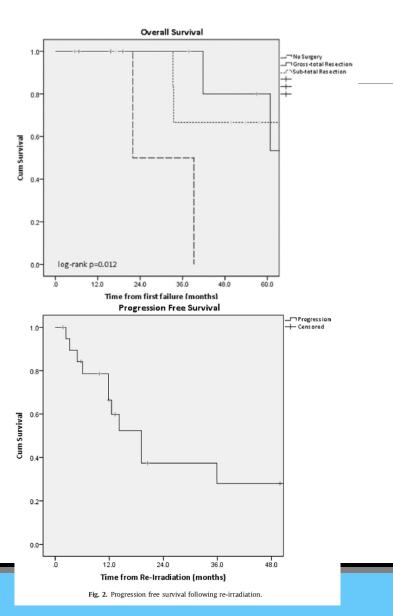
Salvage therapy re-resection (75%), chemotherapy (60%) IFPRT (70%) to a median dose 50.4 GyRBE (35–55.8)

50 60

Dose (Gy)

40

70 80


0 10

20 30

Eaton et al. / Radiotherapy and Oncology 2015

90 100

orizon 2020 101008548

Median follow-up 37.8 months (5.5–138.0).

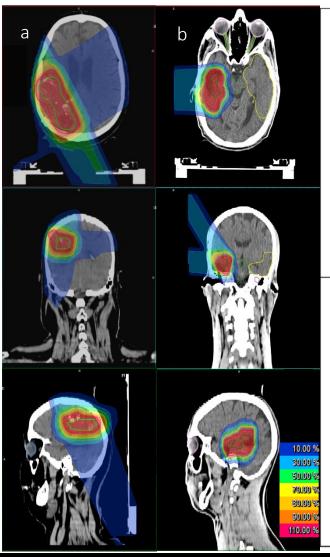
Three year OS 78.6% and PFS 28.1%.

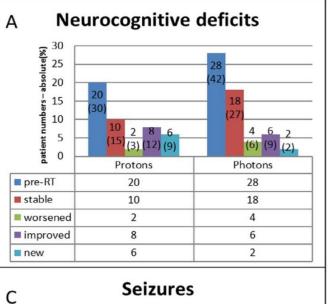
Longer OS was significantly associated with surgical resection of recurrent disease (HR 9.19, 95% Cl 1.27–66.44, p = 0.028).

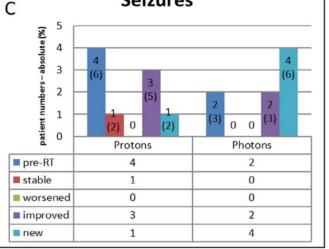
Pattern of second failure after re-irradiation was directly related to the pattern of first failure (p < 0.01).

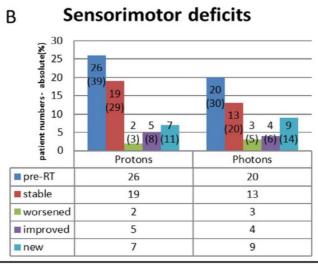
This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101008548

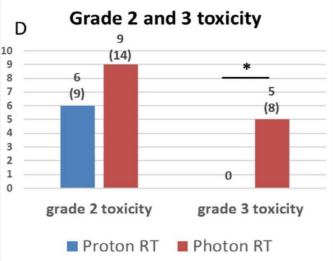
Eaton et al. / Radiotherapy and Oncology 2015


