SuperCDMS Update

Ziqing Hong, University of Toronto

On behalf of the SuperCDMS Collaboration

2023 Canadian Astroparticle Physics Community Meeting

The Evidence for Dark Matter

Gravitational Lensing

smithsonianmag.com

Galactic Rotation Curves

~5 times as much dark matter in the universe as regular matter

Dark Matter Searches

US Cosmic vision ArXiv:1707.04591

SuperCDMS Detectors & Dark Matter Mass Scales

- Dark Matter Mass Ranges
 - "Traditional" Nuclear Recoil:
 - Low Threshold NR:
 - HV Detector:
 - Migdal & Bremsstrahlung:
 - Electron recoil:
 - Absorption (Dark Photons, ALPs): HV, no discrimination,

Full discrimination,≥Limited discrimination,≥HV, no discrimination,~no discrimination,~HV, no discrimination,~HV, no discrimination,~

≥ 5 GeV
≥ 1 GeV
~0.3 - 10 GeV
~0.01 - 10 GeV
~0.5 MeV - 10 GeV
~1 eV - 500 keV ("peak search")

SuperCDMS @ SNOLAB **CUTE SuperCDMS SNOLAB Clean room** 2 km SuperCDMS Experiment **Cryogenics plant** 7

Radon filter plant

The SuperCDMS SNOLAB Experiment

Electron Recoil Backgrounds:

- External and facility: O(0.1 /keV/kg/d)
- Det. setup: O(0.1(Ge)-1(Si) /keV/kg/d)
- Total: O(0.1-1 /keV/kg/d)

Facility designed to be dominated by solar neutrinos in NR background

Facility:

- 6000 m.w.e. overburden
- 15 mK base temperature
- Initial Payload: ~30 kg total
 - 4 stacks of six detectors ("towers")
 - 2 iZIP: 10 Ge / 2 Si
 - 2 HV: 8 Ge / 4 Si

Vibration isolation:

- Seismic: spring loaded platform
- Fridge on active vibration damper
- Cryo coolers: soft couplings
 - \circ Braids, bellows
- Copper cans: hanging on Kevlar ropes

SuperCDMS Detector Technology

Discriminating

iZIP Detector:

- Prompt phonon and ionization signals allow for discrimination between nuclear and electron recoil events
 Low Threshold
 Low Here detector:
 - Drifting electrons/holes across a potential (V_b) generates a large number of phonons (Luke phonons).
 - Enables very low thresholds!
 - Trade-off: No event-by-event NR/ER discrimination

Sensors measure Et, and neh

SuperCDMS Detectors: Posing for the Cameras

- Detectors made of high-purity Ge and Si Crystals
 - Si (0.6 kg each) provides sensitivity to lower dark matter masses
 - Ge (1.4 kg each) provides sensitivity to lower dark matter cross-sections
- Low operation temperature: ~15mK
 - Athermal phonon measurement with TESs
 - Ionization measurement (iZIP) with HEMTs
- Multiple channels per detector to identify event position
- Initial payload will consist of 4 stacks of six detectors ("towers")
 - 2 iZIP: 10 Ge / 2 Si
 - 2 HV: 8 Ge / 4 Si

Construction Status -- Dilution refrigerator

- Delivered underground at the end of 2022
- Got 10 mK first run before Planned Maintenance Period (PMP)
- Further integration and tuning ongoing

Construction Status -- Shield base

- Shield base assembling finished
- Ready for the cryostat

Construction Status -- Detectors and towers

- Detectors and electronics assembled into towers
 - Tested at SLAC
- First two towers arrived at SNOLAB underground
 - Cosmogenic exposure well under control
 - Huge thanks to SNOLAB operation team!
- Two more towers arriving later this year
- Towers going into CUTE for testing when PMP ends

Cryogenic Underground TEst facility (CUTE)

- Friendly neighbour
- Taking on critical mission of detector testing
 - Exercise and debug detectors
 before SuperCDMS cryostat is in
 place
- Same environment, same electronics
 → similar challenges expected
- First tower goes in later this year
- Opportunities for science results before the main experiment turns on

Data Acquisition System

• Integrated warm electronics and data acquisition

- Detector Control and Readout Card (DCRC)
- Ethernet-based readout, with MIDAS software
- FPGA-based L1 trigger
- Hybrid data
 - Pre-pulse and post-pulse regions are downsampled
- DAQ deployed in 2021
- Being thoroughly tested at various test facilities

Advanced Event Reconstruction

- Pulse height proportional to energy detected
- Using optimal filter to reconstruct pulse height
 - Frequency domain χ^2 fit to reduce noise
- Detector has 12 phonon channels, and some of the noise are shared/correlated
 - Fit all 12 channels simultaneously
- Pulse shape varies based on the position of energy deposition
 - Multiple templates to accommodate shape variation
- The NxM optimal filter
 - Fit N channels with M templates
- Aim to achieve first 3D position reconstruction in cryogenic detectors!

