SuperCDMS Update

Ziqing Hong, University of Toronto

On behalf of the SuperCDMS Collaboration

2023 Canadian Astroparticle Physics Community Meeting

1

The Evidence for Dark Matter
Gravitational Lensing
Galactic Rotation C

smithsonianmag.com

Galactic Rotation Curves

~5 times as much dark matter in the universe as regular matter

Dark Matter Searches

Cosmic vision ArXiv:1707.04591 $\overline{5}$

SuperCDMS Detectors & Dark Matter Mass Scales

- Dark Matter Mass Ranges
	- "Traditional" Nuclear Recoil: Full discrimination, ≳ 5 GeV
	-
	-
	-
	-
	- Absorption (Dark Photons, ALPs): HV, no discrimination, ∼1 eV 500 keV ("peak search")

○ Low Threshold NR: Limited discrimination, ≳ 1 GeV ○ HV Detector: HV, no discrimination, ∼0.3 – 10 GeV ○ Migdal & Bremsstrahlung: no discrimination, ∼0.01 – 10 GeV ○ Electron recoil: HV, no discrimination, ∼0.5 MeV – 10 GeV

SuperCDMS @ SNOLAB

Radon filter plant

The SuperCDMS SNOLAB Experiment

Electron Recoil Backgrounds:

- External and facility: O(0.1 /keV/kg/d)
- Det. setup: O(0.1(Ge)-1(Si) /keV/kg/d)
- Total: O(0.1-1 /keV/kg/d)

Facility designed to be dominated by solar neutrinos in NR background

Facility:

- 6000 m.w.e. overburden
- 15 mK base temperature
- Initial Payload: $~30$ kg total
	- 4 stacks of six detectors ("towers")

8

- \circ 2 iZIP: 10 Ge / 2 Si
- O_2 2 HV: 8 Ge / 4 Si

Vibration isolation:

- Seismic: spring loaded platform
- Fridge on active vibration damper
- Cryo coolers: soft couplings
	- Braids, bellows
- Copper cans: hanging on Kevlar ropes

SuperCDMS Detector Technology
Discriminating

iZIP Detector:

- Prompt phonon and ionization signals allow for discrimination between nuclear and electron recoil events
Low Threshold **HV detector: Discriminating

<u>Frompt</u> phonon and

discrimination betwe

recoil events

Low Threshold

Low Threshold

Diffling electrons/ho

generates a large nu

phonons).

- Enables very l

- Trade-off: No e

discrimination**
	- Drifting electrons/holes across a potential $(\mathsf{V}_{{}_{\sf{b}}})$ generates a large number of phonons (Luke phonons).
		- Enables very low thresholds!
		- Trade-off: No event-by-event NR/ER

Sensors measure E_t, and n_{eh}

SuperCDMS Detectors: Posing for the Cameras

- Detectors made of high-purity Ge and Si Crystals
	- Si (0.6 kg each) provides sensitivity to lower dark matter masses
	- Ge (1.4 kg each) provides sensitivity to lower dark matter cross-sections
- Low operation temperature: $~15mK$
	- Athermal phonon measurement with TESs
	- Ionization measurement (iZIP) with HEMTs
- Multiple channels per detector to identify event position
- Initial payload will consist of 4 stacks of six detectors ("towers")
	- 2 iZIP: 10 Ge / 2 Si
	- 2 HV: 8 Ge / 4 Si

Construction Status -- Dilution refrigerator

- Delivered underground at the end of 2022
- Got 10 mK first run before Planned Maintenance Period (PMP)
- Further integration and tuning ongoing

Construction Status -- Shield base

- Shield base assembling finished
- Ready for the cryostat

Construction Status -- Detectors and towers

- Detectors and electronics assembled into towers
	- Tested at SLAC
- First two towers arrived at SNOLAB underground
	- Cosmogenic exposure well under control
	- Huge thanks to SNOLAB operation team!
- Two more towers arriving later this year
- Towers going into CUTE for testing when PMP ends 14

Cryogenic Underground TEst facility (CUTE)

- **Friendly neighbour**
- Taking on critical mission of detector testing
	- Exercise and debug detectors before SuperCDMS cryostat is in place
- Same environment, same electronics \rightarrow similar challenges expected
- First tower goes in later this year
- Opportunities for science results before the main experiment turns on

Data Acquisition System

Integrated warm electronics and data acquisition

- Detector Control and Readout Card (DCRC)
- Ethernet-based readout, with MIDAS software
- **FPGA-based L1 trigger**
- **Hybrid data**
	- Pre-pulse and post-pulse regions are downsampled
- DAQ deployed in 2021
- Being thoroughly tested at various test facilities

Advanced Event Reconstruction

- Pulse height proportional to energy detected
- Using optimal filter to reconstruct pulse height
	- \circ Frequency domain χ^2 fit to reduce noise
- Detector has 12 phonon channels, and some of the noise are shared/correlated
	- Fit all 12 channels simultaneously
- Pulse shape varies based on the position of energy deposition
	- Multiple templates to accommodate shape variation
- The **NxM optimal filter**
	- \circ Fit N channels with M templates
- Aim to achieve first 3D position reconstruction in cryogenic detectors! $\frac{1}{2}$