Matched pair analysis


N = 66


WHO grade 3 / 4


60 Gy IMRT vs 50 Gy IMRT + 10Gy


> Same efficacy Less toxicity

prospective phase II

N = 84

WHO grade 4

60 Gy (RBE) Radiochemotherapy (concurrent TMZ)

> Less grade 3 lymphopenia

Heavy Ion Therapy Research Integration

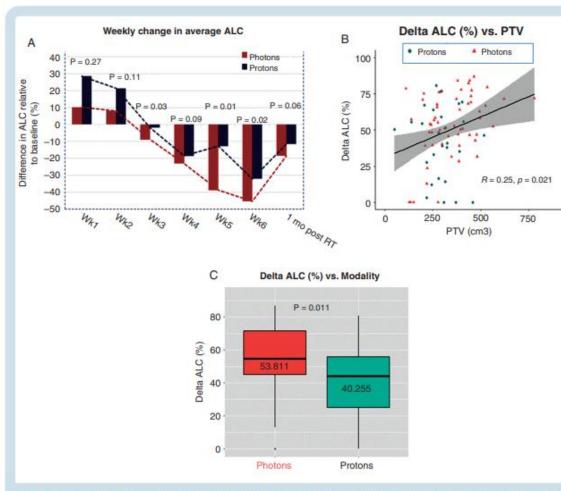


Fig. 2 (A) Weekly percent changes, relative to baseline, in absolute lymphocyte counts (ALCs) for patients treated with protons and photons. The P-values reflect the significance of differences between protons and photons. (B) Scatter plot of % differences between baseline and posttreatment ALCs (Δ -ALC) for each treatment modality as a function of PTV. A larger PTV means greater decline in ALCs over the course of radiotherapy. (C) Mean Δ -ALC for photon and proton populations are significantly different even though the baseline ALCs are essentially the same (Table 2).

	Multivariate Regression Analysis			
Variable	OR (95% CI)	P-value		
Sex (Female)	6.193 (1.951-22.37)	0.0029		
Baseline ALC (K/µL)	0.179 (0.052-0.511)	0.0027		
Whole brain V20 (%)	1.072 (1.028-1.125)	0.0021		

*Variables with statistically significant association.

Abbreviations: BMI, body mass index; GTV, gross tumor volume; CTV, clinical target volume; PTV-50 and PTV-60, planning target volumes receiving higher than 50 and 60 Gy respectively; DVH, dosevolume histogram; ALC, absolute lymphocyte count; WBC, white blood cells count (in units of 109 cells per liter); V5, V10, ..., brain volumes receiving greater than 5, 10, ... Gy(RBE) dose.

Randomized Phase II Trial of Proton Craniospinal Irradiation Versus Photon Involved-Field Radiotherapy for Patients With Solid Tumor Leptomeningeal Metastasis

pCSI resulted in significantly **improved CNS PFS and OS** compared with IFRT in **patients with metastatic NSCLC and breast cancer**, with LM with no increase in high-grade adverse events.

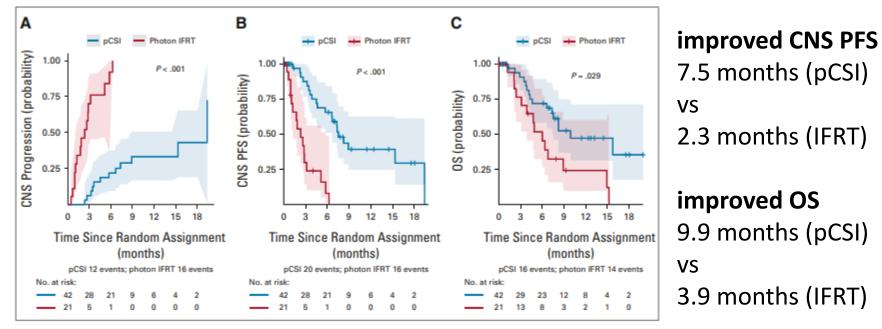
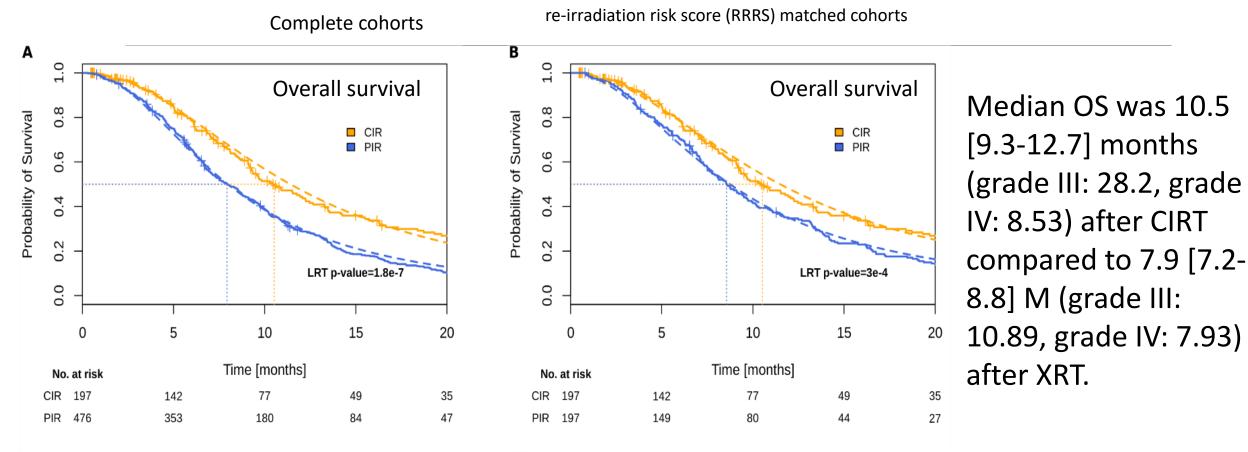


