M Monte Comment

Bubble Chambers 2023 update

Alan Robinson Université de Montréal PICO Collaboration

August 9, 2023 McDonald Institute National Meeting

PICO How it works

Radiation induced boiling of superheated fluid.

Bubble Chamber operation cycle

PICO How it works

🔨 COUPP Event Display

PICO Why Bubble Chambers?

PICO Why Bubble Chambers?

Impressive Background Rejection

Multiple Neutron Scattering

PICO keV-threshold

FIG. 16. Best-f t and 1σ error envelopes for the nucleation eff ciency curves off uorine (blue) and carbon (magenta), for both thermody-namic threshold fence posts. The corresponding Seitz thresholds and error bars are shown as well (green).

PICO Why Bubble Chambers?

Spin-dependent & Low-ish mass Ability to change target fluid

PICO Recent Limits

Photon-mediated dark matter PRD **106** 042004 (2022)

PICO Recent Limits

Inelastic dark matter arXiv 2301.08993

PICO Going bigger

PICO-500: complementary reach to G2 experiments

- Lower neutrino floor, than for LXe
- Projection using
 - 0.5 live-year at 3.2 keV Seitz
 - 1 live-year at 10 keV Seitz
 - 250 L fiducial volume
 - 0.75 singles/year background, mostly from muon spallation

PICO Particulates

Metal oxide and silica particulates

Particle

Trapped then dislodged from freon/water interface

COUPP-60

Particle

 $\exists_2 C$

PICO Particulates

Mitigation

► Cleaning in PICO-2L run 2, PICO-60 C₃F₈

Eliminate water in PICO-40L RSU

IV Assembled on surface and shipped Late 2018

Base Flange assembled IV installed February

Insulation & instrumentation installed PV in place April

PICO-40L Timeline

- 2019: Assembly and system tests
- May 2020: Commissioning begins with all systems active
- September 2020: Commissioning halted due to chiller failure
- May 2021: Leak appears internal to detector; disassembly begins
- 2021-2022: Fix leak, upgrades to address shortcomings of thermal system
- 2022: Reassembly
- December 2022-Q1 2023: Recommissioning
- Imminent: Start of physics run

COVID

- Thermal control problems
 - Cannot rely on convection of mineral oil
 - Design problem masked by chiller failure.
- Reassembly with new thermal paths

Position Reconstruction

- Stereoscopic images allow for 3D position
- Improved position reconstruction, with 2 mm spatial resolution

PICO PICO-500 construction

• Highest-risk components in delivery

• Full TDR this fall

PICO Neutron Sensitivity

- Ongoing evaluation & mitigation of neutron backgrounds. e.g.
 - Custom fabricated piezoelectric tranducers
 - Maximizing pressure vessel size to move sources away

Minimize radon daughter deposition

	Prototype	COUPP-4	2L & 60	Run 2	PICO-40L	PICO-500
α-decay	X	solved	-	-	-	-
Neutrons	-	X				
Particulates	-	unidentified	X		solved	-
γ/β	solved	-	-	-		
ν/μ	-	-	-	-	-	

PICO Freon mixtures

Use of freon mixtures provides fine control of operating temperature.

Recent calibration shows that mixed C_3F_8 / C_4F_{10} have similar, and calculable, NR sensitivity to pure fluids.

PICO Development

Replacement of silica glass

- Limited by both size of vessel and radiopurity
- Hydrogenated targets
 - Proton recoils seen in $C_2H_2F_4$.
 - ▶ F. Tardif MSc thesis, UdeM 2018

Scintillating Bubble Chamber

Separate collaboration using liquid Xe, Ar, Ne

NORTHWESTERN UNIVERSITY

UNIVERSITAT

POLITÈÇNICA DE VALÈNCIA

M. Ardid, M. Bou-Cabo, I. Felis

🛟 Fermilab

PennState S. Priya, Y. Yan

C Drexel UNIVERSITY

M. Bressler, R. Neilson

Northeastern

I. Lawson

G. Giroux, C. Hardy, H. Herrera, C. Moore, A. Noble, T. Sullivan

R. Filgas, I. Stekl

F. Flores, A. Gonzalez, E. Noriega-Benítez, E. Vázguez-Jáuregui

Kavli Institute for Cosmological Physics at The University of Chicago

D. Baxter, J.I. Collar, J. Fuentes

C. Coutu, N.A. Cruz-Venegas, S. Fallows, T. Kozynets, C. Krauss, S. Pal, M.-C. Piro, W. Woodley

INDIANA UNIVERSITY SOUTH BEND K. Allen, E. Behnke, I. Levine, N. Walkowski, A. Weesner V. Zacek, C. Wen Chao,

S. Chen, M. Laurin, J.-P. Martin, A.E. Robinson, N. Starinski, D. Tiwari,

Université m **Pacific Northwest** de Montréal NATIONAL LABORATORY

> I. Arnguist, T. Grimes, B. Hackett, A. Hagen, C.M. Jackson, K. Kadooka, B. Loer

J. Farine, A. Le Blanc, T. Hillier, C. Licciardi, O. Scallon, U. Wichoski

Alphas discrimination demonstrated in MD simulations.

Kozynets, Fallows, and Krauss, PRD 100 052001 (2019)

PICO How it works

Alphas discrimination demonstrated in MD simulations and data.

Kozynets, Fallows, and Krauss, PRD 100 052001 (2019)

(a) Distribution of the modeled AP values for bubbles nucleated by neutron-induced C/F recoils and the three 222 Rn decay chain α -particle populations (7). The data is normalized so that the Gaussian center of the NR peak has an AP_{mod} value of 1. The procedure followed to arrive at the AP_{mod} distribution is described in Sec. III.

(b) AP distribution as obtained from the PICO-60 run at temperature $T_0 = 13.9^{\circ}$ C and pressure $P_l = 30.2$ psia (208 kPa), corresponding to the bubble nucleation energy threshold of 3.3 keV [2, 3]. Both ²⁴¹Am/⁹Be and ²⁵²Cf sources were used for neutron calibration.

PICO PICO-60 C₃F₈

PICO-60 Run 2 0 candidate events in 1167 kg-day 3.29 keV Seitz threshold PRL 251301 (2017) PICO-60 Complete exposure3 candidate events in 1404 kg-day2.45 keV Seitz thresholdAccepted to PRD, arXiv 1902.04031

PICO y & β Rejection

• New analysis of ER sensitivity

Bubble formed by either semi-adiabatic expansion or Auger cascades of high-Z contaminants

► arXiv: 1905.12522

PICO y & β Rejection

• New analysis of ER sensitivity

We can lower NR threshold without additional sensitivity to ER