Analysis Preparation Status: Simulation

- GEANT4 + G4CMP based simulation
 - GEANT4 for energy depositions
 - G4CMP for charge and phonon propagations in crystals (NIM A 1055 168473 (2023))
- Deriving detector response modeling from first principle
- Validation with existing calibration data ongoing

Analysis Preparation Status: background

- Background: extensive material cleaning, tracking and screening
- eTraveller: Bookkeeping tool to keep track of material movement
 - Precision accounting for cosmogenic activations
- BGExplorer: Background model based on material assay results

Exploring the sensor limit: $HV \rightarrow HVeV$ Detectors

HVeV: Prototype HV detector

- Gram scale
- eV level resolution

Two more facilities for HVeV R&D and operations

Mobile refrigerator, can be deployed in calibration facilities Currently residing at U of Toronto!

Cleanroom located ~100 m underground at Fermilab

Single electron-hole pair sensitivity

- "Version 2" of HVeV detectors
- ~3 eV resolution

- Calibrated to hundreds of keV
- Energy resolution < 5% over the full range

091101(R), 2020 031101(R), 2020 2021 032010 ò D. W. Amaral *et al.*, Phys. Re F. Ponce, et al., Phys. Rev. C R. Ren et al., Phys. Rev. D 1 Phys.

Iterations of HVeV dark matter experiments

- Burst events detection and study
- Hypothesis: originated by SiO₂ in the detector holder (PCB)

- Coincidence measurement
- Confirmed external origin of this
 background and its reduction with •
 coincidence detections

- Removed PCB from detector holder
- Elimination of quantized background above 1eh peak

Low mass dark matter search background challenges

HVeV going deep underground

- Planning next HVeV run at CUTE@SNOLAB
- Established low background environment
 - o < 10 DRU achieved</p>
- Will operate at various NTL gains
 - Model ER/NR/Heat Only components

Understanding the detector: Nuclear recoil calibration

- Silicon yield (Y) measured down to 100 eV
- Germanium measurement in preparation
- Also exploring even lower energy scale
 - Exploring Lower energy neutrons with ⁵¹V target Ο

Understanding the detector: Low energy calibration

- New detectors heavily optimized for low energy performances
 - Saturates at high energy
- Low energy calibration poses renewed challenges
- Exploring Compton steps as calibration features in HVeV
- To be applied to Si HV, which has most low-mass WIMP sensitivity

Energy	Low (few eV)	Intermediate (100 eV - few keV)		High (> 100 keV)	
Method	Optical photons	Compton steps	Activation lines	Compton Edges	Photoabsorption peaks
Ge iZIP & HV	×	×	\checkmark	\checkmark	\checkmark
Si iZIP & HV	×	?	×	\checkmark	\checkmark
Si HVeV	\checkmark	?	×	\checkmark	\checkmark

Silicon Compton Steps

- Using Compton steps:
- Irradiate with O(100) keV gamma rays.
 - Scattering with atomic electrons.
- Scattering probability proportional to number of electrons that can be excited
 - Binding energies creates step-like structures
- Can be used for calibration down to 100 eV

Similar structure confirmed by CCD data from DAMIC-M (PhysRevD 106, 092001, 2022) ²⁸

Silicon Compton Steps **Ongoing efforts**

- Cs-137 calibration data with Si HVeV detector at NEXUS
- Expected features:
 - 662 keV Cs gamma line Ο
 - 447 keV Compton edge Ο
 - 8.04 keV Copper x-ray Ο
 - **Detector housing!**
 - Si 1.84 keV Compton step Ο
 - Si 99/150 eV Compton steps Ο
- Cross-calibration with optical photon calibration at high voltage
 - Single e-h peaks visible up to a few keV Ο
- Results expected this year!

Latest Detector Performance

- "Version 3" of HVeV detectors
- Lower transition temperature •
 - **Operated at NEXUS** Ο

eV)

Ē

Ш Size

(Bin

Counts

n

- Achieve $\sigma_{h} = 1.097 \text{ eV} \pm 0.003 \text{ eV}$
- **Below Silicon bandgap!**
- Also with SiO₂ blocking layer
 - Study of leakage ongoing

Detector Spectrum

Conclusions

- SuperCDMS is well suited for low mass DM searches
- Low threshold enables low mass NR searches
 - iZIP provides background rejection
 - HV pushes down threshold further
- SNOLAB commissioning well underway
- HVeV detectors can achieve 1 eV phonon resolution and 0.01 charge resolution
- Low energy calibration poses renewed challenge
- More science results anticipated
- Stay tuned!

Bonus Slides

QET Design and Transport

Detecting Low Mass DM

- Low mass WIMP models predicts low recoil energies
- Direct detection experiments often limited by energy resolution and threshold
- Electron recoil models also require ideally single charge sensitivity