FIG 2. Patients who were randomly assigned to pCSI had significantly improved (A) CNS time to progression, (B) CNS PFS, and (C) OS. IFRT, involved-field radiotherapy; OS, overall survival; PFS, progression-free survival; pCSI, proton craniospinal irradiation.



This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101008548

Yang et al, JCO 2022

Combs et al, Radiother Oncol, 2018.

Knoll, M. et al. 2019, J Clin Oncol suppl

In DKTK-ROG multicenter cohort n:565 rHGG patients (grade III: 63, IV: 479) underwent RiP between 1997-2016 with a median dose of 36 Gy in 12 fractions

197 patients with rHGG (grade III: 71, IV: 126) received RiCi between Nov 2009 and Feb 2018at **HIT** with a median dose of 42GyRBE in 14 fractionsMedian follow up:34.2 months for RiCi7.1 months for RiP (DKTK)

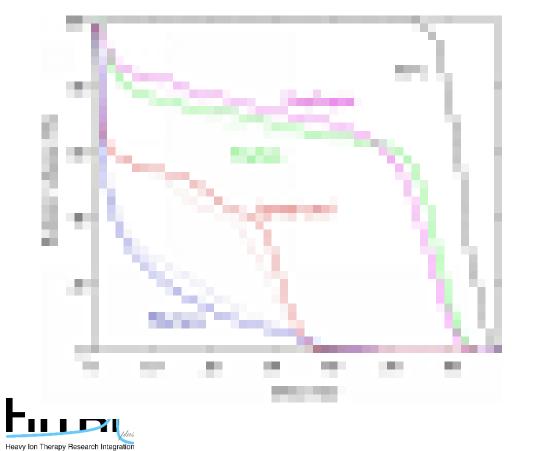
Limiting dose tolerance of organs at risk

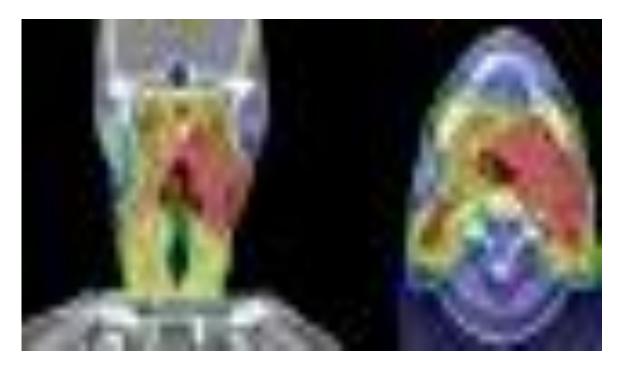
• What are the most critical organs at risk?

• How much dose have they absorbed before?

• What are their tolerance doses?

What is their potential for recovery?