Analysis Preparation Status: Simulation

- GEANT4 + G4CMP based simulation
	- GEANT4 for energy depositions
	- O G4CMP for charge and phonon propagations in crystals (NIM A 1055 168473 (2023))
- Deriving detector response modeling from first principle
- Validation with existing calibration data ongoing

Analysis Preparation Status: background

- Background: extensive material cleaning, tracking and screening
- eTraveller: Bookkeeping tool to keep track of material movement
	- Precision accounting for cosmogenic activations
- BGExplorer: Background model based on material assay results

Exploring the sensor limit: $HV \rightarrow HVeV$ Detectors

HVeV: Prototype HV detector

- Gram scale
- eV level resolution

Two more facilities for HVeV R&D and operations

Mobile refrigerator, can be deployed in calibration facilities Currently residing at U of Toronto!

Cleanroom located ~100 m underground at Fermilab

Single electron-hole pair sensitivity

- "Version 2" of HVeV detectors
- \sim 3 eV resolution

22

F. Ponce, et al., Phys. Rev. D 101, 031101(R), 2020 R. Ren et al., Phys. Rev. D 104, 032010, 2021

F. Ponce, et al., Phys. Rev.
R. Ren et al., Phys. Rev. D

ŏ

032010

 104

031101(R), 2020 2021

- Calibrated to hundreds of keV
- Energy resolution < 5% over the full $\frac{8}{8}$
range
 $\frac{100 \text{ V} \text{OF}}{100 \text{ V} \text{OF}}$
 $\frac{1}{2} \times \frac{1}{25} = 250 \text{ V} \text{MF}$
 $\frac{1}{25} = 250 \text{ V} \text{NF}$
 $\frac{1}{25} = 250 \text{ V} \text{NF}$ range

Iterations of HVeV dark matter experiments

- Burst events detection and study
- \bullet Hypothesis: originated by SiO₂ in the detector holder (PCB)

- Coincidence measurement
- Confirmed external origin of this background and its reduction with \bullet coincidence detections

- Removed PCB from detector holder
- **Elimination of quantized** background above 1eh peak

Low mass dark matter search background challenges

HVeV going deep underground

- Planning next HVeV run at CUTE@SNOLAB
- Established low background environment
	- \circ < 10 DRU achieved
- Will operate at various NTL gains
	- Model ER/NR/Heat Only components

Understanding the detector: Nuclear recoil calibration

- Silicon yield (Y) measured down to 100 eV
- Germanium measurement in preparation
- Also exploring even lower energy scale
	- Exploring Lower energy neutrons with $51V$ target

Understanding the detector: Low energy calibration

- New detectors heavily optimized for low energy performances
	- Saturates at high energy
- Low energy calibration poses renewed challenges
- Exploring Compton steps as calibration features in HVeV
- To be applied to Si HV, which has most low-mass WIMP sensitivity

Silicon Compton Steps

- Using Compton steps:
- Irradiate with O(100) keV gamma rays.
	- Scattering with atomic electrons.
- **Scattering probability** proportional to number of electrons that can be excited
	- Binding energies creates step-like structures
- Can be used for calibration down to 100 eV

28 Similar structure confirmed by CCD data from DAMIC-M (PhysRevD 106, 092001, 2022)

Silicon Compton Steps Ongoing efforts

- Cs-137 calibration data with Si HVeV detector at NEXUS
- Expected features:
	- 662 keV Cs gamma line
	- 447 keV Compton edge
	- 8.04 keV Copper x-ray
		- Detector housing!
	- Si 1.84 keV Compton step
	- Si 99/150 eV Compton steps
- Cross-calibration with optical photon calibration at high voltage
	- Single e-h peaks visible up to a few keV
-

Latest Detector Performance

- "Version 3" of HVeV detectors
- Lower transition temperature
	- Operated at NEXUS

(Ve

H

 II Size

(Bin

Counts

- Achieve $\sigma_{\rm b}$ = 1.097 eV ± 0.003 eV
- **● Below Silicon bandgap!**
- \bullet Also with SiO₂ blocking layer
	- **○ Study of leakage ongoing**

Detector Spectrum Energy of Random Triggers

Conclusions

- SuperCDMS is well suited for low mass DM searches
- Low threshold enables low mass NR searches
	- iZIP provides background rejection
	- HV pushes down threshold further
- SNOLAB commissioning well underway
- HVeV detectors can achieve 1 eV phonon resolution and 0.01 charge resolution
- Low energy calibration poses renewed challenge
- More science results anticipated
- **● Stay tuned!**

Bonus Slides

QET Design and Transport

Detecting Low Mass DM

- Low mass WIMP models predicts low recoil energies
- Direct detection experiments often **limited by energy resolution and threshold**
- Electron recoil models also require ideally single charge sensitivity