Organ/tissue	Accepted re-irradiation dose-fractionated (Gy)	Accepted re-irradiation dose-stereotactic (Gy)	Accepted time interval between RT courses	Extent of OAR recovery	
Soft tissue/ muscle	Doses over 50 Gy conventional EBRT produce better control ^[16,17]		>12 months	Large scale data not available; only case serie's present	_
Brain/	Cumulative BED not exceed 130-159	Gy with an α/β ratio equal 2 Gy2 ^[18]	>12 months	Partial	
brainstem	30-40 Gy in fractionated RT ^[19]	24 Gy for involved volume <20 mm, 18 Gy for volume 21-30 mm and 15 Gy for volume 31-40 mm ^[6]			
Spinal Cord	cumulative BED should not exceed 13	30 Gy2 ^[18]	>12 months	Partial	
	20-24 Gy in10-12 fractions ^[13,14]	dose threshold for thecal sac 10 Gy in single fraction and nBED of 30-35 Gy 2/2 for up to five fractions			
Heart	Cumulative dose to the heart (BED _{3Gy}) should not exceed 70 Gy ₃ and the point dose (0.1 cc) Dmax not >49 Gy ₃ ^[20]		>24 months	Partial	
Great vessels	cumulative BED should not exceed 90-100 Gy2 ^[21]		>36 months interval can produce estimated 65% OAR recovery ^[21]	1%-2% aortic toxicities noted; carotid blowout	
Head and neck soft tissues	The dose ranges from 58-60 Gy ^[22]	18-40 Gy in 3-5 fractions to the 65%-85% isodose line over consecutive days ^[6]	>6 months-1 year	Lesser volume and more mucosa means more OAR recovery	
Mandible	Cumulative dose not defined, but tolerance below 100 Gy ₃ without cortical breach				
Parotid	Can tolerate cumulative dose of 45 Gy ^[23]		>12-18 months		
Optic structures	Re-irradiation constraints limited to <8-10 Gy for 10 cm ³ volume ^[24]		>12 months		
Urinary bladder	Can tolerate point cumulative doses of up to 120 Gy3 ^[25]		>6 months-1 year		
Pelvic ureter	Can tolerate point cumulative doses of	f up to 110 Gy3 ^[26]	>24 months	Ureteric stenosis	
Rectal mucosa and wall	Total cumulative doses 70-100 Gy with a median total dose of 85 Gy ^[27,28]	h IORT dose of 10-20 Gy ^[26,28]		Peripheral neuropathy most commonly seen with IORT	
Femoral heads	Blood supply to the femoral head is de blood vessels; cumulative BED should	efining point of action. Constraint similar to 1 not exceed 90-100 Gy2	>2-3 years gap can help recovery	Avascular necrosis of the head is the catastrophic event	i i i i i i i i i i i i i i i i i i i
Breast soft	40-50 Gy given within 4 days with PL	DR	Minimum 6 months	Moderate skin and	
tissues	brachy minimum re-radiation dose in fractionated schedule is 40 Gy			subcutaneous tissue side effects seen; mainly erythemas and skin	
4				telangiectasias	t has received funding from the European Union's
				Expected full OAR recovery	nd innovation programme under grant agreement N


Heavy Ion Therapy Research In BED: Biological equivalent dose, RT: Radiotherapy, EBRT: External beam radiation therapy, IORT: Intraoperative radiotherapy, PDR: Pulsed dose rate,

OAR: Organ at risk

Das et al, Journal of current oncology 2018

previous irradiation always as DICOMs

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101008548

summary

- Particle Therapy offers a chance for re-treatment of previously irradiated tumor sites
- ion beams enable more favorable dose distributions and thus highly individualized treatment concepts
- Helium and Carbon ions offer the advantage of higher biological effectiveness in radioresistant tumors
- First clinical studies show promising results in re-irradiated patients with reasonable outcome and relatively low toxicity.
- More clinical studies and longer follow-up is needed to assess late toxicities and to discriminate patients that clearly benefit from re-irradiation from those who only suffer side effects.

THANK YOU

Zuda da Paris